

International Business Machines Corporation 	 Boca Raton, Florida 33432

IBM Program License Agreement

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND
CONDITIONS BEFORE OPENING THIS DISKETTE(S) OR CASSETTE(S)
PACKAGE. OPENING THIS DISKETTE(S) OR CASSETTE(S) PACKAGE
INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS.
IF YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY
RETURN THE PACKAGE UNOPENED; AND YOUR MONEY WILL BE
REFUNDED.

IBM provides this program and licenses
its use in the United States and Puerto
Rico. You assume responsibility for the
selection of the program to achieve your
intended results, and for the installation,
use and results obtained from the
program.

LICENSE

You may:

a. use the program on a single machine;

b. copy the program into any machine
readable or printed form for backup
or modification purposes in support
of your use of the program on the
single machine (Certain programs,
however, may include mechanisms to
limit or inhibit copying. They are
marked "copy protected.");

c. modify the program and/or merge it
into another program for your use on
the single machine (Any portion of
this program merged into another
program will continue to be subject to
the terms and conditions of this
Agreement.); and,

d. transfer the program and license to
another party if the other party agrees
to accept the terms and conditions of
this Agreement. If you transfer the
program, you must at the same time
either transfer all copies whether in
printed or machine-readable form to
the same party or destroy any
copies not transferred; this includes
all modifications and portions of the
program contained or merged into
other programs.

You must reproduce and include the
copyright notice on any copy,
modification or portion merged into
another program.

YOU MAY NOT USE, COPY,
MODIFY, OR TRANSFER THE
PROGRAM, OR ANY COPY,
MODIFICATION OR MERGED
PORTION, IN WHOLE OR IN PART,
EXCEPT AS EXPRESSLY PROVIDED
FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF
ANY COPY, MODIFICATION OR
MERGED PORTION OF THE
PROGRAM TO ANOTHER PARTY,
YOUR LICENSE IS AUTOMATICALLY
TERMINATED.

TERM

The license is effective until terminated.
You may terminate it at any other time
by destroying the program together with
all copies, modifications and merged
portions in any form. It will also
terminate upon conditions set forth
elsewhere in this Agreement or if you
fail to comply with any term or condition
of this Agreement. You agree upon such
termination to destroy the program
together with all copies, modifications
and merged portions in any form.

LIMITED WARRANTY

THE PROGRAM IS PROVIDED "As
IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE,
YOU (AND NOT IBM OR AN
AUTHORIZED PERSONAL
COMPUTER DEALER) ASSUME THE
ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

Continued on inside back cover

Perso;zal Computer

Computer Language
Series

COBOL
Compiler
by Microsoft

First Edition (March 1982)

Changes are periodically made to the information herein;

these changes will be incorporated in new editions of this

publication.

Products are not stocked at the address below. Requests for

copies of this product and for technical information about the

system should be made to your authorized IBM Personal

Computer Dealer.

A Product Comment Form is provided at the back of this

publication. If this form has been removed, address comment

to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca

Raton, Florida 33432. IBM may use or distribute any of the

information you supply in any way it believes appropriate

without incurring any obligations whatever.

0 Copyright International Business Machines Corporation 1982

PREFACE

About This Book

This IBM Personal Computer COBOL manual provides
both operating information and reference information
for the IBM Personal Computer COBOL compiler. In
order to use this manual, you should have some
knowledge of general programming concepts; we are not
trying to teach you how to program in this manual.

This manual is divided into ten chapters plus a number
of appendixes. The first three chapters provide operating
instructions and an introduction to the COBOL language.

Chapter 1 is a brief introduction and overview of the
COBOL language.

Chapter 2 tells you what you need to know to start
using COBOL on your IBM Personal Computer. It
tells you how to operate your computer using IBM
Personal Computer COBOL.

Chapter 3 covers a variety of topics which you need
to know before you actually start programming. In
this chapter, you learn how to:

• 	Create the source file for a program.

• 	Compile the program.

• 	Link the program.

• 	Run the program.

ifi

Chapters 4, 5, 6, and 7 are reference chapters. They
describe the four divisions of a COBOL program. These
chapters also provide the syntax and function of all of
the paragraphs, sentences, clauses, and phrases used in
each division. The syntax descriptions are in alphabetic
order at the end of each of the four chapters.

Chapter 4. Identification Division

Chapter 5. Environment Division

Chapter 6. Data Division

Chapter 7. Procedure Division

The remaining three chapters discuss additional features
of your IBM Personal Computer COBOL.

Chapter 8 tells you about file organization and the
Procedure Division statements applicable to
sequential, relative, and indexed files.

Chapter 9 discusses table handling by the indexing
method. It includes the use of the SET and SEARCH
statements.

Chapter 10 describes interprogram communication.

The appendixes contain other useful information, such as
lists of messages, reserved words, ASCII codes, and
math functions. You can also find detailed information
on more advanced subjects for the experienced
programmer.

We suggest you read through all of chapters 1, 2, and 3
to become familiar with IBM Personal Computer
COBOL. Then you can refer to chapters 4, 5, 6, and 7
while you are actually programming to get information
you need about each division.

iv

Related Publications

While you are using this manual, you may find
references to one or more of the other books in the IBM
Personal Computer library. These books include:

• IBM Personal Computer Disk Operating System

• IBM Personal Computer BASIC

• IBM Personal Computer FORTRAN

• IBM Personal Computer Pascal

• IBM Personal Computer MACRO ASSEMBLER

The BASIC manual is provided with your IBM Personal
Computer system.

The Disk Operating System, FORTRAN, Pascal, and
MACRO ASSEMBLER manuals are provided when you
purchase the individual software packages.

Acknowledgment

"Any organization interested in reproducing the
COBOL report and specifications in whole or in part,
using ideas taken from this report as the basis for an
instruction manual or for any other purpose, is free to
do so. However, all such organizations are requested
to reproduce this section as part of the introduction
to the document. Those using a short passage, as in a
book review, are requested to mention COBOL in
acknowledgment of the source.

"COBOL is an industry language and is not the property
of any company or group of companies, or of any
organization or group of organizations.

"No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the
accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection
therewith.

"Procedures have been established for the maintenance
of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive
Committee of the Conference on Data Processing.

"The authors and copyright holders of the copyrighted
material used herein:

FLOW-MATIC (Trademark of Sperry Rand
Corporation), Programming for the UNIVAC® I
and II, Data Automation Systems copyrighted 1958,
1959, by Sperry Rand Corporation;

IBM Commercial Translator, Form No. F28-8013,
copyrighted 1959 by IBM;

vi

FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specification in
programming manuals or similar publications."

Runtirne Module

Application programs written in IBM Personal Computer
COBOL require the COBRUN.EXE runtime module.
Information about this runtime module can be obtained
by writing to IBM at:

Runtime Module
IBM Personal Computer
P.O. Box 1328-A
Boca Raton, Florida 33432

'The ANSI COBOL STANDARD (X3.23-1974)

VII

CONTENTS

CHAPTER 1. INTRODUCTION1-1
What Is COBOL?1-3

IBM Personal Computer COBOL and the

	

National Standard 	1-3
Exceptions 	1-7
Summary 	1-8

CHAPTER 2. HOW TO WRITE A COBOL
PROGRAM 	 2-1

Program Structure 	 2-3
Divisions of a Program 	 2-3
Coding Structure 	 2-4
Coding Rules 	 2-5
Syntax Notation 	 2-9
Character Set 	2-10
Punctuation 1 . 	 . 	2-11
Word Formation 	2-12

Statements, Sentences, and Names 2-13
Statements 	2-13
Sentences 	2-14
Paragraphs 	2-14
Sections 	2-14

Level Numbers and Data Names 	2-15
What is a Record? 	2-15
Data Items 	2-15
Data Names 2-20
Qualifier Names 	2-21
Condition Names 2-22
Mnemonic Names 	2-22

Data Description Entry 	2-23
Group Item Format 2-24
Elementary Item Format 2-24

Filenames 2-26
Literals 2-27

Nonnumeric Literals 	2-27
Numeric Literals 	2-28
Figurative Constants 	2-29

Arithmetic Expressions 	2-31

ix

Arithmetic Statements . 2-33
SIZE ERROR Option 	2-34
ROUNDED Option 	2-35
GIVING Option 	2-36

CHAPTER 3. DEVELOPING A PROGRAM . 	 3-1
What You Need 	 3-3
Overview of the Compiler 	 3-5
Program Development Steps 	 3-6
How to Create a COBOL Source File 3-7

Coding Rules 	 3-7
How to Compile a COBOL Program 3-8

Getting Started 	 3-8
Compilation Steps 	3-10

How to Link a COBOL Program 	3-14
How to Run a COBOL Program 	3-17

The Runtime System 	3-17
License Agreement 	3-19

Optional COBOL Commands 	3-20
Examples 	3-20
The I Parameter 	3-22

Optional Linker Commands 	3-24
Examples 	3-24
Automatic Response File 	3-26
Linking a Subprogram 	3-26
Linking With Segmentation 	3-27
Using a Batch File 	3-28
Compiling a Large Program 	3-29

Files Used by COBOL 	
. 	 	3-30

Output Listings and Error Messages 3-32
COPY Statement 	

. 	 	3-34
Sample Listing 	

. 	 	3-36

CHAPTER 4. IDENTIFICATION DIVISION . . . 4-1
Purpose 	 4-3
Format 	 4-3
Remarks 	 4-3
Example 	 4-4

AUTHOR Paragraph 	 4-5
DATE-COMPILED Paragraph 	 4-6
DATE-WRITTEN Paragraph 	 4-7
IDENTIFICATION DIVISION Header 4-8
INSTALLATION Paragraph 	 4-9
PROGRAM-ID Paragraph 	4-10
SECURITY Paragraph 	4-11

x

CHAPTER 5. ENVIRONMENT DIVISION. 5-1
Purpose 5-3
Format 5-3
Remarks 5-4
Example 5-4

CONFIGURATION SECTION Header 5-5
ENVIRONMENT DIVISION Header 5-6
FILE-CONTROL Paragraph 5-7
INPUT-OUTPUT SECTION Header 5-11
1-0-CONTROL Paragraph 5-12
OBJECT-COMPUTER Paragraph 5-13
SOURCE-COMPUTER Paragraph 5-14
SPECIAL-NAMES Paragraph 5-15

CHAPTER 6. DATA DIVISION 6-1
Purpose 6-3
Format 6-3
Remarks 6-3
Example 6-4

File Section 6-5
Working Storage Section 6-7
Linkage Section 6-9
Screen Section 6-1 1
Data Division Limitations 6-20
BLANK WHEN ZERO Clause 6-21
BLOCK Clause 6-22
CODE-SET Clause 6-23
DATA RECORD(S) Clause 6-24
FD Entry (Sequential I/O Only) 6-25
JUSTIFIED Clause 6-26
LABEL Clause 6-27
LINAGE Clause 6-28
OCCURS Clause 6-30
PICTURE Clause 6-33
RECORD Clause 	6-43
REDEFINES Clause 6-44
SIGN Clause 	6-46
SYNCHRONIZED Clause 	6-49
USAGE Clause 6-50
VALUE Clause 6-51

Level 88 Condition Names 6-53
VALUE OF FILE-ID Clause 6-55

xi

CHAPTER 7. PROCEDURE DIVISION 7-1
Purpose 7-3
Format 7-3
Remarks 7-4
Example 7-5

Declaratives and the USE Sentence 7-6
Example 	 7-8

Segmentation 	 7-9
ACCEPT Statement 	7-11 1

Format 1 ACCEPT Statement 7-12
Example 	7-13
Format 2 ACCEPT Statement 7-14
Example 	7-16
Format 3 ACCEPT Statement 7-17
Format 4 ACCEPT Statement 7-35
Example 	7-37

ADD Statement 	7-38
ALTER Statement 	7-39
COMPUTE Statement 	7-40
DISPLAY Statement 	7-41

Position-spec 	7-41
Identifier, Literal, and ERASE 7-43
Screen-name 	7-43
Example 	7-44

DIVIDE Statement 	7-45
EXHIBIT Statement 	7-46
EXIT Statement 	7-47
GO TO Statement 	7-48
IF Statement 	7-49

Conditions 	7-50
INSPECT Statement 	7-55
MOVE Statement 	7-59
MULTIPLY Statement 	7-63
PERFORM Statement 	7-64
STOP Statement 	7-67
STRING Statement 	7-68
SUBTRACT Statement 	7-71
TRACE Statement 	7-72
UNSTRING Statement 	7-73

CHAPTER 8. DATA INPUT AND
OUTPUT 	. 	8-1

Introduction 	8-3
How to Handle Printer Files 8-4
How to Handle Communication Files8-5

How to Handle the Display/Keyboard 8-6
Display Output 	 8-6
Keyboard Input 	 8-6

How to Handle Diskette Files 	 8-7
What Is Sequential File Organization? 8-8

Syntax Considerations 	 8-8
Procedure Division Statements for

Sequential Files 	 8-8
What Is Relative File Organization? 8-9

Syntax Considerations 	 8-9
RELATIVE KEY Clause 	8-10
FILE STATUS Reporting 	8-11
Procedure Division Statements for

Relative Files 	8-11 1
What Is Indexed File Organization? 8-12

Syntax Considerations 	8-14
RECORD KEY Clause 	8-14
FILE STATUS Reporting 	8-15
Procedure Division Statements for

Indexed Files 	8-16
CLOSE Statement 	8-18
DELETE Statement (Indexed I/O) 8-19
DELETE Statement (Relative I/O) 8-20
OPEN Statement 	8-21
READ Statement (Indexed I/O) 	8-23
READ Statement (Relative I/O) 	8-25
READ Statement (Sequential I/O) 8-27
REWRITE Statement (Indexed I/O) 8-29
REWRITE Statement (Relative I/O) 8-30
REWRITE Statement (Sequential I/O) 8-3 1
START Statement (Indexed I/O) 	8-32
START Statement (Relative I/O) 	8-33
WRITE Statement (Indexed I/O) 	8-34
WRITE Statement (Relative I/O) 	8-35
WRITE Statement (Sequential I/O) 8-36

CHAPTER 9. TABLE HANDLING BY THE
INDEXING METHOD 9-1

Index Names and Index Items 9-3
Relative Indexing 9-4

SEARCH Statement—Format 1 9-5
SEARCH Statement—Format 2 9-8
SET Statement 9-11

XII'

CHAPTER 10. INTERPROGRAM
COMMUNICATION 10-1

How Communication Is Handled 10-3
Assembler Subroutines 10-3
Example 10-5
Chain Parameters 10-7

CALL Statement 10-9
CHAIN Statement 10-10
EXIT PROGRAM Statement 10-11
LINKAGE Section 10-12
PROCEDURE DIVISION Header with CALL

And CHAIN 10-13

APPENDIX A. COBOL ERROR MESSAGES . 	 A-3
Compile Time Errors A-4

Command Input and DOS-dependent I/O
Errors 	A-4

Syntax Errors 	A-7
Runtime Errors A-22

APPENDIX B. RESERVED WORDS B-i

APPENDIX C. THE LINKER (LINK)
PROGRAM C-i

Introduction C-i
Files C-2

Input Files C-2
Output Files C-2
VM.TMP (Temporary File) C-3

Definitions C-4
Segment 	C-4
Group C-S
Class C-5

Command Prompts 	C-6
Detailed Descriptions of the Command Prompts . 	C-8

Object Modules [.OBJ I C-8
Run File [filename 1.EXE] C-9
List File [NUL.MAP] C-9
Libraries [.LIB] C- 10
Parameters C-il
/DSALLOCATION C-li
/HIGH C-12
/LINE C-12
/MAP C-13
/PAUSE C-13 13
/STACK:size C-13

,dv

How to Start the Linker Program . C-14
Before You Begin 	C- 14
Example 	C- 18

Example Linker Session C-i 9
Load Module Memory Map 	C-23
How to Determine the Absolute Address
of a Segment 	C-24

Messages 	C-25

APPENDIX D. SAMPLE SESSION D-1
Individual Screen Output D-1 I
Printer Output D-12 12

APPENDIX E. ADVANCED FORMS OF
CONDITIONS E-I

Evaluation Rules for Compound
Conditions 	 E- I

Parenthesized Conditions 	 E-2
Abbreviated Conditions 	 E-2
NOT, the Logical Negation Operator 	 E-3

APPENDIX F. NESTING OF IF STATEMENTS . 	 F-I

APPENDIX G. ASCII CHARACTER CODES . . G-I

APPENDIX H. TABLE OF PERMISSIBLE
MOVE OPERANDS H-I

APPENDIX I. PERFORM WITH VARYING AND
AFTER CLAUSES I-I

APPENDIX J. EXAMPLE PROGRAMS WITH
VIDEO MODE 	 J-1 I

Example COBOL Program J- I
Example ASSEMBLER Program J-2

APPENDIX K. INDEXED FILE RECOVERY
UTILITY (REBUILD) K-i

Introduction K-i
How the Utility Works 	K-2
When to Use REBUILD K-3

Diskette Full 	K-3
Abnormal Termination 	K-3
Unusable Space 	K-4

Using REBUILD K-S
Sample REBUILD Session 	K-8

INDEX X-1

xv

LIST OF FIGURES

Figure 1. Example of Standard COBOL Coding
Form...................... 2-6

Figure 2. Illustration of Rounding and
Truncating 2-36

Figure 3. Files Used while Compiling and
Linking 3-30

Figure 4. Examples of Editing Data with
PICTURE 6-42

Figure 5. Effects of SIGN Clause 6-46
Figure 6. Alpha-characters in Signed Bit 6-48
Figure 7. ESCAPE KEY Values When ACCEPT

Ends 	7-13
Figure 8. Example 1 of Format 3 ACCEPT

Statement 7-32
Figure 9. Example 2 of Format 3 ACCEPT

Statement 7-33
Figure 10. Example 3 of Format 3 ACCEPT

Statement 7-34
Figure 11. Effects of Conditions on Program

Flow 7-52
Figure 12. Examples of Data Movement 7-62
Figure 13. Granule Type Indicators 8-12
Figure 14. Procedure Statements for Indexed

Files 8-17
Figure 15. Contents of Stack at Entry to a

Routine 	10-4
Figure 16. Memory Layout When Chaining

Programs 10-8
Figure 17. Input Files Used by the Linker C-2
Figure 18. Output Files Used by the Linker 	. . 	 . C-2
Figure 19. Command Prompts for the Linker 	. . 	 . C-7
Figure 20. Load Module Memory Map C-23
Figure 21. Receiving Operands in MOVE

Statement H-2
Figure 22. Video Modes J-1

xvi

CHAPTER 1. INTRODUCTION

Contents

What Is COBOL 1-3
IBM Personal Computer COBOL and the

	

National Standard 	1-3
Exceptions 	1-7
Summary 	1-8

What Is COBOL?

COBOL (Common Business Oriented Language) is a
widely used language for computer applications. It is a
means of communicating with your IBM Personal
Computer in an English-like language. You use COBOL
primarily for business applications, because it lacks
floating point capabilities and transcendental
mathematical functions.

COBOL does have extensive formatting and I/O
capabilities, which let you organize, access, update, and
report data in files. All of these tasks are important in
business applications and the production of reports.

IBM Personal Computer COBOL and the
National Standard

Your IBM Personal Computer COBOL conforms to the
"Low-Intermediate" Level of the American National
Standard X3.23-1974. It provides nine out of the 12
standard COBOL functional modules. These nine
modules are implemented at least to Level 1 capabilities,
and in many cases, include much of Level 2 (see
explanation below).

The standard COBOL language has 12 functional
processing modules:

Nucleus
Sequential I/O
Relative I/O
Indexed I/O
Library
Communication
Interprogram communication
Table handling
Sort/Merge
Debugging
Report writer
Segmentation

1-3

Each module of the COBOL Standard has two levels.
Level 1 is a subset of the full set of capabilities and
features contained in Level 2.

In order for a given system to be called COBOL, it must
provide at least Level 1 of the Nucleus, Table Handling,
and Sequential I/O Modules. The other nine modules
may or may not be implemented.

The following list summarizes the characteristics of the
12 modules in IBM Personal Computer COBOL.

Features of IBM Personal
Module 	Computer COBOL

Nucleus 	All of Level 1, plus these features of
Level 2:

• Conditions:
- Level 88 conditions with value

series or range
- Use of logical AND/OR/NOT in

conditions
- Use of algebraic relational

symbols for equality or
inequalities (,>, <)

- Implied subject, or both subject
and relation, in relational
conditions

- Sign test
- Nested IF statements; parentheses

in conditions

1-4

Features of IBM Personal
Module 	Computer COBOL

Nucleus 	• Verbs:
(continued) 	- Extensions to the functions of

ACCEPT and DISPLAY for
formatted screen handling

- Acceptance of data from
DATE/DAY/TIME

- STRING and UNSTRING
statements

- COMPUTE with multiple
receiving fields

- PERFORM
VARYING. . .UNTIL

• Identifiers:
- Mnemonic names for accept or

display devices
- Procedure names consisting of

digits only
- Qualification of names (in

Procedure Division statements
only)

Sequential, 	All of Level 1 plus these features of
Relative, and 	Level 2:
Indexed I/O

• RESERVE clause

• Multiple operands in OPEN and
CLOSE, with individual options
per file

• VALUE OF FILE-ID is data name

• Sequential I/O:
- EXTEND mode for OPEN
- WRITE ADVANCING data

name lines
- LINAGE phrase
- AT END-OF-PAGE clause

1-5

Features of IBM Personal
Module 	Computer COBOL

Sequential, 	• Relative and Indexed I/O:
Relative, and 	- Dynamic access mode (with
Indexed I/O 	READ NEXT)
(continued) 	- START (with key relations

EQUAL, GREATER, or
NOT LESS)

Library 	All of Level 1

Communication IBM Personal Computer COBOL
does not provide this.

Interprogram 	All of Level I
Communication

Table Handling All of Level 1 plus full Level 2
formats for SEARCH statement

Sort/Merge 	IBM Personal Computer COBOL
does not provide this.

Debugging 	• Special extensions to ANSI-74
Standard, providing convenient
trace-style debugging.

• Conditional compilation: lines
with D in column 7 are bypassed
unless WITH DEBUGGING
MODE is given in the SOURCE-
COMPUTER paragraph.

Report Writer IBM Personal Computer COBOL
does not provide this.

Segmentation 	All of Level I

1-6

Exceptions

Referring to the Nucleus and Table Handling modules,
your IBM Personal Computer COBOL includes all Level
2 features except:

• General
- You cannot use figurative constant ALL literal

for literals greater than one character.
- You cannot qualify names allowed in the

Environment Division.

• 	Data Division
- OCCURS DEPENDING ON.. . is not supported.
- You cannot intermix a Level 88 item containing

a list of items with a range of items (either list
or range may be used but not both at one time).

- Binary data items always require 2 bytes:
- PICTURE 9(5) only allows a range of

—32768 to 32767.
- PICTUREs 9, 99, 999, and 9999 are

equivalent to PlC 9(5) for binary items.
- An error message is given when more than

five digits are specified.
- Unsigned binary data items:

- PlC 9 is equivalent to PlC S9.
- RENAMES phrase is not supported.

1-7

• 	Procedure Division
- MOVE, ADD, and SUBTRACT do not support

CORRESPONDING.
- Multiple destinations for results of arithmetic

statements are not supported.
- Division remainders are not provided.
- INSPECT in Level 2 is not supported.
- Arithmetic expressions in conditions are not

supported.
- ALTER series of procedure names is not

supported.
- Multiple index keys are not supported.
- Special language for tape handling is not

supported.
- Level 1 RERUN facility is not supported.
- Interprogram communication and Library

modules are implemented to Level 1 only.

Summary

IBM Personal Computer COBOL is a powerful language
for business applications. It includes all of 1974 ANSI
COBOL Level 1 facilities and many Level 2 features.

Features of particular interest are trace style debugging
and the extensions we have incorporated in interactive
screen control, allowing special options to the ACCEPT
and DISPLAY statements to handle fully formatted
screens.

Still another extension is the COMP-3 data format
which allows numeric data to be packed two digits to
the byte so that diskette requirements are reduced.

Note: For the remainder of this manual, we will
use the term IBM COBOL to mean IBM Personal
Computer COBOL.

1-8

CHAPTER 2. HOW TO WRITE A COBOL
PROGRAM

Contents

Program Structure 	 2-3
Divisions of a Program 	 2-3
Coding Structure 	 2-4
Coding Rules 	 2-5
Syntax Notation 	 2-9
Character Set 	2-10
Punctuation 	2-11 1
Word Formation 	2-12

Statements, Sentences, and Names 2-13
Statements 	2-13
Sentences 	2-14
Paragraphs 	2-14
Sections 	2-14

Level Numbers and Data Names 	2-15
What is a Record? 	2-15
Data Items 	2-15
Data Names 	2-20
Qualifier Names 	2-21
Condition Names 	2-22
Mnemonic Names 	2-22

Data Description Entry 	2-23
Group Item Format 	2-24
Elementary Item Format 	2-24

Filenames . 2-26

Literals 	. 2-27
Nonnumeric Literals 2-27

• 	Numeric Literals 2-28
Figurative Constants 2-29

Arithmetic Expressions 2-31

2-1

Arithmetic Statements . 	2-33
SIZE ERROR Option 	2-34

ROUNDED Option 	2-35

GIVING Option 	2-36

2-2

Program Structure

COBOL is a highly structured language. When you write
a COBOL program, you must follow specific rules about
organization and formats. Once you learn those rules,
your programming will become easy.

In this chapter, we present the divisions of a program,
program coding structure, and fundamental COBOL
concepts.

Divisions of a Program

Every COBOL source program is divided into four
divisions. Each division must be placed in its proper
sequence, and each must begin with a division header.

The four divisions, listed in sequence, and their
functions are:

Identification Division, which names the program.

Environment Division, which indicates the computer
equipment and features to be used in the program.

Data Division, which defines the names and
characteristics of data to be processed.

Procedure Division, which consists of statements that
direct the processing of data while the program is
running.

IBM COBOL cannot compile source code correctly if
the division headers are omitted or are accidentally
commented out.

2-3

Coding Structure

The following skeletal coding defines program structure
and order.

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. comment-entry . . .

[INSTALLATION, comment-entry . . .]
[DATE-WRITTEN. comment-entry .. .]
[DATE-COMPILED. comment-entry . . .

[SECURITY. comment-entry ...]
ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. entry]

[OBJECT-COMPUTER, entry)

[SPECIAL-NAMES, entry]]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. entry...

[1-0-CONTROL. entry ...]]
DATA DIVISION.

[FILE SECTION.

[fiie-description-entry

record-description-entry
[WORKING-STORAGE SECTION.

[data-item-description-entry . . . 1 .. . I
[LINKAGE SECTION.

[data-item-description-entry
[SCREEN SECTION.

[screen-description-entry . . . 1...]
PROCEDURE DIVISION [USINGICHAINING [identifier-i) ...].

[DECLARATIVES.

[section-name SECTION. use-sentence.

[paragraph-name. [sentence] ...] . . .
END DECLARATIVES.]

[[section-name SECTION. [segment number]]

[paragraph-name. [sentence] ...] .. .]

2-4

Coding Rules

Because your IBM Personal Computer COBOL is a
subset of American National Standards Institute (ANSI)
COBOL, programs may be written on standard COBOL
coding forms (Figure 1).

You place line numbers in columns 1-6 of each line.
The compiler ignores characters other than TAB and
carriage return until column 7 is reached.

TAB stops are assumed by the compiler beginning at
column 8, then column 12, and then at every eighth
column after column 12.

All characters beyond column 72 are ignored. These
characters do not show up on the compiler listing.

Characters may be entered in either lowercase or
uppercase.

2-5

— -

-

— —

— —
— — — — — — — — — —
—
—
— — !1 I
— _I

ai — I
—

— —
— — —
- — — —
— —
- — —
-

• •

— _. _.

•- U N;.

- --
—
—
—
—
— —
— — —
—
— — —
—
—
—

— _.
1 .

ii:iu Ut1
tIl_. •LIU
rs
t41

ru

u -

U i
I U
• U I U U U I • • •
. • •

------------------------ I---------------_________ •••••••••••••••

no
i----------------.

--U
--U __. -_U .________ ---------------- --I --I MMEM
--U
--I

no
MCI

--I •
--U ••u
--I

--U

LIIIU
IIL1U
LIIJU

mmmmcmmmmmmzzmmmmmmm -------- -. _. •U •U
II.

- - 	-

__________________ ____•_____•_____________ I-_---••_______.________

OEM • ••••.••••• I
•

-
. •••••••

I ••.•.!!!!!!!!!!:!::: ::: : I1

Figure 1. Example of Standard COBOL Coding Form

2-6

0 co 00

En
p o

0 =s cn 0 -
4-. .0

JI o
cn0 4— 	-

0.0 * cl

to . .$—.

0

0
0_

tb 	00

0'—'°
5 Y) n ccc60 0

0 CO
00 	— - co o

()0

i,-;

4-.

0

I-. 	00 .o01)

0

I
• 	 0

000 cd

\0
c

co 0

to 0

Cd
.\óc:

co -:
co

-. 	cocn0 Cd co
to

—o
4-. ,- -

— 2
2

;0c

) 	—
0 	0
c;-.

&)c0.

I-.

0

2-7

6. Any program element may be "continued" on the
following line of a source program. The rules for
continuation of a nonnumeric ("quoted") literal
are listed under "Nonnumeric Literals" in
Chapter 2.

You may continue other literals, words, or program
elements by placing a hyphen in the column 7
position of the continuation line. When you do so,
successive word parts are concatenated, except for
all trailing spaces of the last predecessor word and
all leading spaces of the first word on the
continuation line. On a continuation line, Area A
must be blank.

7. Any tab characters in a line are expanded as if
there were tab stops at columns 8, 12, 20, 28,
36,...,73.

Note on tabs: EDLIN (the editor provided with
the IBM Personal Computer DOS) provides tab
stops at every eighth position. This is different
from the interpretation that the COBOL compiler
uses. For example, tab position 2 is at column
16 in EDLIN and at column 12 in this compiler.
Thus, all positions following tab stop 2 appear
differently when viewed in EDLIN than when
viewed in the .LST file.

Also, you must remember when you used tabs and
when you didn't, as this affects the insertion/
deletion of characters whenever you edit the file.

2-8

Syntax Notation

The divisions, paragraphs, sentences, clauses, and
phrases in this manual have their syntax described
according to the following conventions:

Words in capital letters are keywords or reserved
words. They must be input as shown. They may
be entered in any combination of uppercase
and/or lowercase.

All underlined words are required and must be
entered as shown.

You must supply any items that are represented
by lowercase italic letters. (For example, filename

Items in square brackets ([1) are optional.

When two or more items are separated by a vertical
bar (I), you must select only one of the items. Also,
items between matching braces (()) represent a
choice of mutually exclusive options.

An ellipsis (...) indicates that an item may be
repeated as many times as you wish.

All punctuation except square brackets (such as
periods, commas, parentheses, semicolons,
hyphens, or equal signs) must be included where
shown.

2.

3

4

I-
C
t-

0

c .J

2-9

Character Set

The IBM COBOL source language character set consists
of the following characters:

Letters A through Z (and a-z)
Blank or space
Digits 0 through 9
Special characters:

+ Plus sign
- Minus sign
* Asterisk
= Equal sign
> Relational sign (greater than)
< Relational sign (less than)
$ Dollar sign

Comma
Semicolon

• Period or decimal point
" Quotation mark
(Left parenthesis
) Right parenthesis

Apostrophe (alternate for quotation mark)
I Slash

Of the previous set, the following characters are used
for words:

O through 9
A through Z (and a-z)
- (hyphen)

The following characters are used for punctuation:

(Left parenthesis
) Right parenthesis

Comma
• Period

Semicolon

The following relation characters are used in simple
conditions:

> Greater than
< Less than
= Equal

2-10

In the case of nonnumeric (quoted) literals, comment
entries, and comment lines, you can use any of the
computer's entire character set.

Punctuation

The following general rules of punctuation apply in
writing source programs:

As punctuation, a period, semicolon, or comma
must be followed by a space.

2. At least one space must appear between two
successive words and/or literals.

Your computer treats two or more successive spaces
as a single space, except in nonnumeric literals.

3. Relation characters should always be preceded by a
space and followed by another space.

4. When you use the period, comma, plus, or minus
characters in the PICTURE clause, you must follow
specific rules for report formatting.

5. You may use a comma as a separator between
successive operands of a statement, or between
two subscripts.

6. You may use a semicolon or comma to separate a
series of statements or clauses.

7. You may use an apostrophe (') in place of
quotation marks (") when delimiting literals.

2-11

Word Fonnation

Reserved words and words you define yourself are
from 1 to 30 characters long. You can use any
combination chosen from the following set of 63
characters:

0 through 9 (digits)
A through Z (letters)
a through z (letters)
- (hyphen)

All words must contain at least one letter or hyphen,
except procedure names, which may consist entirely
of digits. A word may not begin or end with a hyphen.
• word is ended by a space or by proper punctuation.
• word may contain more than one embedded hyphen;
consecutive embedded hyphens are also permitted.
(Remember that you can use any combination of
uppercase or lowercase letters.)

All words are either reserved words, which have
preassigned meanings, or programmer-supplied names.
If a programmer-supplied name is not unique, there
must be a unique method of reference to it by use of
name qualifiers; for example, TAX-RATE IN
STATE-TABLE.

Primarily, a nonreserved word identifies a data item or
field and is called a data name. Other cases of
nonreserved words are filenames, condition names,
mnemonic names, and procedure names.

2-12

Statements, Sentences, and Names

The procedure portion of a source program specifies
those procedures needed to solve a given problem.
These steps, such as computations and logical decisions,
are expressed in English-like statements, which use the
concept of verbs to denote actions, and statements
and sentences to describe procedures.

Statements

A statement is an instruction to the computer. It
consists of a verb followed by appropriate operands (data
names or literals) and other words that are necessary
for the completion of the statement. The two types of
statements are imperative and conditional.

Imperative Statements

An imperative statement specifies an unconditional
action to be taken by the object program. An
imperative statement consists of a verb and its operands,
as in:

MOVE 15 TO AGE.
ADD 1 TO YEAR.
WRITE PRINT-LINE FROM DATA-LINE.

Conditional Statements

A conditional statement stipulates a condition that is
tested to determine whether an alternate path of
program flow is to be taken. The IF and SEARCH
statements provide this capability. Any I/O statement
having an INVALID KEY or AT END clause is also
considered to be conditional. When an arithmetic
statement possesses a SIZE ERROR suffix, the
statement is considered to be conditional rather than
imperative. STRING or UNSTRING statements having
an OVERFLOW clause are also conditional.

2-13

Sentences

A sentence is a single statement or a series of statements
ended by a period and followed by a space. You can use
semicolons or commas between statements in a sentence.

Paragraphs

A paragraph is a logical entity consisting of zero, one, or
more sentences. Each paragraph must begin with a
paragraph name.

Sections

A section is composed of one or more successive
paragraphs, and must begin with a section header. A
section header consists of a section name conforming
to the rules for procedure names, followed by the
word SECTION, an optional segment number, and a
period. A section header must appear on a line by
itself. Each section name must be unique.

I.

2-14

Level Numbers and Data Names

In COBOL, data is defined in the Data Division. The
data itself may be stored within the Working-Storage
or Linkage Section of the program. Outside the
program, data is stored in files, the format of which is
described in the File Section of the program.

You refer to the data by using the name of the group in
which the data is located, or by the name of the data
item itself.

What is a Record?

Data is divided into logical records. A record is a
collection of related data or words, treated as a unit.
For example, an invoice or a time card could be
considered a record. A logical record is the most
inclusive record. A logical record is identified by the
level number 01.

Data Items

Several types of data items can be used in COBOL
programs. These data items are described in the
following paragraphs.

Logical records are divided into more specific data items
or levels. Levels allow you to subdivide records in order
to refer to specific data items. Once a subdivision is
specified, it may be further subdivided to permit more
detailed data reference.

More specific data items in a logical record are grouped
in a hierarchy and identified with level numbers 02 to
49. Level numbers of subordinate items are greater
than those of the group items they are under.

2-15

Note: A level number less than 10 may be written
as a single digit (for example, 1, 2, 3, etc.).

Level number 77 identifies a stand alone item in the
Working-Storage or Linkage Sections. A stand alone
item does not (and cannot) have subordinate
elementary items as does level 01.

Level number 88 defines condition names and associated
conditions.

Look at the following record (TIME-CARD), which is
divided into four major items: NAME, EMPLOYEE-
NUM, WEEKS-END-DATE, and HOURS-WORKED.
More specific information appears for NAME and
WEEKS-END-DATE.

LAST-NAME
NAME FIRST-INIT

EMPLOYEE-NUM

TIMEARD

	
MIDDLE-INIT

MONTH
WEEKS-END-DATE - DAY-NUMBER

YEAR
HOURS-WORKED

Elementary Item

Any subdivision of a record that is not further
subdivided is called an elementary item. In the
TIME-CARD example, EMPLOYEE-NUM is an
elementary item. All elementary items must be
described with a PICTURE or USAGE IS INDEX clause.
(See "PICTURE Clause" and "USAGE Clause" in
Chapter 6 for information on the use of these clauses.)

2-16

Group Item

A data item that contains one or more elementary
items (an item with subdivisions) is known as a group
item. In the TIME-CARD example, NAME is a group
item with three subdivisions. When a procedure
statement makes reference to a group item, the
reference applies to the area reserved for the entire
group.

Ordinarily, the maximum size of any data item is 4095
bytes. In order to allow tables to exceed this limit,
however, level 01 group items are not checked for
length. Any such item longer than 4095 bytes is not
allowed by the compiler as an operand of a Procedure
Division statement.

Less inclusive groups are assigned numerically higher
level numbers. Level numbers of items within groups
need not be consecutive. In a record, for example,
you could have level numbers 01, 02, 03; or, you
could have level numbers 01, 02, 10.

A group whose level is "N" includes all groups and
elementary items described under it until a level number
less than or equal to "N" is encountered. In the
example below, the level 02 NAME group in our
TIME-CARD record includes the LAST-NAME,
FIRST-INIT, and MIDDLE-INIT.

Separate entries are written in the source program for
each level. To illustrate level numbers and group items,
the weekly timecard record in the previous example
may be described (in part) by Data Division entries
having the following level numbers, data names, and
PICTURE definitions. (The level numbers are the first
two digits in each line.) (The PICTURE definitions
are explained under "PICTURE Clause" in Chapter 6.)

2-17

TIME-CARD.
02 NAME.

03 LAST-NAME
03 FIRST-INIT 	PICTURE

03 MIDDLE-INIT 	PICTURE X.

02 	EMPLOYEE-NUM 	PICTURE

02 	WEEKS-END-DATE.

05 	MONTH 	PlC 99.

05 	DAY-NUMBER 	PlC 99.

05 	YEAR 	PlC 99.

02 	HOURS-WORKED 	PICTURE 99V9.

Types of Data Items

Alphanumeric: An alphanumeric item consists of any
combination of characters, making a "character string"
data field. If the associated picture contains "editing"
characters, it is an alphanumeric edited item. This type
of item is called "an-form" in the syntax diagrams in
this book.

Report (Edited): A report (edited) item is an edited
"numeric" item containing only digits and/or special
editing characters. It must not exceed 30 characters in
length. A report item can be used only as a receiving
field for numeric data. It is designed to receive a
numeric item but cannot be used as a numeric item
itself. This type of item is called "report-form" in
the syntax diagrams in this book.

Numeric: A numeric item is an elementary item that
contains numeric data only. The method used to store
numeric items is specified in the (optional) USAGE
clause. This type of item is called "numeric-form" in
the syntax diagrams in this book.

01

PICTURE X(18)
X.

99999.

2-18

An external decimal item is an item in which one
computer character (byte) represents one digit. A
maximum number of 18 digits is permitted; the exact
number of digit positions is defined by writing a
picture description with a specific number of 9
characters. For example, PICTURE 999 defines a
three-digit item. That is, the maximum decimal value
of the item is 999.

If the PICTURE begins with the letter S, then the
item also has the capability of containing an
operational sign. An operational sign does not occupy
a separate character (byte), unless the "SEPARATE"
form of SIGN clause is included in the item's
description. Thus, displaying a value whose PlC is S9
gives A for 1 and J for —1. To display the sign
separately, you must use the form PlC S9 SIGN
SEPARATE. (See "USAGE Clause" in Chapter 6.)

Regardless of the form of representation of an
operational sign, its purpose is to provide a sign that
functions in an algebraic manner.

The USAGE of an external decimal item is
COMPUTATIONAL, or DISPLAY.

An internal decimal item is stored in packed decimal
format. You can specify packed decimal format with
the COMPUTATIONAL-3 USAGE clause.

A packed decimal item defined by n 9s in its PICTURE
occupies one-half of (n + 2) (rounded down) bytes in
memory. All bytes, except the right-most byte,
contain a pair of digits, and each digit is represented by
the binary equivalent of a valid digit value from 0 to 9.

The item's low-order digit and the operational sign are
found in the right-most byte of a packed item. For
this reason, the compiler considers a packed item to
have an arithmetic sign, even if the original PICTURE
lacked an S character. For example, a decimal value
of 12345 with PlC 99999 is stored in three bytes as
12 34 SF.

2-19

A binary item uses the base-2 number system to
represent an integer in the range from —32768 to 32767.
It occupies two 8-bit bytes. The left-most bit of the
reserved area is the operational sign. You specify a
binary item with USAGE IS COMPUTATIONAL-0.

An index data item is specified by the USAGE IS
INDEX clause. It has no PICTURE and is stored as a
binary item. (Refer to Chapter 9, "Table Handling by
the Indexing Method.")

Data Names

A data name is a word that you assign to identify a data
item used in a program. A data name always refers to the
contents of a region of data, not to a particular value.
The item referred to often assumes a number of different
values during the course of a program. For example, the
value of HOURS-WORKED could be changed from 40 to
50, to 32, or to any other number while the program is
running.

A data name must begin with an alphabetic character. A
data name or the keyword FILLER must be the first
word following the level number in each record
description entry, as shown in the following general
format:

level number data-namel FILLER

This data-name is the defining name of the entry and
refers to the associated data area (containing the value
of a data item).

2-20

If some of the contents in a record are not used in the
processing steps of a program, then the data description
of these characters need not include a data-name. In this
case, FILLER is written instead of a data-name after the
level number.

Qualifier Names

You can refer to a data name, condition name or
paragraph name that is not unique by using a qualifier
name. For example, if there were two or more items
named YEAR, you could use the qualifiers HIRE-DATE
and TERMINATION-DATE to differentiate between the
two year fields (as in YEAR OF HIRE-DATE, YEAR
OF TERMINATION-DATE).

A qualifier must be preceded by either the word OF or
the word IN. Qualifiers of data names or condition
names must be group items. They must be subdivided
into more specific data items. For example, a level 02
qualified data item HIRE-DATE could contain level 03
entries of MONTH, DAY, and YEAR. Then, you would
have MONTH OF HIRE-DATE, DAY OF HIRE-DATE,
and YEAR OF HIRE-DATE.

Paragraph names may be qualified by a section name.
The maximum number of qualifiers is five. Filenames
and mnemonic names (see below) must be unique.

A name that is qualified may only be written in the
Screen Section or Procedure Division of a program. When
you refer to a paragraph name that is defined more than
once, you need not qualify it more than once within the
same section.

2-21

Condition Names

A condition name is assigned to a specific value, set, or
range of values within the complete set of values that a
data item may assume. It is defined in level 88 entries
within the Data Division. Explanations of condition
name declarations and the procedural statements that
use them are given in the chapters devoted to the Data
and Procedure Divisions.

Mnemonic Names

A mnemonic name assigns a word that you choose, such
as PRN, to the printer. It is assigned in the Environment
Division for reference in ACCEPT or DISPLAY
statements.

2-22

Data Description Entry

A data description entry specifies the characteristics of
each field (item) in a data record. Each item must be
described as a separate entry in the same order in which
the items appear in the record.

Each data description entry consists of a level number,
a data name, and a series of independent clauses followed
by a period. The general format of a data description
entry is:

level number data-name IFILLER [REDEFINES-clause]

[JUSTIFIED-clause] [PICTURE-clause]

[USAGE-clause] [SYNCHRONIZED-clause]

[OCCURS-clause] [BLANK-clause]

[VALUE-clause] [SIGN-clause].

When this format is applied to specific items of data, it is
limited by the nature of the data being described. The
format for each data type appears below. Clauses that
are not shown in a format are specifically forbidden in
that format. Clauses that are mandatory in the
description of certain data items are shown without
brackets.

The clauses may appear in any order except that a
REDEFINES clause, if used, should come first. Don't
forget that you need a period at the end of the entry.

2-23

Group Item Format

level number data-nameIFILLER [REDEFINES-clause]

[USAGE-clause] [OCCURS-clause]

[VALUE-clause] [SIGN-clause].

Example:

01 GROUP-NAME.
02 FIELD-B PICTURE X.
02 FIELD-C PICTURE X.

Note: You may write the USAGE-clause at a group
level to avoid writing it again and again at
subordinate levels.

Elementary Item Format

ALPHANUMERIC ITEM (also called

a character-string item)

level number data-nameIFILLER [REDEFINES-clause]

[OCCURS-clause] PICTURE IS an-form

[USAGE IS DISPLAY] [JUSTIFIED-clause]

[VALUE IS nonnumeric-literal]

[SYNCHRONIZED-clause].

Examples:

02 MISC-i PlC X(53).
02 MISC-2 PICTURE BXXXBXXB.

2-24

REPORT ITEM (also called a numeric-edited item)

level number data-nameIFILLER [REDEFINES-clause]

[OCCURS-clause] PICTURE IS report-form

[BLANK WHEN ZERO] [USAGE IS DISPLAY]

[VALUE IS nonnumeric-literal]

[SYNCHRONIZED-clause].

Example:

02 XTOTAL PICTURE $999,999.99-

DECIMAL ITEM

level number data-nameIFILLER [REDEFINES-clause]

[OCCURS-clause] PICTURE IS numeric-form

[SIGN-clause] [USAGE-clause]
[VALUE IS numeric-literal] [SYNCHRONIZED-clause].

Examples:

02 HOURS-WORKED PICTURE 99V9.
02 HOURS-SCHEDULED PlC S99V9, SIGN IS TRAILING.
ii TAX-RATE PlC S99V999 VALUE 1.375, COMPUTATIONAL-3.

BINARY ITEM

level-number data-nameIFILLER [REDEFINES-clause]

[OCCURS-clause] PICTURE IS numeric-form

USAGE IS COMPUTATIONAL-O COMP-O
J
INDEX

[VALUE IS numeric-literal] [SYNCHRONIZED-clause].

Examples:

02 SUBSCRIPT COMP-O, VALUE ZERO.
02 YEAR-TO-DATE COMPUTATIONAL-U.
02 INDEX-1 USAGE IS INDEX.

Note: A PICTURE or VALUE must not be given for
an index data item.

2-25

Filenames

A file is a collection of data records, such as the
TIME-CARD record used in the description of data
items. The section of storage on a diskette containing
the individual records of a file is defined by an FD entry
in the Data Division's File Section.

FD is a reserved word which must be followed by a
unique programmer-supplied word called the filename.
Rules for composition of the filename word are identical
to those for data-names. References to a filename appear
in the Procedure Division's OPEN, CLOSE, and READ
statements, as well as in the Environment Division.

CAUTION
Do not confuse filenames with file ID's as described in
Chapter 6.

2-26

Literals

A literal is a constant that is not identified by a data
name in a program. The value of a literal does not
change as you compile and/or run a program.

A literal can be either nonnumeric, numeric, or a
figurative constant. For example:

IF A = 1 MOVE "X" TO MARK.

IF B IS ZERO GO TO CLOSE-OUT.

In the first example, the value 1 is a numeric literal, and
the value "X" is a nonnumeric literal. In the second
example, the value ZERO is a figurative constant.

Nonnurneric Literals

A nonnurneric literal must be enclosed by matching
quotation marks (single or double) and may consist of
any combination of characters in the ASCII set, except
quotation marks. All spaces enclosed in the quotation
marks are included as part of the literal. A nonnumeric
literal must not be longer than 120 characters.

The following are examples of nonnumeric literals:

"ILLEGAL CONTROL CARD"
'CHARACTER-STRING'
"DO'S & DON'T'S"

Each character of a nonnumeric literal, following the
delimiter, may be any character other than the delimiter.
That is, if the delimiters are apostrophes ('literal'), then
quotation marks (") may be within the literal, and vice
versa.

2-27

The length of a nonnumeric literal is the number of
characters (including spaces) in the literal. You do not
count the delimiters in the length of a literal. The
minimum length is one. Two delimiters in a row within
a literal are interpreted as a single delimiter.

Nonnumeric literals may be continued from one line to
the next. When a nonnumeric literal is too long to be
contained on one line, the following rules apply to the
continuation line (the next line of coding):

• 	A hyphen is placed in column 7 of the continuation
line.

• 	A delimiter is placed after column 11 and preceding
the continuation of the literal.

• 	All spaces at the end of the previous line and any
spaces following the delimiter in the continuation
line and preceding the next character of the literal
are considered to be part of the literal.

• 	On any continuation line, columns 8-11 should be
blank.

Numeric Literals

A numeric literal consists of the characters 0 through 9
(optionally preceded by a sign) and the decimal point.
It must contain at least one and not more than 18 digits.
It may contain only one sign character and only one
decimal point. The sign, if present, must appear as the
left-most character in the numeric literal. If a numeric
literal does not have a sign, it is positive.

A decimal point may appear anywhere within the
numeric literal, except as the right-most character. If a
numeric literal does not contain a decimal point, it is
considered to be an integer.

2-28

The following are examples of numeric literals:

72 +1011 3.14159 0.5 -.333

If you enter DECIMAL-POINT IS COMMA (common
European notation) in the Environment Division, the
functions of the period and comma are interchanged. In
this case, the value of " IT " would be 3,1416 when
written as a numeric literal.

Figurative Constants

A figurative constant is a special type of literal. It
represents a value to which a standard data name has
been assigned. A figurative constant is not bounded by
quotation marks.

One figurative constant is ZERO. It may be used in many
places in a program as a numeric literal. Other figurative
constants are available to provide nonnumeric data; the
reserved words representing various characters are as
follows:

SPACE The blank character whose ASCII
decimal representation is 32.

LOW-VALUE The null character whose ASCII
decimal representation is 0.

HIGH-VALUE The character whose ASCII decimal
representation is 255.

QUOTE The quotation mark whose ASCII
decimal representation is 34.

ALL literal One or more instances of the literal,
which must be a one-character
nonnumeric literal or a figurative
constant. In the latter case, ALL is
redundant but serves for readability.

2-29

A figurative constant may be used anywhere a literal is
called for in a "general format" except that whenever the
literal is restricted to being numeric, the only figurative
constant permitted is ZERO.

The plural forms of these figurative constants are
acceptable to the compiler, but the singular and plural
are equivalent in effect. A figurative constant represents
as many instances of the associated character as are
required in the context of the statement.

The following are examples of figurative constants in
lines of code:

77 COUNTER PlC 99 COMP-0 VALUE IS ZERO.
77 DOTLINE PICTURE X(80) VALUE IS ALL •1

2-30

Arithmetic Expressions

An arithmetic expression is a proper combination of
numeric literals, data names, arithmetic operators and
parentheses. In general, the data names in an arithmetic
expression must designate numeric data. Consecutive
data names (or literals) must be separated by an
arithmetic operator, and there must be one or more
blanks on either side of the operator. The operators are:

+ 	addition
- 	subtraction
* 	multiplication

I 	division
** exponentiation to an integral power

When more than one operation is to be processed using
a given variable or term, the order of precedence (highest
to lowest) is:

1. Unary (involving one variable) plus and minus

2. Exponentiation

3. Multiplication and division

4. Addition and subtraction

The highest precedence operation is performed first.
Operations of equal precedence are performed from
left-to-right.

Parentheses may be used when the normal left-to-right
order of operations is not desired. Expressions within
parentheses are evaluated first; parentheses may be
nested to any level. Consider the following expression:

2-31

A + B / (C - 0 * E)

Evaluation of the above expression is performed in the
following sequence:

1. Compute the product D times E, considered as the
intermediate result, RI.

2. Compute the difference C minus R as the
intermediate result, R2.

3. Divide B by R2, providing intermediate result, R3.

4. Add A plus R3 to get the final result.

Without parentheses, the expression

Ai -B/ C- D*E

is evaluated as:

RI =B/C
R2=D*E

R3=A+Ri
final result = R3 - R2

When you use parentheses, the following punctuation
rules should be used:

• 	A left parenthesis is preceded by one or more
spaces.

• 	A right parenthesis is followed by one or more
spaces.

The expression A - B - C is evaluated as (A - B) - C.
Unary operators are permitted. For example,

COMPUTE A = +C + -4.6
COMPUTE X = -Y
COMPUTE A, B(I) = -C - D(3)

2-32

Arithmetic Statements

There are five arithmetic statements: ADD, SUBTRACT,
MULTIPLY, DIVIDE, and COMPUTE. Any arithmetic
statement may be either imperative or conditional. When
an arithmetic statement includes an ON SIZE ERROR
specification, the entire statement is conditional, because
the size error condition is data-dependent.

If an arithmetic statement does not include either a
GIVING option, ROUNDED option, or SIZE ERROR
option, it is called an imperative statement.

An example of a conditional arithmetic statement is:

ADD 1 TO RECORD-COUNT,
ON SIZE ERROR MOVE ZERO TO
RECORD-COUNT
DISPLAY "LIMIT 99 EXCEEDED".

If a size error occurs (in this case, it is apparent that
RECORD-COUNT has PICTURE 99, and cannot hold a
value of 100), both the MOVE and DISPLAY statements
are processed.

The three statement components that may appear in
arithmetic statements (GIVING option, ROUNDED
option, and SIZE ERROR option) are discussed in detail
later in this section.

2-33

Basic Rules for Arithmetic Statements

All data names used in arithmetic statements must
be elementary numeric data items that are defined in
the Data Division of the program, except that
operands of the GIVING option may be report
(numeric edited) items. Index names and index
items are not permissible in these arithmetic
statements (see Chapter 6).

2. Decimal point alignment is supplied automatically
throughout the computations.

3. Intermediate result fields generated for the
evaluation of arithmetic expressions assure the
accuracy of the result field, except where high-order
truncation is necessary.

SIZE ERROR Option

If, after decimal-point alignment and any low-order
rounding, the value of a calculated result exceeds the
largest value that the receiving field is capable of holding,
a size error condition exists.

The optional SIZE ERROR clause is written immediately
after any arithmetic statement, as an extension of the
statement. The format of the SIZE ERROR Option is:

ON SIZE ERROR imperative statement

If the SIZE ERROR option is present, and a size error
condition arises, the value of the resultant data-name is
not changed, and the series of imperative statements
specified for the condition is processed.

2-34

If the SIZE EROR option has not been specified and a
size error condition arises, no assumption should be made
about the final result.

An arithmetic statement, if written with the SIZE ERROR
option, is not an imperative statement. Rather, it is a
conditional statement and is prohibited in contexts where
only imperative statements are allowed.

ROUNDED Option

If, after decimal-point alignment, the number of places
in the fraction of the calculated result is greater than the
number of places in the fractional part of the data item
that is to be set equal to the calculated result, truncation
occurs unless the ROUNDED option has been specified.

When the ROUNDED option is specified, the least
significant digit of the resultant data name has its value
increased by 1 whenever the most significant digit of the
excess is greater than or equal to 5.

Rounding of a computed negative result is performed by
rounding the absolute value of the computed result and
then making the final result negative.

The following chart illustrates the relationship between a
calculated result and the value stored in an item that is
to receive the calculated result, with and without rounding.

2-35

Item PICTURE
Value after
Rounding

Value after
Truncating

—12.36 S99V9 —12.4 —12.3
8.432 9V9 8.4 8.4
35.6 99V9 35.6 35.6
65.6 S99V 66 65
.0055 SV999 .006 .005

Figure 2. illustration of Rounding and Truncating

When the low-order integer positions in a resultant data
item are represented by the character P in the PICTURE
clause, rounding or truncation occurs relative to the
right-most integer position for which storage is allowed.

GIVING Option

If the GIVING option is written, the value of the data
name that follows the word GIVING is made equal to
the calculated result of the arithmetic operation. The
data name that follows GIVING is not used in the
computation and may be a report (numeric edited) item.

2-36

CHAPTER 3. DEVELOPING A PROGRAM

Contents

What You Need 	3-3

Overview of the Compiler 3-5

Program Development Steps 3-6

How to Create a COBOL Source File 3-7
Coding Rules 	3-7

How to Compile a COBOL Program 3-8
Getting Started 	3-8

File Specification 	3-9
Compilation Steps 	3-10

How to Link a COBOL Program 	3-14

How to Run a COBOL Program 	3-17
The Runtime System 	3-17
License Agreement 	3-19

Optional COBOL Commands 	3-20
Examples 	3-20
The / Parameter 	3-22

Optional Linker Commands 	3-24
Examples 3-24
Automatic Response File 	3-26
Linking a Subprogram 	3-26
Linking With Segmentation 	3-27
Using a Batch File 3-28
Compiling a Large Program 	3-29

Files Used by COBOL 3-30

3-1

Output Listings and Error Messages 	 . 3-32

COPY Statement 3-34

Sample Listing 3-36

3-2

What You Need

To successfully compile COBOL programs on your IBM
Personal Computer, you need the following:

• Your COBOL package, which includes:
- Two 5-1/4 inch master diskettes labeled COBOL

and LIBRARY.
- COBOL contains the following files:

• COBOL
• COBOLI.OVR
• COBOL2.OVR
• COBOL3.OVR
• COBOL4.OVR
• REBUILD.EXE
• RUNED.BAT
• RUNEC.BAT

- LIBRARY contains the following files:
• COBOL1.LIB
• COBOL2.LIB
• COBRUN.EXE
• LINK.EXE

- This manual: IBM Personal Computer COBOL

• A minimum of 64K bytes of machine-resident
memory

3-3

' 	Two diskette drives

• 	A printer (recommended)

• A display (we recommend that you use an 80-
column display), which can be:
- An IBM Personal Computer Monochrome Display
- A monitor
- A TV with an RF modulator

• The IBM Personal Computer Disk Operating System
(DOS) diskette and manual

• 	Three 5-1/4 inch diskettes:
- Two to make copies of the master diskettes

provided
- One which we will call the scratch diskette

3-4

Overview of the Compiler

The compiler consists of a main program and four
overlays.

The main program consists of overlayable and nonover-
layable code. The nonoverlayable code is always
memory-resident and controls the transition from each
overlay to the next.

A compilation is performed in two passes:

Pass One—This pass creates an intermediate binary
file called COBIBF.TMP. This is a temporary file
that is stored on the diskette in drive B during the
following steps:
a. The overlayable portion of the main program

compiles the Identification and Environment
Divisions.

b. Overlay 1 (COBOL! .OVR) compiles the Data
Division.

c. Overlay 2 (COBOL2.OVR) compiles the
Procedure Division.

2. Pass Two—This pass reads the intermediate file and
creates the object code file with the following steps:
a. Overlay 3 (COBOL3.OVR) reads the intermediate

file (COBIBF.TMP) and creates the object code.
b. Overlay 4 (COBOL4.OVR) allocates file control

blocks and checks certain error conditions. Then
the intermediate file is deleted.

3-5

Program Development Steps

To prepare an IBM COBOL program, you must perform
three basic steps:

Create a source file with a text editor.

2. Compile the source file with the IBM COBOL
compiler.

Link the library modules, any subroutines you have
written, and the object code file together to create
an executable program file.

After you complete these steps, you are ready to run
your program.

After you become familiar with IBM COBOL, you will
probably want to copy some of your utility files onto
your diskettes, such as: EDLIN, CHKDSK, and possible
others, as well as your Batch files.

3-6

How to Create a COBOL Source File

The source program (or source file) is a file which consists
of lines of ASCII text terminated by carriage-return
line-feed. You can create it with EDLIN (your IBM
Personal Computer editor). (Refer to IBM Personal
Computer Disk Operating System for information on how
to use EDLIN.)

Coding Rules

Refer to "Coding Rules" in Chapter 2 for instructions on
coding your source program.

3-7

How to Compile a COBOL Program

Getting Started

We recommend that you back up your COBOL master
diskettes as soon as possible by making copies of the
COBOL and LIBRARY diskettes. (This is where you use
the additional diskettes we said you would need to
compile a COBOL program.)

You should use these copies for your day-to-day
operations and put your master diskettes away in a safe
place.

Now that you have made copies of the COBOL and
LIBRARY diskettes, you will need to copy
COMMAND.COM from the DOS diskette onto the
LIBRARY diskette. You should do this because when
the linker is used, it may overwrite COMMAND.COM
in storage. (COMMAND.COM is loaded when the
system starts with DOS.)

We recommend the following sequence of steps as a
general rule when compiling an IBM COBOL program.

Format your scratch diskette. See IBM Personal
Computer Disk Operating System (DOS) for
information about formatting.

2. Put your program onto the scratch diskette by
either of the following methods:
• Copy it from the diskette it is currently on.
• Create a new program by using the line editor

(see "EDLIN" in IBM Personal Computer
Disk Operating System (DOS) for information
on EDLIN).

3. Add the COBOL filename extension. COB to your
program name.

4. Change the default drive to B by entering:

Is

In general, the IBM COBOL compiler is set up to
have user software in drive B and system software
in drive A.

You are now ready to compile your COBOL program.

Note: You may enter compiler commands by using
all uppercase, all lowercase, or a combination of
both uppercase and lowercase letters.

File Specification

As you perform the steps to compile your COBOL
program, you often need to enter filenames. Each
filename can be the name of a diskette file or the name
of a system device. A file description has the form:

device:filename. extension

Here the separators are the colon and the period, and the
terms mean:

device 	The name of the system device, which can
be a diskette drive, display, printer, or
RS232 port. If the device is a diskette, the
filename must also be given. If not, the
device name itself is the full file description.
COBOL recognizes the following symbolic
device names:

3-9

NUL 	Do not create
CON 	Display
A: or B: 	Diskette drive
PRN or LPT1 	Printer
AUX or COM 1 RS232

Note: The colon (:) must be used
when addressing a drive.

filename 	The name of the file on diskette. If filename
is specified without a device, the current
diskette drive is assumed as the device. A
maximum of 8 characters is allowed.

extension The extension of the filename given. The
following are the extensions that you should
use with IBM COBOL:

.COB The source program file

.LST The listing file

.OBJ The object program file

Compilation Steps

We recommend that you follow these steps when you
want to compile a COBOL program. (Also see the Sample
Session in Appendix D.)

1. If you have not already done so, change the default
drive to B.

2. Insert the scratch diskette that contains your
program into drive B.

3. Insert your COBOL diskette into drive A.

4. Enter:

A: COBOL

These four steps load COBOL into the computer. After
a short time, the compiler displays a heading and the
following prompt:

Source filename [.COB]:

3-10

Notes:

The name shown within the brackets is the

default filename extension that IBM COBOL
uses if you do not choose a filename extension
of your own.

2. Although IBM COBOL supplies a default
filename extension if you do not supply one,
you may override all extensions by explicitly
specifying the filename with the new extension.

3. The default diskette drive is the DOS default
drive (B: in this case). You may override it by
including the drive ID as part of the file
specification.

Source filename is the name of the file in which you
have stored your program. For example, if you respond
with myfile to the previous prompt, the display shows:

Source filename [.COB]:myfile

You do not need to enter the COB filename extension,
because the compiler automatically looks for .COB.
After you enter your source filename, you see this
prompt:

Object filename [MYFILE.OBJ]:

Object filename is the name you want the object
(machine-readable) file to have. If you wish to have
your object file stored under the name MYFILE.OBJ,
simply press the Enter key. If you wish to give the file
another name, be sure to add the filename extension
.OBJ. For our example, assume we have simply pressed
the Enter key:

Object filename [MYFILE.OBJ]:

3-11

The last prompt looks like this:

Source listing [NUL.LST]:

Source listing is the name you wish to give to the file
that contains the compiled source listing. If you do not
want a listing, press the Enter key. This gives you the
default filename NUL.LST, which tells the compiler not
to create a source listing file.

Note: As you compile and debug your program, it
is not necessary to get a listing every time. Errors are
always listed on the display (as well as in the listing).
You can get a listing of just the errors by using the
Ctrl-Prtsc or Ctrl-Shift keys. The defaults are set up
to allow this.

For our example, assume that we do want a listing file,
and enter:

Source listing [NUL.LST]:myfile

Note: The compiler adds the default extension
and produces the listing file, MYFILE.LST.

The completed screen looks like this if you use our
example filenames:

Source filename [.COB]:myfile

Object filename [MYFILE.OBJj:

Source listing [NUL.LST]:myfile

As soon as you enter the last filename, the compiler
begins. If the program contains any syntax errors, the
compiler displays the error messages on the screen, as
well as in the listing file (see "Output Listings and Error
Messages" at the end of this chapter).

3-12

Note: After you type any of these responses, you
may continue the response before you press the
Enter key by typing a comma and the answer to
what would have been the next prompt, without
waiting for that prompt. If you end any response
with a semicolon (;), the remaining responses are all
assumed to be the default values; processing begins
immediately, with no further prompts.

When the compiler finishes, it displays a message with the
number of errors it has found. The message looks like
this if you send the source listing to a file and no errors
are detected:

No Errors or Warnings

If the compiler detects an error or sends a warning, the
error or warning is displayed on the screen along with the
following message:

1 Error or Warning

If the compiler finds errors, you must locate and fix
those problems in your source program before linking.

3-13

How to Link a COBOL Program

Once you have compiled the source program, the final
step before you can run it is to link the program by using
the linker. The IBM Personal Computer Linker Version
1.10 provided on your LIBRARY diskette is an upward
compatible version of the IBM Personal Computer Linker
Version 1.00. A full explanation of this linker is
provided in Appendix C, "The Linker (LINK) Program."
You must use the linker provided on the LIBRARY
diskette to successfully run an IBM COBOL program.

We recommend the following steps when linking your
program:

1. Remove COBOL from drive A.

2. Insert your copy of the LIBRARY diskette into
drive A.

3. Enter:

/\:LINK

(Be sure that you are using the linker on the
COBOL LIBRARY diskette.)

LINK starts the linker and gives the following
prompt:

Object Modules [.OBJ]:

Enter the name of your object file. You do not need
to enter the . OBJ extension here. For example:

Object Modules [.OBJ]:myfile

The next prompt is:

Run File [MYFILE.EXE]:

3-14

Enter the name you want to give to the file
containing the executable code for your program.
This filename is given the default extension .EXE
and put onto the default diskette drive (B). This
filename extension may not be overridden. In our
example, we will use the default and just press the
Enter key.

The next prompt is:

List File [NUL.MAP]:

MAP file is the name you wish to give to the file
that contains the linker printed output. If you do
not want a map file, press the Enter key. This gives
you the default filename NUL.MAP, which tells the
linker not to create a map file.

For our example, assume that we do not want a
map file, and press the Enter key.

The next prompt is:

Libraries [.LIB]:

Libraries refers to the runtime routines needed by
IBM COBOL to run your program. All of these
routines are included in COBOL 1 .LIB,
COBOL2.LIB, and COBRUN.EXE.

The names of the libraries are automatically
supplied by the object file. COBOL 1 and COBOL2
are used during the linking, and COBRUN is used
when the program runs. See "The Runtime
System" later in this chapter for an explanation of
the libraries.

The linker assumes that the libraries are in drive A.
If they are not in drive A, you must enter a new
drive specification. In response to this prompt,
you may press the Enter key.

3-15

Filenames are specified in the same manner as for
the compiler, except that the default extension is
always . OBJ for files to be read by the linker. Such
files are all expected to be in relocatable object
format, so they must have been previously compiled
(or assembled).

The screen of prompts would look like this if you used
our example filenames:

A: L I N K
IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982
Object Modules [.OBJ]: myfile
Run File [MYFILE.EXE]:
List File [NUL.MAP]:
Libraries [.LIB]:

After the final entry, the linker starts. The linker may
need more memory space to link your program than is
resident in your computer. In this case, the linker creates
a file called VM.TMP on the diskette in the default drive
(the scratch diskette) and displays a message to this effect
on the screen. You must not remove this diskette during
linking. When finished, the linker erases VM.TMP from
the diskette. Any error that occurs during linking
produces an error message on the screen. These messages
are listed at the end of Appendix C.

When linking is completed, you should have the Run File
stored on your scratch diskette in drive B. We recommend
that you display the diskette directory for the scratch
diskette to confirm that the run filename is there. (It will
have the .EXE filename extension.) Using our example
filename, you would see MYFILE.EXE listed in the
directory.

3-16

How to Run a COBOL Program

To run your program, simply enter your run filename,
without the .EXE filename extension. For example,
enter:

myfile

You must have the common runtime system resident on
the diskette in either the default drive or drive A (see
below).

You may want to copy this file to another diskette once
you are sure that it does what you intended it to do.

The Runtime System

The relocatable object version of your program produced
by the compiler is not 8088 machine code. Instead, it
is in the form of a special object language designed
specifically for IBM COBOL instructions. The IBM
COBOL runtime system runs your program by
examining each object language instruction and
performing'the function required. This includes all
processing needed to handle display, printer, and
diskette file input and output.

The amount of memory required for a COBOL program
to execute equals the amount required to store the data
items defined in the Data Division, plus about 500 bytes
per file, plus about 12 bytes per line of the Procedure
Division, plus up to 32K bytes for the runtime system.

The runtime system consists of a number of machine
language subroutines collected into two libraries and a
common runtime program:

3-17

• COBOL! .LIB —Optional routines

• COBOL2.LIB—Routines necessary to use COBRUN

• COBRUN.EXE—Common runtime library

COBOL! and COBOL2 are used while linking, and
COBRUN is used while running the program.

The routines in COBOL! .LIB are searched by the linker
to find and link those additional routines that may be
required to perform specific instructions in your source
program. The number of routines needed depends on the
number of COBOL language features you have used in
your main program and subprograms. For example, if the
STRING or UNSTRING statements are included in the
source program, the linker searches the file COBOL! .LIB
to include these optional functions.

In simple terms, COBOL2.LIB prepares your program to
use the common runtime library (COBRUN) when you
run your program. COBRUN can be resident on either
your scratch diskette or the LIBRARY diskette.
COB RUN is automatically loaded when you run your
program.

First, the system looks for COBRUN on the default drive
(B in this case). Then, if COBRUN is not found, it is
looked for on Drive A (the drive used for your system
software). This search occurs automatically. If COBRUN
is not found, then a message is displayed. COBRUN also
acts as the executor for running your program.

3-18

Runtime Module

Application programs written in IBM Personal Computer
COBOL require the COBRUN.EXE runtime module.
Information about this runtime module can be obtained
by writing to IBM at:

Runtime Module
IBM Personal Computer
P.O. Box 1328-A
Boca Raton, Florida 33432

3-19

Optional COBOL Commands

The following commands can also be used to run the
compiler. (Be sure you are familiar with the basic
command before you attempt to use these.)

You can start IBM COBOL by using the following
command line (substituting your filenames for the three
files shown):

COBOL Source File,Object File,Source List;

When you use this command line, the compiler prompts
described in the earlier example are not displayed if:

• 	You specify an entry for all three files

or

• 	The command line ends with a semicolon (;)

If you enter an incomplete list and no semicolon, the
compiler prompts for the remaining unspecified files.
Each prompt displays its default, which you may accept
by pressing the Enter key. You may override it by
entering another filename or device name. However, if
you enter an incomplete list and a final semicolon, the
unspecified files are defaulted without further prompting.

Examples

The following examples (drive B is the default drive)
illustrate the command string used with the command:

A: COBOL command-string.

3-20

Command String 	Effect

MYFILE; 	 Compiles the source from
MYFILE.COB. Although
there is no comma, this
command produces the file
MYFILE.OBJ.

MYFILE,;
	

This does exactly the same
thing as the previous example.

MYFILE,,; 	 Compiles the source from
MYFILE.COB and produces
the files MYFILE.OBJ and
MYFILE.LST.

MYFILE ,,CON;

MYFILE,MYOBJ ,PRN;

A:MYFILE,MYOBJ,A:;

Compiles the source from
MYFILE.COB and places the
program listing on the
display. The object program
is MYFILE.OBJ.

Compiles the source from
MYFILE.COB, places the
listing on the printer, and
places the object into
MYOBJ .OBJ.

Compiles MYFILE.COB from
diskette A and places the
object into MYOBJ.OBJ, and
the listing into MYFILE.LST
on drive A.

3-21

The / Parameter

You can add one or more / (slash) parameters to the
command string, which affects the compilation procedure
as described below. To add this parameter, type a slash
followed by the one-character switch name.

Parameter Action

The compiler looks for the four overlay files
on drive A:

• COBOL1.OVR
• COBOL2.OVR
• COBOL3.OVR
• COBOL4.OVR

To override drive A, use the /C parameter
with the letter of the drive you want. For
example, /CB.

/1 	The compiler puts its temporary file
COBIBF.TMP on drive B unless you use the
/T switch. For example, /TA. If you enter
/TA, the diskette in drive A must not be
write-protected.

/P 	Each /P allocates an extra 100 bytes of stack
space for the compiler's use. Use /P if a
stack overflow occurred during compilation
(see Appendix A, "COBOL Error Messages").
Otherwise, /P is not needed.

Suppress object line numbers. If you use this
parameter, the resulting Procedure Division
code will be about 16% smaller. However,
the runtime system will not be able to note
the line number at which an error occurs.

3-22

Parameter Action

/Fn 	Activate Federal Information Processing
Standard (FIPS) flagging, where n is a digit
from 0 through 4, with the following
meanings:

0 	Flag everything above low level.

Flag everything above low intermediate
level.

2 	Flag everything above high intermediate
level.

3 	Flag everything above high level.

4 	No flagging.

If you do not use this parameter, F4 is the
default.

FIPS flagging lets you tell the compiler to put a warning
out for each COBOL statement above a chosen standard
level, as explained above.

Examples of command strings using the I parameters:

COBOL PAYROLL,,/CB
COBOL PAYROLL,,A:PAYLIST /TA:
COBOL PAYROLL/P/P/P;
COBOL PAYROLL/D/F1;

3-23

Optional Linker Commands

The following commands can also be used to run the
linker. (Be sure that you are familiar with the basic
command before you attempt to use these. You should
also refer to Appendix C for further information.)

You can also start the linker by using the following
command line (substituting your filenames for the
filenames shown):

LINK objlist,runfile,mapfile,liblist/parms;

When you use this command line, the linker prompts that
we described earlier are not displayed if:

• 	You specify an entry for all three files.

or

• 	The command line ends with a semicolon (;).

If you enter an incomplete list and no semicolon, the
compiler prompts for the remaining unspecified files.
Each prompt displays its default, which you may accept
by pressing the Enter key, or override by entering another
filename or device name. However, if you enter an
incomplete list and a final semicolon, the unspecified files
are defaulted without further prompting.

Examples

The following examples illustrate the command string
used with the command:

A: LINK command-string.

3-24

Command String 	 Effect

MYFILE; 	 Links MYFILE
and puts the
sourcefile into
MYFILE.EXE.
No map file is
produced. The
COBOL library is
automatically
supplied.

MYFILE,,; 	 Same as the first
example, except
that a listing is
produced in
MYFILE.MAP.

MYFILE+SUBFILE1+SUBFILE2,,; Same as the
second example,
except that
SUB FILE 1 and
SUBFILE2 will
be linked with
MYFILE.

MYFILE/MAP; 	 The /MAP
parameter causes
all public (global)
symbols defined
in the input
modules to be
listed in the
MAPFILE.

MYFILE/ STACK: 1024 	 COBOL uses 512
bytes (default),
which is sufficient
for most programs.
You can specify
a larger stack by
using this
parameter.

3-25

Note: The /LINE parameter is not supported for
COBOL. All other parameters, other than the /P
parameter, are preset by COBOL and should not be
overridden. See Appendix C, "The Linker (LINK)
Program" for additional instructions.

Automatic Response File

You may optionally use an automatic response file to
start the linker. This is a file that you create that
contains responses to the linker prompts. When the
linker is started, it looks in this file for the responses it
needs instead of receiving the responses from the
keyboard (see Appendix C also). The automatic
response file is especially useful when you are running
multiple object modules.

To specify this option on the command line, enter:

LINK @ARFILE

Where AR FILE stands for automatic response file.
You must include the drive name for the automatic
response file if it is located on a drive other than the
default drive.

For example:

A:LINK @A:ARFILE

Creating an automatic response file for the linker is
described in Appendix C, "The Linker (LINK) Program."

Linking a Subprogram

If you have organized your program into a main module
and one or more subprogram modules, the linker can
combine them into one program. (Refer to Chapter 10,
"Interprogram Communication.")

Before linking, compile (or assemble) all modules so
that you have a relocatable object version of each.
Then start the linker and specify on the object modules
prompt each module you want to link.

3-26

For example,

Object Modules [.OBJJ :myfile+subfilel+subfile2

Enter responses for the remainder of the prompts as
usual.

Linking With Segmentation

The IBM COBOL segmentation facility lets you run
programs that are larger than physical memory.
Segmentation is explained further in Chapter 7 under
"Segmentation."

IBM COBOL programs that use segmentation cause the
linker to create a file for each independent segment of
the program. The filenames are formed as follows:

NAME_nn.OVL

Where,

NAME is the PROGRAM-ID which you defined in
the Identification Division. If the
PROGRAM-ID is less than six characters, it
is extended to six characters by adding
characters to the end.

_nn 	is a two-digit hexadecimal number that is
the program segment number (decimal) minus
49.

For example, in NAME_32.OVL, the segment
number is 99.

3-27

Using a Batch File

See the IBM Personal Computer Disk Operating System
(DOS) for a detailed description of the batch command
facility, which you can use to start the compiler.

If you have your program debugged, and you are in the
process of making small modifications to it, the
following batch file will compile, link, and run your
program:

1.A:COBOL %1,,,

2.PAUSE... (Insert LIBRARY/LINKER in drive
A:)

3.A:LINK %1;

If you store this file (RUN.BAT) on your scratch
diskette, then you can use this batch file simply by
entering:

RUN myfile

An example of a batch file to compile and edit is
provided on the COBOL diskette. This file is called
RUNEC.BAT, and it uses RUNED.BAT. To use this
batch file for the first time, type:

A:RUNEC

Then follow the instructions.

3-28

Compiling a Large Program

You may find that the scratch diskette does not have
enough space to hold all of the files produced by the
compiler. In this event, we recommend doing one of
the following:

• 	Do not request a listing file (NUL).

c:si

• 	Send the listing to the display (CON) or printer
(PRN).

Very large programs can be broken down into a smaller
main program and several subprograms. These can be
separately compiled and then linked together. (See
Chapter 10, "Interprogram Communication.")

3-29

Files Used by COBOL

U)

o

_

0
U

H

c.L

U

0
ri

Q

U

0
C/D

cl
UU

00<
vciZ

=

c>

>>
0 00 00

.-c c <—c Z
-. — —— ——

0 00 00 '00

. 0 00 00 00 0
c,- U u UL) -UL) U

.9

0

:
.2 	.°

U) ..V

.2
U)

0
I)

0

• —

H
-)

U 	w 0

U 	Li
LL
U U

00 0 0 0

V

U)

>-
U,

c3

V

1.)

-

o

I) -

-30
V

-

U
V

V

V

3-30

SOURCE.COB The file that contains your COBOL
program.

COPYFILE. EXT The file which contains the
information to be copied when you
use the COPY verb. (More than
one COPYFILE may exist.)

COBIBF.TMP The intermediate binary file created
when the compiler needs additional
memory space.

SOURCE.OBJ The file that contains your source
object code.

SOURCE.EXE The final, executable, program.

COBOL.COM The COBOL compiler main program.

COBOL! .OVR Overlay 1.

COBOL2.0VR Overlay 2.

C0BOL3 .0 YR Overlay 3.

COBOL4.OVR Overlay 4.

LINK.EXE The IBM Personal Computer Linker.

COBOL1.LIB The file that contains the optional
library routines.

COBOL2.LIB Prepares your program to use
COBRUN.

COBRUN.EXE The Common Runtime Library.

SOURCE.LST The file that contains your
compilation listing.

SOURCE.MAP The file that contains the linker
listing of your source.

NAME O1.OVL The independent segments created
by the linker when a program uses
segmentation.

3-31

Output Listings and Error Messages

The listing file output by IBM COBOL is a line-by-line
account of the source file with page headings, line
numbers, and error messages (if necessary). See the
"Sample Listing" at the end of this chapter.

Each source line listed is preceded by a consecutive
decimal number. This number is used by the error
messages at the end to refer to lines in error. It is also
used by the runtime system to indicate what statement
caused a runtime error.

Diagnostic error messages may be produced during
compilation for syntax errors. Refer to Appendix A,
"COBOL Error Messages" for an explanation of the
error messages.

Additionally, if the compiler command line is entered
incorrectly, or a filename error is made, you will be
given an appropriate error message, and then you will
be prompted for the entries. Or, you may exit by
pressing Ctrl-Break.

Some programming errors cannot be detected when the
program is compiled, but they cause the program to
end prematurely while you are running it. Each of those
errors produces a four-line summary on the screen.
(Refer to "Runtime Errors" in Appendix A for a
complete list of runtime errors.)

The following message means that an internal error has
occurred:

?Compiler Error in Phase n at address m.

3-32

This should not occur in a correct program. If this
error occurs, you probably have an error in your
program that has caused the compiler to become
confused. Make sure the program is correct. If the
error still occurs, it could mean that your compiler is
defective. In this case, you should perform the
following steps in order until you correct the problem:

1. Again, double check your work to make sure that
you did not make an error.

2. Make a fresh copy of your backup master COBOL
diskette. (Your present copy may have been
damaged.)

3. Try recoding your program to get around the
problem.

4. Report the problem to your authorized IBM
Personal Computer dealer.

Additionally, the stack may have overflowed. This
condition is highly unlikely, but if it occurs, the use of
the /P parameter may solve it.

3-33

COPY
Statement

Purpose: You use the COPY statement to logically insert the
text of a diskette file (other than the source file) in the
source code input to the COBOL compiler. This is
useful when large sections of identical code are used in
many programs.

Format: 	COPY text-name.

Remarks: Text-name is a diskette filename in the format required
by DOS.

We recommend, although it is not a requirement, that
the COPY statement be the last statement on a line.

Example: Suppose BDEF.COB is a text file containing the
following source code:

05 B.
10 Bi PlC X.
10 B2 PlC X.

Then a source file containing

05 A.
10 Al PlC 9.

COPY BDEF.COB.
05 C.

10 Cl PlC Z.

3-34

COPY
Statement

compiles exactly as if this had been coded:

05 A.
10 Al PlC 9.

05 B.
10 Bi PlC X.
10 B2 PlC X.

05 C.
10 Cl PlC Z.

3-35

Sample Listing

On the following pages, we show an example of a listing
created by the compiler. This listing includes warnings
and error messages.

3-36

LU

cia
CL 	-i

Lfl
L
Ui

LU

Cal
IL

fD
N E

U H
In

_J

LU
I
H

0- al In
LU I-
H CI a (I CL

o H HO 	 f-'0 	• 	C

Z
Z>< 	><

Zj -4(D 	CI:
C •-'-i In'-' 	H 	Un 	n.j o Z H w W 	In on -
tfl i:fl --'CLCL 	CL
L
al In-JCJC Z Z LU

CL rO .jw
>wO-'_-, '-_J 	 I

Z --' JCWh- IL'--' 	 InLJJ
iI 0 CLCL '-U I 	IL

>LJJ I
ZCI 	 - 	i) IOH 	- 	OIL 	IJJ ow'--c 	• - Z -LIJU 	 -Z !- 	I 	HJOOZJUJw

UI H 	----HO -4O1CQ 	.Jj
C ci 	ZCLC-HIn-4IL

rJ-c 	J-HUU--iJw
'- 	 :zuJLtJ>Uujw
IL Z In Z 0 0 .J .J 	-4 LU rj 	Ii CL H .1

UI
U HCCCH I In(fl
L ZICiCI.'-W CILIJ

LiJOE>CL.J
o QCrwZz

In --'CLiiJ 	-Li.
-

 '

*

E

UI Z
-I

CL
EC
'TI 	•-i
tn-I

- 	,-f 	j--' 	 ,-I 	 '- 	-

3-37

0)

) 	Z
LU 	LU
LU 	E

CL 	a.
E 	LU
LU

U -i 	-J(i
LU 	LU 	Ui
U 	U 	U WEUJf_U

i 	1 UOUOI
0 a. 	a. 	Li. (Eh(tCL

U) 	U) 	(5) a.: 	a.: 	U)
U) 	CO

IN LU 	LU 	Lii UI 	W.
N D 	:D WLIJ:i ZI

Ui J 	.J 	J JJJJ
LU a j zi j 11

> 	> 	>
> 	>

><1 ..-. 	. 	 .-... 	- .-. 	#-.
C O 	0i 	0 if) 	N i)
.f NI 	. - Wi -
-N-'—

O 	CK '< 14 >c N4>()<)<>(>(>(

•cjJ (JUUL)U
Z - •: 	1 	f-4 	:: r 4 	:.
0a.a. i. LL a.o EL CL

U

E 	LU
LU LU 	Ci
iii

.WJW.JLU wWWWLU
LU .J rl J :zE J .1 .J _I J J

0WQZiJrJ JJj -Jj

(I) ._} _i 	J Li. 	- 	U. 	Li. 	iii ill- 	Li. 	IL
Ci

Z0 0 D N N N (4 N LU N (4 N (4 (.4

C

' 	(•4 N (•14 N (..4 N N (N 04 N 	V)

3-38

w
-J
-I

iJ_ 	H Lc

LL
I 	J 	 LiJOW
Ui 	(I

4 H
a o

WZ
U. 	 £L.LLi-

t. 	 a a 	 ci ci

	

0 i- 	 LflHW 	 H
H 	 jrsjz 	00

	

Ui 	Waü.CL,l.W 	Li
ci 	 Z h) 	Ui ..J 'l .j 	X.

	

i—i 	IW0

	

ID 	 JCt IHW 	[IJEW

	

•o z 	WJJZW 	cicr

	

WZ •. 	F- H - - 	ciZo
.JW 	vi 	z 11 	x U- rfj 	0J I Z

	

ci 	 00u__ . 	UiZ M 	Ui
Z0-*

OW 	Z
- 	•U) 	ZOOHZ 	0 W co

	

Z WLjJJ - 	O--H 	- UJ W0 	ci
W -JJ f-H

WZ •. H H •UJ
U) 	u..Ooz 	crH I 	---LL 	'-L1JZQI--

LjJZJJJZI 	EciwW -

> 	 Hi 0PtzI 	H

£LtJ)OZW 	 f-Hf-CciZ 	WLiJ3
0 Z-f--(jM WCLD0Ocirjcij

I f-HO 	C0WUJ0H
Ui 	-i 	0 	Lii 	Ww 	C- 	Z ix Zo JH UiHWWWHWCiOWCjj

	

ci Wi0j 	a> I00L)JJLLIH
ci 	UJO<IOI0Ct000JHUiUJ>U)
Lii Z 0 C CI 0 l U) E 3 Z 	E 3 U fl

 U ci CI Ui

	

Z 	 5J-i Z
crLu 	 - 	 WZZUJO

	

IL 	 M WU)_J0
(I E 0 Z

'- Lii

'-..

"-I V t 	t' t- •1' •:t- 	- c- 	-4- 	- 	
:' 2

3-39

CHAPTER 4. IDENTIFICATION DIVISION

Contents

Purpose 	 4-3
Format 	 4-3
Remarks 	 4-3
Example 	 4-4

AUTHOR Paragraph 4-5

DATE-COMPILED Paragraph 4-6

DATE-WRITTEN Paragraph 4-7

IDENTIFICATION DIVISION Header4-8

INSTALLATION Paragraph 4-9

PROGRAM-ID Paragraph 4-10

SECURITY Paragraph 4-11

4-I

Purpose

Every COBOL program begins with an Identification
Division. As the name implies, this division "identifies"
the program. It states the program name, its author,
its purpose, and other characteristics.

FonTi at

The Identification Division is divided into a header and
paragraphs. The header for this division is required
and is always in the following form:

IDENTIFICATION DIVISION.

A paragraph is always in the following form:

paragraph-name. sentence-sequence.

The paragraphs in this division have preassigned names.
The header and paragraphs are entered in the following
order:

IDENTIFICATION DIVISION.

PROGRAM—ID. program—name.

[AUTHOR, comment-entry ...]
[INSTALLATION, comment-entry ...]
[DATE-WRITTEN. comment-entry .. .]
[DATE-CONPILED. comment-entry

[SECURITY. comment-entry . . . I

Remarks

Only the PROGRAM-ID paragraph is required, and it
must be the first paragraph. The contents of the other
paragraphs are not important. They serve only as remarks
for your use.

4-3

The asterisk (*) in column 7 is used anywhere in your
program when you wish to include a line of remarks.

Note: The period () is required at the end of
both the header and the paragraphs in this
division.

On the following pages, we present in alphabetic order
the header and each of the paragraphs in the
Identification Division. We have provided an example
of each header and paragraph.

Example

The following example shows a complete Identification
Division. This example shows the paragraphs in the
order in which they are normally entered.

IDENTIFICATION DIVISION.
PROGRAM-ID. payroll.
AUTHOR. S A Schmoekel
INSTALLATION. Account A.
DATE-WRITTEN. 6-1-82.
DATE-COMPILED. 6-1-82.
SECURITY. FOR INTERNAL USE ONLY.
*REMARKS.Comm en ts must be preceded by
* 	an asterisk in column 7.

4-4

AUTHOR
Paragraph

Purpose: This paragraph tells who wrote the program.

Format: AUTHOR. comments.

Remarks: This paragraph is optional, serving only as documentary
remarks.

Example: AUTHOR. S A Schmoekel.

4-5

DATE-COMPILED
Paragraph

Purpose: This paragraph tells when you compiled the program.

Format: DATE-COMPILED. comments.

Remarks: This paragraph is optional, serving only as documentary
remarks.

Example: DATE-COMPILED. 6-1-82.

4-6

DATE-WRITTEN

Paragraph

Purpose: This paragraph tells when you wrote the program.

Format: DATE-WRITTEN, comments.

Remarks: This paragraph is optional, serving only as documentary
remarks.

Example: DATE-WRITTEN. 6-1-82.

4-7

IDENTIFICATION DIVISION
Header

Purpose: This header starts the program.

Format: IDENTIFICATION DIVISION.

Remarks: This must be the first line in any COBOL program.
The period is required at the end of the header.

Example: IDENTIFICATION DIVISION.

4-8

INSTALLATION
Paragraph

Purpose: This paragraph tells the use of the program.

Format: INSTALLATION, comments.

Remarks: This paragraph is optional, serving only as documentary
remarks.

Example: INSTALLATION. Account A.

4-9

PROGRAM-ID
Paragraph

Purpose: This paragraph tells the name of the program. The
program-name identifies the object program.

Format: PROGRAM-ID. program-name.

Remarks: This paragraph is required and must be the first
paragraph in your program.

Program-name can be any alphanumeric string of
characters. Imbedded periods are not allowed. The
first character must be a letter. Only the first 6
characters of program-name are retained by the
compiler.

Example: PROGRAM-ID. payroll.

4-10

SECURITY

Paragraph

Purpose: This paragraph tells the security level of the program.

Format: SECURITY, comments.

Remarks: This paragraph is optional, serving only as documentary
remarks.

Example: SECURITY. FOR INTERNAL USE ONLY.

4-11

CHAPTER 5. ENVIRONMENT DIVISION

Contents

Purpose 	 5-3
Format 	 5-3
Remarks 	 5-4
Example 	 5-4

CONFIGURATION SECTION Header5-5

ENVIRONMENT DIVISION Header5-6

FILE-CONTROL Paragraph 	 5-7

INPUT-OUTPUT SECTION Header 5-li

1-0-CONTROL Paragraph 	5-12

OBJECT-COMPUTER Paragraph 	5-13

SOURCE-COMPUTER Paragraph 	5-14

SPECIAL-NAMES Paragraph 	5-15

5-1

Purpose

The Environment Division specifies the aspects of your
COBOL program that depend upon the physical
characteristics of your computer. It is required in every
program.

The Environment Division always begins with the
following header:

ENVIRONMENT DIVISION.

The Environment Division has two possible sections:

• 	Configuration Section

• 	Input-Output Section

These sections describe the physical characteristics of
your computer and the handling of data files.

Format

The sections of the Environment Division follow this
general format:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. Computer-name [WITH DEBUGGING MODE].

OBJECT-COMPUTER. Computer-name

[MEMORY SIZE integer WORDS I CHARACTERS MODULES]
[PROGRAM COLLATING SEQUENCE IS ASCII].

[SPECIAL-NAMES. [PRINTER IS mnemonic-name]

[ASCII IS STANDARD-1INATIVE]

[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA].

[SWITCH-n IS comment-ID

(ON 10FF) IS condition-name]].

[INPUT-OUTPUT SECTION.

[FILE-CONTROL. file-control-entry . . . 1
[1-0-CONTROL.

[SAME RECORD AREA FOR filename ...] ...]]

5.3

Remarks

On the following pages, we present in alphabetic order
the header and each of the paragraphs in the
Environment Division. We have provided an example
of each header and paragraph.

Example

The following example shows an Environment Division.
This example shows the paragraphs in the order in
which they are normally entered.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-PERSONAL-COMPUTER.
OBJECT-COMPUTER. IBM-PERSONAL-COMPUTER.
SPECIAL-NAMES. ASCII IS NATIVE CURRENCY IS 'L'.
INPUT-OUTPUT SECTION.
FILE CONTROL.

SELECT timecard ASSIGN TO DISK.
• SELECT vac-sched ASSIGN TO DISK.
1-0 CONTROL.

SAME RECORD AREA FOR timecard, vac-sched.

5-4

CONFIGURATION SECTION
Header

Purpose: This header introduces the Configuration Section. Here
you specify the type of computer you are using, as well
as special characteristics and/or names.

Format: CONFIGURATION SECTION.

Remarks: The Configuration Section is optional. The header must
be entered exactly as shown, including the period.

This section has three possible paragraphs:

SOURCE-COMPUTER
OBJECT-COMPUTER
SPECIAL-NAMES

The contents of the first two paragraphs are treated as
comments, except for the clause WITH DEBUGGING
MODE, if present. The third paragraph,
SPECIAL-NAMES, relates implementor names to names
you define and allows changes to default editing
characters.

If you enter any of these paragraph names, you must
include the CONFIGURATION SECTION header. For
more information on these paragraphs, refer to the
individual paragraph headings in this chapter.

Example: CONFIGURATION SECTION.

5-5

ENVIRONMENT DIVISION
Header

Purpose: This header tells you and the compiler that the
Environment Division begins here.

Format: ENVIRONMENT DIVISION.

Remarks: The header must be entered exactly as shown, including
the period.

Example: ENVIRONMENT DIVISION.

5-6

FILE-CONTROL
Paragraph

Purpose: This paragraph defines each file that will be accessed and
that has records described in the Data Division's File
Section. Here you assign the type of input/output
processing allowed for each file.

Format:
FILE-CONTROL.

SELECT file-name ASSIGN TO DISKI PRINTER

[RESERVE integer AREASIAREA]

[FILE STATUS IS data-name-11

[ACCESS MODE IS SEQUENTIAL IRANDOMIDYNANIC)

[ORGANIZATION IS SEQUENTIAL I LINE SEQUENTIAL I
RELATIVE I INDEXED]
[RECORD KEY IS data-name-21

[RELATIVE KEY IS data-name-3]

Remarks: The SELECT entry must begin to the right of Area A
of the source line. All phrases after SELECT filename
can be in any order.

ACCESS: Both the ACCESS and ORGANIZATION
clauses are optional for regular sequential input/output
processing. For indexed or relative files, alternate
formats are available for this section, and are explained
in Chapter 8.

ORGANIZATION: Two formats are available for
sequential diskette files. One is the default form which
is ORGANIZATION IS SEQUENTIAL. The other is
requested by ORGANIZATION IS LINE
SEQUENTIAL. Both forms assume the records in the
file have variable lengths.

Regular sequential organization has a 2-byte count of the
record length, followed by the actual record, for as
many records as exist in the file. This type of file is
created through a COBOL program.

5-7

FILE-CONTROL
Paragraph

Line sequential organization has the record, followed by
a carriage return/line feed delimiter, for as many records
as exist in the file. This type of file is created when
you build a data file outside a COBOL program (for
example, by using EDLIN).

No COMP-0 or COMP-3 information should be written
into a line sequential file, because these data items may
contain the same binary codes used for carriage return
and line feed. This may cause a problem when you
read from the file.

Both organizations pad any remaining space of the last
physical block with Ctrl-Z characters, indicating end-of-
file. All records are placed in the file with no gaps;
they span physical block boundaries.

The RECORD and RELATIVE KEY clauses are
explained in Chapter 8.

RESERVE: The RESERVE clause is not functional in
IBM COBOL, but it is scanned for correct syntax. One
physical block buffer is always allocated to the logical
record area assigned to it. This allows logical records
to be spanned over physical block boundaries. For files
assigned to PRINTER, the logical record area is used
as the physical buffer as well.

FILE STATUS: In the FILE STATUS entry,
data-name-1 must refer to a two-character Working-
Storage or Linkage Section alphanumeric item. The
runtime data management facility places status
information in this item after an I/O statement.

The left-hand character of data-name-1 assumes the
following values:

5-8

FILE-CONTROL

Paragraph

O 	Successful completion
1 	End-of-file condition
2 	Invalid key (only for indexed and relative files)
3 	A nonrecoverable I/O error
9 	Specific conditions

The right-hand character of data-name-] is set to "0"
if no further status information exists for the previous
I/O operation. The following combinations of values
are possible:

File Status File Status
Left 	Right 	Meaning

o 	o 	Successful completion
0 	EOF

3 	0 	Permanent error
3 	4 	Disk space full
9 	1 	File damaged

In an OPEN INPUT or OPEN 1-0 statement, a File
Status of "30" means "File Not Found."

For values of status-right when status-left has a value of
"2", see Chapter 8.

If an I/O error occurs, the file's FILE STATUS item, if
one exists, is set to the appropriate two-character code.
Otherwise, it assumes the value "00."

If an I/O error occurs and is of the type that is
pertinent to an AT END or INVALID KEY clause, then
the imperative statements in such a clause are performed
if the clause is present on the statement that gave rise
to the error. But, if there is no appropriate clause (such
clauses may not appear on OPEN or CLOSE, for
example, and are optional for other I/O statements),
then the logic of program flow is as follows:

5-9

FILE-CONTROL
Paragraph

If there is an associated Declaratives ERROR
procedure (see "Declaratives and the USE
Sentence"), it is performed automatically; user-
written logic must determine what action is taken
because of the existence of the error. Upon return
from the ERROR procedure, normal program flow
to the next sentence (following the I/O statement)
is allowed.

2. If no Declaratives ERROR procedure is applicable,
but there is an associated FILE STATUS item, it
is presumed that you may base actions upon
testing the STATUS item, so normal flow to the
next sentence is allowed.

Only if none of the INVALID KEY/AT END clause,
Declaratives ERROR procedure, or testable FILE
STATUS item exists, then the runtime error handler
receives control. The location of the error (source
program line number) is noted, and the run is ended
abnormally.

These remarks apply to processing of any file, whether
organization is sequential, line sequential, indexed, or
relative.

Example: FILE-CONTROL.
SELECT timecard ASSIGN TO DISK
FILE STATUS IS STATUS-FLAG
ACCESS MODE IS SEQUENTIAL
ORGANIZATION IS LINE SEQUENTIAL.

5-10

INPUT-OUTPUT SECTION
Header

Purpose: This header introduces the Input-Output Section. Here
you specify file control and I/O control. In this
section, you define the file assignment parameters.

Format: 	INPUT-OUTPUT SECTION.

Remarks: The Input-Output Section is mandatory, unless your
program has no data files. The header must be entered
exactly as shown, including the period.

This section has two types of paragraphs:

FILE-CONTROL
1-0-CONTROL

In this seption, the programmer defines the file
assignment parameters, including specification of
buffering.

For more information on these paragraphs, refer to each
individual paragraph heading in this chapter.

Example: INPUT-OUTPUT SECTION.

5-11

1-0-CONTROL
Paragraph

Purpose: This paragraph allows for the sharing of physical buffer
space between two or more files.

Format: I-C-CONTROL.

SAME RECORD AREA FOR filename...

Remarks: The SAME RECORD AREA clause is optional.

The SAME RECORD AREA causes all the named files
to share the same logical record area in order to
conserve memory space.

All files named in a given SAME AREA clause need
not have the same organization or access. However, no
file may be listed in more than one SAME RECORD
AREA clause.

Example: 1-0-CONTROL.
SAME RECORD AREA FOR timecard, vac-sched

5-12

OBJECT-COMPUTER
Paragraph

Purpose: 	This paragraph identifies the object computer.

Format:

OBJECT-COMPUTER. Computer-name

[MEMORY SIZE integer WORDS CHARACTERS MODULES]

[PROGRAM COLLATING SEQUENCE IS ASCII].

Remarks: The contents of this paragraph are treated as comments.

Example: OBJECT-COMPUTER. IBM-PERSONAL-COMPUTER.

5-13

SOURCE-COMPUTER
Paragraph

Purpose: This paragraph identifies the source computer.

Format: SOURCE-COMPUTER. Computer-name

[WITH DEBUGGING MODE].

Remarks: The contents of this paragraph are treated as comments,
except for the WITH DEBUGGING MODE clause, if
present.

You can include lines in your program to help trace
program errors. These lines (for example, EXHIBIT
statements) are preceded by the letter D in column 7.
If you have entered WITH DEBUGGING MODE in the
SOURCE-COMPUTER paragraph, any such lines with
D in column 7 are compiled as part of the program.
If you have not entered WITH DEBUGGING MODE,
the lines with D in column 7 are ignored and not
compiled as part of the program.

Example: SOURCE-COMPUTER. IBM- PERSONAL- COMPUTER.

5-14

SPECIAL-NAMES
Paragraph

Purpose: This paragraph relates machine names to user-defined
names. It also changes the meaning of characters, such
as decimal points and commas.

Format: 	SPECIAL-NAMES. [PRINTER IS mnemonic-name]
[ASCII IS STANDARD-1 INATIVE]

[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA]

[SWITCH-n IS comment-ID

(OFF ON) IS condition-name].

Remarks: The following rules apply:

• The PRINTER IS phrase lets you define a name to
be used in your DISPLAY statements.

• The entry ASCII IS STANDARD-i INATIVE
specifies that data representation adheres to the
American Standard code for Information
Interchange. However, this convention is assumed,
even if you don't specify it. In IBM COBOL,
STANDARD-i and NATIVE are identical, and
they both refer to the character set representation
specified in Appendix G, "ASCII Character Codes."

• The CURRENCY SIGN clause lets you select a
currency symbol other than the dollar sign (for
example, L). The symbol you select must be a
nonnumeric literal. It cannot be a quotation mark,
a number (0-9), nor any of the characters used in
a PICTURE representation.

• The DECIMAL-POINT IS COMMA clause lets you
use the European convention of using a comma
instead of a decimal point to separate the integer
portion from the fraction portion of a number.

5-15

SPECIAL-NAMES
Paragraph

• 	The SWITCH-n clause allows you to set switches
during runtime. Eight different switches may be
set, SWITCH-i through SWITCH-8. Any number
of them may be coded under the SPECIAL-NAMES
paragraph.

If you use this clause, you are prompted at runtime
(before the program begins executing) to enter the
switch settings. The switch settings are: a "blank"
for OFF, and a "non-blank" for ON.

Example (the first two lines are the prompt):

Enter switch settings (blank=OFF, non-blank=ON):

12.345678
xx x

In this case, the user entered X (a non-blank
character) for 1, 2, and 4. These switches will be
ON, and switch 3 will be OFF. Also, any unused
switches (5-8) will be OFF (default).

Note: The reserved word IS is required in the
PRINTER, CURRENCY SIGN, DECIMAL-POINT,
and SWITCH-n entries.

Example: SPECIAL-NAMES. CURRENCY SIGN IS "L"
DECIMAL-POINT IS COMMA.
SWITCH-1 IS TEST-1 ON IS ONi OFF IS OFF1
SWITCH-3 IS TEST-3 ON IS ON3 OFF IS OFF3.

PROCEDURE DIVISION.
IF ON1 GO TO TEST-AREA-1.
IF 0N3 GO TO TEST-AREA-3.

5-16

CHAPTER 6. DATA DIVISION

Contents

Purpose 	 6-3

Format 	 6-3

Remarks 	 6-3
Example 	 6-4

File Section 	 6-5

Working Storage Section 	 6-7

Linkage Section 	 6-9

Screen Section 6-I I

Data Division Limitations 	6-20

BLANK WHEN ZERO Clause 	6-21

BLOCK Clause 6-22

CODE-SET Clause 6-23

DATA RECORD(S) Clause 6-24

FD Entry (Sequential I/O Only) 6-25

JUSTIFIED Clause 6-26

LABEL Clause 6-27

LINAGE Clause 6-28

OCCURS Clause 6-30

PICTURE Clause 6-33

RECORD Clause 6-43

6-I

REDEFINES Clause 	 . 6-44

SIGN Clause 6-46

SYNCHRONIZED Clause 6-49

USAGE Clause 6-50

VALUE Clause6-51
Level 88 Condition Names6-53

VALUE OF FILE-ID Clause 6-55

6-2

Purpose

The Data Division is where you define your files,
records, variables, and tables.

Format

The Data Division begins with the following header:

DATA DIVISION.

This division is subdivided into four sections: File,
Working-Storage, Linkage, and Screen.

This division is entered in the following order:

DATA DIVISION.

[FILE SECTION.

[file description entry

record description entry . . . 1 ...]
[WORKING-STORAGE SECTION.

[data item description entry . . .

[LINKAGE SECTION.

[data item description entry ...]... .1
[SCREEN SECTION.

[screen-description-entry . . . 1 ...]

Remarks

In the Data Division, you describe the nature and
organization of all of the data used by the program.
This includes the record layouts of files, as well as the
variables and tables in the program.

All the variables you use in a program must be declared
within the Data Division. A variable may occur as an
individual item, an item within a table (that is, an array),
or an element within a file record. You describe the
variables in the four sections of the Data Division.

6-3

On the following pages, we present in alphabetic order
the header and each of the paragraphs in the Data
Division. We have provided examples of the headers,
paragraphs, and clauses.

Example

The following is an example of a Data Division. The
paragraphs are shown in the order in which they are
normally entered.

DATA DIVISION.
FILE SECTION.
FD DISK-FILE

LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS 'B:C404.DAT'

01 	REC-FIELD.
02 NAME 	PlC x(8).
02 REC-KEY 	PlC 999.

FD PRINT-FILE
LABEL RECORDS OMITTED.

01 	PRINT-LINE 	PlC X(80).
WORKING-STORAGE SECTION.
01 START-TIME 	PlC 9(8) VALUE 0.
01 FINISH-TIME 	PlC 9(8) VALUE 0.
01 PRINT-TIME 	PlC XXBXXBXXBXX.
LINKAGE SECTION.
01 PARAMETER-] 	PlC 99.
01 PARAMETER-2 	PlC 99.
SCREEN SECTION.
01 PASSWORD-SCREEN.

02 BLANK SCREEN.
02 LINE 5 COLUMN 18 PlC X(]O) TO USER-PASSWORD.

SECURE BELL AUTO.
02 LINE 10 COLUMN 10 VALUE

'ENTER PASSWORD ABOVE'.
02 LINE 15 COLUMN 18 PlC X(25) TO USER-NAME.
02 LINE 20 COLUMN 10 VALUE

'ENTER NAME ABOVE'.

6-4

File Section

Purpose

In the File Section, you use FD (File Description) entries
to describe blocks, records, and linage.

Format

The File Section of the Data Division begins with the
header:

FILE SECTION.

Within the File Section, you have two types of entries:

File description

Record description

Remarks

For each file used by a program, you must have one file
description (FD), which is followed by one or more
record descriptions. The file description defines the
structure and layout of the file.

The record description defines the structure and layout
of a logical record in the file. Each 01 level of a record
description implicitly redefines the same area of a
previous 01 level. For more information, refer to the
individual statements in this chapter.

6-5

Example

FILE SECTION.
FD DISK-FILE

LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS 'B:C404.DAT'

01 REC-FIELD.
02 NAME 	PlC X(8).
02 REC-KEY 	PlC 999.

FD PRINT-FILE
LABEL RECORDS OMITTED.

01 PRINT-LINE 	PlC x(80).

6-6

Working Storage Section

Purpose

This section describes records and other data which are
not part of external data files but which are developed
and processed internally. This is where you declare the
variables and tables used in the program.

Format

The second section of the Data Division begins with the
header:

WORKING-STORAGE SECTION.

Some of the more commonly used clauses you can use
to define the variables and tables include:

OCCURS
PICTURE
REDEFINES
USAGE
VALUE

Remarks

Data description entries in this section may use level
numbers 01-49, as in the File Section, as well as 77.
VALUE clauses, prohibited in the File Section (except
for level 88), are permitted throughout the Working-
Storage Section.

6-7

Example

WORKING-STORAGE SECTION.
01 START-TIME
	

PlC 9(8) VALUE 0.
01 FINISH-TIME
	

PlC 9(8) VALUE 0.
01 PRINT-TIME
	

PlC XXBXXBXXBXX.

6-8

Linkage Section

Purpose

The Linkage Section allows you to run separately
compiled program modules as one single program. The
Linkage Section describes data made available in
memory from another program module. Record
description entries in the Linkage Section provide data
names by which data areas reserved in memory by
other programs may be referenced.

Format

The third section of the Data Division is defined by the
header:

LINKAGE SECTION.

Any record description clause may be used to describe
items in the Linkage Section, as long as the VALUE
clause is not specified for other than level 88 items.

Remarks

The Linkage Section is used in the called subprogram to
describe data by name and attribute. However, storage
space is not allocated. Entries in the Linkage Section
do not reserve memory areas because the data is
assumed to be present elsewhere in memory, in a
calling program. Refer to Chapter 10, "Interprogram
Communication" for further information.

6-9

Example

LINKAGE SECTION.
01 PARAMETER-1 PlC 99.
01 PARAMETER-2 PlC 99.

6-JO

Screen Section

Purpose

You use the Screen Section of the Data Division to
define screen formats for the display. A screen format
allows you to describe the appearance of the entire
display screen to the viewer, rather than the normal
scrolling sequence of line-by-line.

The Screen Section is composed of screen data
description entries. As in the File and Working-Storage
Sections, descriptions may be grouped through the
assignment of appropriate level numbers.

The two types of screen items are elementary and
group. Elementary screen items define the individual
display and/or data entry fields within the screen
layout. Group screen items are used to name any
group of elementary screen items which are accepted or
displayed with a single Procedure Division statement.

Format

The format of a group screen description entry is:

level-number screen-name [AUTO][SECURE]

[REQUIRED] [FULL].

where level-number must be an integer in the range 01
through 49. Screen-name must conform to the rules for
COBOL names.

C
z

r.i

The format of an elementary screen item is:

level-number [screen-name]

[BLANK SCREEN]

[LINE NUMBER IS [PLUS] integer-l]

[COLUMN NUMBER IS (PLUS] integer-21

[BLANK LINE]

[BELL]

[UNDERLINE]

[REVERSE-VIDEO]

[HIGHLIGHT]

[BLINK)

[FOREGROUND-COLOR integer-3]

[BACKGROUND-COLOR integer-41

[VALUE IS literal-11

[PICTUREPIC IS picture-string

([FROM literal -2 identifier-lI

[TO identifier-21I

(USING identifier-31)]

[BLANK WHEN ZERO]

[JUSTIFIED IJUST RIGHT]

[AUTO]

[SECURE]

[REQUIRED]

[FULL]

where level-number and screen-name are subject to the
same rules as in the group screen description.

Remarks

The following rules apply to the Screen Section:

If AUTO, SECURE, REQUIRED, or FULL is
coded for a group screen item, the effect is as if
AUTO, SECURE, REQUIRED, or FULL is coded
for every elementary screen item subordinate to
that group screen item.

6-12

• 	If PICTURE is coded, then USING with either
FROM or TO must be present. A screen item may
have both a FROM and TO clause.

• AUTO, SECURE, REQUIRED, FULL, BLANK
WHEN ZERO, and JUSTIFIED may be given only
if PICTURE is specified.

• The maximum length of an elementary screen item
is 80 characters.

The clauses specified with each elementary screen data
description can affect data input and data display
operations when ACCEPT and DISPLAY statements
are processed at runtime.

It is important to note which specifications are
functional with the ACCEPT screen-name statement,
and which are functional with the DISPLAY
screen-name statement. This distinction and the effects
of each specification are as follows:

• BLANK SCREEN causes the entire screen to be
erased and the cursor to be placed at the home
position (line 1, column 1) when the screen is
displayed. BLANK SCREEN also returns the
screen to its default color if FOREGROUND-
COLOR or BACKGROUND-COLOR has been
used. BLANK SCREEN has no effect on the
ACCEPT screen-name statement.

6- I 3

• LINE and COLUMN affect the screen location
associated with an elementary screen item. As the
Screen Section is processed when the program is
compiled, a current cursor position is maintained
so that each elementary screen item can be
identified with a particular region of the screen.

When a level 01 screen item is encountered, the
current screen position is reset to line 1, column 1.
Then, as each elementary screen data description is
processed, the current position is adjusted for the
size of each definition encountered. Therefore,
by default, successively defined fields appear
end-to-end in successive areas of the screen.

The screen position at the start of any elementary
screen data description may be changed by means
of the LINE and COLUMN specifications. If
neither LINE nor COLUMN is coded, the current
screen position is not changed. If COLUMN is
coded without LINE, the current screen line is
not adjusted. If LINE is coded without COLUMN,
column 1 is assumed.

The LINE integer or COLUMN integer clause
without PLUS causes the specified integer to be
taken as the line or column at which the current
screen item should start. The LINE PLUS integer
or COLUMN PLUS integer clause causes the
specified integer to be added to the current screen
line or column, and the result to be used as the
line or column at which the current screen item
should start. If LINE (COLUMN) is given without
integer-1 (integer-2), LINE PLUS 1 (COLUMN
PLUS 1) is assumed.

• BLANK LINE erases the screen from the current
cursor position to the end of the current line. The
cursor stays in the same position.

6-14

Note: The following functions are always
processed in the order shown below, regardless
of the order in which they are specified.

1. BLANK SCREEN
2. LINE/COLUMN positioning
3. BLANK LINE
4. DISPLAY or ACCEPT of data

• BELL sounds the speaker when the system is ready
to accept a field with the ACCEPT screen-name
statement. BELL has no effect on output fields.
That is, a screen item for which BELL is specified
is ignored by all DISPLAY statements.

• HIGHLIGHT causes a DISPLAY screen item to
appear on the screen in high intensity. On a color
display, HIGHLIGHT uses colors 8-15 if 0-7 are
coded (see below).

• BLINK causes a DISPLAY screen item to blink on
the screen.

• REVERSE-VIDEO causes a DISPLAY screen item
to appear on the screen with the background and
foreground colors inverted.

• UNDERLINE puts a line under a DISPLAY screen
item. UNDERLINE is available only for the
IBM Monochrome Display and is ignored for a
color display.

• FOREGROUND-COLOR is the color of characters
on the display. It is followed by an integer in the
range of 0- IS (see notes below). The default is
white. FOREGROUND-COLOR is only active for
the Color Graphics Monitor Adapter.

• BACKGROUND-COLOR is the color of the
background. It is followed by an integer in the
range of 0-7 (see notes below). The default is
black. BACKGROUND-COLOR is only active for
the Color Graphics Monitor Adapter.

6-15

Notes:

If you have the Color Graphics Monitor
Adapter, the following colors are allowed for
foreground (integer-3):

o black 8 gray
1 blue 9 light blue
2 green 10 light green
3 cyan 11 light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 yellow
7 white 15 high intensity white

For background (integer-4), colors 0-7 are
available, and values 8-15 cause colors 0-7 to
blink.

You could think of colors 8-15 as light or
high-intensity versions of colors 0-7. If you
use the same color for both foreground and
background, the characters will be invisible.
(Individual colors and intensity may vary,
depending on your display device.)

2. If you have the IBM Monochrome Display and
Printer Adapter and the IBM Monochrome
Display, the use of foreground and background
colors (other than white and black) will have
no effect.

3. Additionally, you may check the current
video mode (Black-and-white or Color)
through an assembly language subroutine call.
An example is provided in Appendix J.
"Example Programs With Video Mode."

6-16

• 	VALUE IS literal-i specifies the character string
which should be displayed on the screen when the
screen item being defined is referenced by a
DISPLAY screen-name statement. Literal-] must
be bounded by quotes and cannot be a figurative
constant. A screen item for which VALUE is
specified is ignored by all ACCEPT statements.
The PICTURE clause cannot be used with
VALUE IS.

• 	PICTURE specifies the format in which data is to
be presented on the screen. It is coded according
to the rules for Working-Storage PICTURE clauses
described under "PICTURE Clause" in this chapter.

During a DISPLAY screen-name statement, the
contents of a FROM or USING field are moved to
an implicit temporary item with the specified
PICTURE before they are displayed on the screen.

During an ACCEPT screen-name statement, the
displayed contents of the field being entered are
punctuated so they conform with the given
PICTURE format.

• 	FROM, TO, and USING describe relationships
between a screen item and literals and/or fields
in either the File, Working-Storage, or Linkage
Sections. Identifiers can be qualified but not
subscripted.

When a screen item is displayed, a MOVE occurs
from any FROM or USING literal or field to a
temporary item defined by the screen item's
PICTURE. The resulting contents of the
temporary item are then displayed on the screen.

When the screen item is accepted, the runtime
system implicitly moves the accepted data to any
TO or USING field specified for the item. A
screen item with only a FROM clause has no
effect on the operation of the ACCEPT screen-
name statement.

6-17

• BLANK WHEN ZERO causes a screen item to be
shown as spaces if its value is zero.

• 	JUSTIFIED, abbreviated JUST, specifies that
operator-entered data or data from a FROM field,
USING field, or literal will be aligned with the
right boundary of the screen item when it is shown
on the screen.

• 	AUTO specifies that when a field has been filled
by operator input, the cursor automatically skips
to the next input field, rather than waiting for a
terminator character to be entered. If there are
no more input fields remaining, the ACCEPT
screen-name statement ends. AUTO has no effect
on DISPLAY screen-name. It must be used with
a PICTURE clause.

• 	SECURE suppresses the echoing of input
characters. Instead, an asterisk is displayed for
each data character accepted with the ACCEPT
screen-name statement. SECURE has no effect
on DISPLAY screen-name. It must be used with
a PICTURE clause.

• REQUIRED specifies that some entry must be
made before a field terminator character will be
accepted.

• 	FULL specifies that any field terminator character
will be ignored unless every data input position
has been filled.

6-18

Example

SCREEN SECTION.
01 PASSWORD-SCREEN.

02 BLANK SCREEN.
02 LINE 5 COLUMN 18 PlC x(10) TO USER-PASSWORD

SECURE BELL AUTO.
02 LINE 10 COLUMN 10 VALUE

'ENTER PASSWORD ABOVE'.
02 LINE 15 COLUMN 18 PlC X(25) TO USER-NAME.
02 LINE 20 COLUMN 10 VALUE

'ENTER NAME ABOVE'.
PROCEDURE DIVISION.
SIGN-ON.

*GIVE THE PROMPTS
DISPLAY PASSWORD-SCREEN.

*ACCEPT PASSWORD AND NAME
ACCEPT PASSWORD-SCREEN.

6-19

Data Division Limitations

There is a limitation on the number of items in the
Working-Storage, Linkage, and File Sections of the Data
Division. The sum:

4096 +F+L

must be less than or equal to 14, where

W The size of Working-Storage in bytes. (W/4K
(4096) is rounded up.)

F The number of files described in the File Section.

L The number of level 01 or 77 entries in the
Linkage Section.

Note: The maximum number of files which may
be open in the same run unit (main program linked
together with an arbitrary number of subprograms)
is 14.

6-20

BLANK WHEN ZERO

Clause

- 	Purpose: The BLANK WHEN ZERO clause specifies that a report
(edited) field is to contain nothing except blanks if the
numeric value moved to it has a value of zero.

Format: BLANK WHEN ZERO

Remarks: When this clause is used with a numeric PICTURE, the
field is considered a report field.

Example: 02 AMOUNT PlC $$$.99 BLANK WHEN ZERO.

6-21

BLOCK
Clause

Purpose: You use the BLOCK clause to specify characteristics of
physical records in relation to the concept of logical
records.

Format: BLOCK CONTAINS integer-2 CHARACTERS

integer-2 RECORDS

Remarks: The BLOCK clause has no effect in IBM COBOL, but it
is examined for correct syntax. It is normally applicable
to tape files, which are not supported by IBM COBOL.

Files assigned to the printer must not have a BLOCK
clause in the associated FD entry.

If used as commentary, the size of a physical block is
usually stated in RECORDS, except when the records
are variable in size or exceed the size of a physical block;
in these cases, the size should be expressed in
CHARACTERS.

6-22

CODE-SET

Clause

Purpose: The CODE-SET clause is used to specify files not on a
diskette.

Format: CODE-SET IS alphabet-name

Remarks: The CODE-SET clause serves only the purpose of
documentation in IBM COBOL, reflecting the fact that
both internal and external data are represented in ASCII
code. Any signed numeric data description entries in
the file's record should include the SIGN IS SEPARATE
clause and all data in the file should have USAGE IS
DISPLAY.

6-23

DATA RECORD(S)

Clause

Purpose: The optional DATA RECORDS clause identifies the
records in the file by name.

Format: DATA RECORD 1St RECORDS ARE

data-name-1 [data-name-2. . .1

Remarks: This clause is documentary only in IBM COBOL. The
presence of more than one data-name indicates that the
file contains more than one type of data record. That
is, two or more record descriptions may apply to the
same storage area. The order in which the data-names
are listed is not significant.

Data-name-1, data-name-2, etc., are the names of data
records, and each must be preceded in its record
description entry by the level number 01, following
the appropriate file description (FD) in the File Section.

When multiple data records occur, each reference to
data-name-1 implicitly redefines the area used by
data-name-i.

Example: DATA RECORDS ARE NEW-PATIENT, OLD-PATIENT.

6-24

FD Entry
(Sequential I/O Only)

Purpose: In the File Section of the Data Division, an FD entry
(file definition) must appear for every selected file. This
entry precedes the descriptions of the file's record
structure(s).

Fonnat: 	FD filename LABEL-clause

[VALUE-OF-FILE-ID-clause]

[DATA-RECORD(S) - clause] [BLOCK-clause]

[RECORD-clause] [CODE-SET-clause]

[LINAGE clause].

Remarks: After FD filename, the order of the clauses does not
matter.

Example: FILE SECTION.
FD DISK-FILE

LABEL RECORDS STANDARD
VALUE OF FILE-ID "A:MEMBERS.DAT"
LINAGE IS 5 LINES

TOP 5 BOTTOM 5.

6-25

JUSTIFIED

Clause

Purpose: The JUSTIFIED clause signifies that values are stored
in a right-to-left fashion. This results in space fill on the
left when a short field is moved to a longer JUSTIFIED
field, or in truncation on the left when a long field is
moved to a shorter JUSTIFIED field.

Format: JUSTIFIED RIGHT

Remarks: This clause is only applicable to unedited alphanumeric
(character string) items. The JUSTIFIED clause is
effective only when the associated field is employed as
the receiving field in a MOVE statement.

You may use the word JUST as an abbreviation of
JUSTIFIED.

Example: 02 NAME 	PlC X(20) JUST.

6-26

LABEL
Clause

Purpose: This clause tells the system whether you have assigned
labels to your files.

Format: LABEL RECORD RECORDS [IS ARE]

OMITTED STANDARD

Remarks: The OMITTED option specifies that no labels exist
for the file. You must specify OMITTED for files
assigned to the printer.

The STANDARD option specifies that labels exist for
the file and that the labels conform to system
specifications. You must specify STANDARD for files
assigned to a diskette.

Example: LABEL RECORDS ARE OMITTED.

6-27

LINAGE
Clause

Purpose: For a file assigned to the printer, the LINAGE clause
provides a means of specifying the size of the printable
portion of a page, called the page body. The number of
lines in the page body is specified along with, optionally,
the size of the top and bottom margins and the line
number within the page body at which a footing area
begins.

Format: 	LINAGE IS data-name-i integer-i LINES

[WITH FOOTING AT data-name-2integer-2]

[LINES AT TOP data-name-3integer-31

(LINES AT BOTTOM data-name-41integ-er-4]

Remarks: All data-names must refer to unsigned numeric integer
data items. Integer-1 must be greater than zero, and
integer-2 must not be greater than integer-1.

The total page size is the sum of the values in each
phrase except for FOOTING. If TOP or BOTTOM
margins are not specified, their size is assumed to be
zero. The footing area comprises that part of the page
body between the line indicated by the FOOTING
value, and the last line of the page body, inclusively.

The values in each phrase at the time the file is opened
(by an OPEN OUTPUT statement) specify the number
of lines that comprise each of the sections of the first
logical page.

When a WRITE statement with the ADVANCING
PAGE phrase is performed or a page overflow
condition occurs (see the WRITE statement), the
values in each phrase, at that time, specify the number
of lines in each section of the next logical page.

6-28

LINAGE
Clause

A LINAGE-COUNTER is created by the presence of a
LINAGE clause. The value in the LINAGE-COUNTER
at any given time represents the line number at which
the printer is positioned within the current page body.
LINAGE-COUNTER may be referenced, but the
counter may not be modified by Procedure Division
statements. The counter is automatically modified by a
WRITE statement, according to the following rules:

• When the ADVANCING PAGE phrase of the
WRITE statement is specified or a page overflow
condition occurs, the LINAGE COUNTER is reset
to one.

• When the ADVANCING identifier or integer
phrase is specified, LINAGE-COUNTER is
incremented by the ADVANCING value.

• When the ADVANCING phrase is not specified,
LINAGE-COUNTER is incremented by one.

See the description of the "WRITE Statement" in
Chapter 8 for additional information about the effects
of LINAGE specifications.

Example: LINAGE IS 60 LINES TOP 5 BOTTOM 5.

6-29

OCCURS

Clause

Purpose: You use the OCCURS clause to define related sets of
repeated data, such as tables, lists, and arrays. You may
specify the number of times, up to a maximum of 1023,
that a data item with the same format is repeated.

Format: OCCURS integer TIMES

[INDEXED BY index-name...

Remarks: The OCCURS clause must not be used in any data
description entry having a level number 01 or 77. Data
description clauses associated with an item whose
description includes an OCCURS clause apply to each
repetition of the item being described.

When the OCCURS clause is used, the data name that
is the defining name of the entry must be subscripted
or indexed whenever it appears in the Procedure
Division. If this data name is the name of a group
item, then all data names belonging to the group must
be subscripted or indexed whenever they are used.

Since the OCCURS clause can only be used at
subordinate levels within a data record, the maximum
size of a table is limited by the rules for the size of a
group item. See "Group Item" in Chapter 2.

6-30

OCCURS
Clause

Subscripting lets you refer to data items in a table or
list that have not been assigned individual data names.
Subscripting is determined by the appearance of an
OCCURS clause in a data description.

If an item has an OCCURS clause or belongs to a group
having an OCCURS clause, the item must be
subscripted or indexed whenever it is used. See Chapter
9, "Table Handling by the Indexing Method" for
explanations on subscripting, indexing, and index usage.
(Exception: the table name in a SEARCH statement
must be referenced without subscripts.)

A subscript is a positive, nonzero integer whose value
determines an element to which a reference is being
made within a table or list. The subscript may be
represented either by a literal or a data name that has an
integer value. The subscript is enclosed in parentheses
and appears after the delimiting space in the name of
the element. A subscript must be a decimal or binary
item. (We strongly recommend the latter, for the sake
of efficiency.)

At most, three OCCURS clauses may govern any data
item. Consequently, one, two, or three subscripts may
be required. When more than one subscript is
required, the subscripts are written in the order of
successively less inclusive dimensions of the data
organization. Multiple subscripts are separated by
commas; for example:

ITEM (I, J)

6-31

OCCURS
Clause

A data name may not be subscripted if it is being used
for:

• 	A subscript

• 	The defining name of a data description entry

• Data-name-2 in a REDEFINES clause

• 	A qualifier

Example:

Example 1

01 ARRAY-i.
03 ELEMENT, OCCURS 3, PICTURE 9(4).

In Example 1, storage is allocated as shown below.

ELEMENT (1) 	ARRAY, consisting of twelve
ELEMENT (2) 	characters; each item has 4
ELEMENT (3) 	digits.

Example 2

*initializing an array
01 ARRAY-2.

02 FILLER 	PlC X 	VALUE1.
02 FILLER 	PlC X 	VALUE2.
02 FILLER 	PlC X 	VALUE3.

01 ARRAY-REFERENCED OCCURS 3 TIMES
PlC X REDEFINES ARRAY-2.

6-32

PICTURE

Clause

Purpose: The PICTURE clause specifies a detailed description of
an elementary level data item. It may include
specification of special report editing.

Format: PICTURE IS an-form Inumeric-form report-form

Remarks: The reserved word PICTURE may be abbreviated PlC.
There are three possible types of pictures:

An-Form: This option applies to alphanumeric
(character string) items. The PICTURE of an
alphanumeric item is a combination of data description
characters X, A, or 9 and editing characters B, 0, and /.
An X indicates that the character position may contain
any character from the computer's ASCII character
set. A PICTURE that contains at least one of the
following combinations:

• A and 9

• X and 9

• X and A

in any order is considered as if every 9, A, or X
character is an X. All strings containing an X or A are
stored as if each character is an X.

The characters B, 0, and / may be used to insert blanks,
zeros, or slashes in the item, respectively. This is then
called an alphanumeric-edited item. (Alphanumeric-
edited items are discussed under the "Report-Form"
descriptions.)

6-33

PICTURE

Clause

If the string has only As and Bs, it is considered
alphabetic. If it has only 9s, Ps, Ss, or a V. it is
numeric (see below). Strings may be tested in a
CLASS test in an IF statement to determine whether
they are alphabetic or numeric.

Numeric-Form: The PICTURE of a numeric item may
contain a valid combination of the following
characters:

9 	The character 9 indicates that the actual or
conceptual digit position contains a numeric
character. The maximum number of 9s in a
PICTURE is 18.

V The optional character V indicates the position of
an assumed decimal point. Since a numeric item
cannot contain an actual decimal point, an
assumed decimal point tells the compiler the
scaling alignment of items involved in
computations. Storage is never reserved for the
character V. Only one V is permitted in any
single PICTURE.

S 	The optional character S indicates that the item
has an operational sign. It must be the first
character of the PICTURE. See "SIGN Clause"
in this chapter.

P The character P indicates an assumed decimal
scaling position. It specifies the location of an
assumed decimal point when the point is not
within the number that appears in the data item.

6-34

PICTURE
Clause

The scaling position character P is not counted in
the size of the data item; that is, memory is not
reserved for these positions. However, scaling
position characters are counted in determining the
maximum number of digit positions (18) in
numeric edited items, or in items that appear as
operands in arithmetic statements.

The scaling position character P may appear only
to the left or right of the other characters in the
string, as a continuous string of Ps within a
PICTURE description.

The sign character S and the assumed decimal point
V are the only characters which may appear to the
left of a left-most string of Ps. Since the scaling
position character P implies an assumed decimal
point (to the left of the Ps if the Ps are left-most
PICTURE characters and to the right of the Ps if
the Ps are right-most PICTURE characters), the
assumed decimal point symbol V is redundant as
either the left-most or right-most character within
such a PICTURE description.

For example, if 4 is moved to "PICTURE 9PP",
then the number 400 is in the field. If .4 is
moved to "PICTURE VPP9", then .004 moves
to the field.

Report-Form: This option describes a data item
suitable as an "edited" receiving field for presentation
of a numeric value. The editing characters that may be
combined to describe a report item are as follows:

9V.ZCRDB,$+*B0_P/

The characters 9, P. and V have the same meaning as
for a numeric item. The meanings of the other
allowable editing characters are described as follows:

6-35

PICTURE
Clause

The decimal point character specifies that an
actual decimal point is to be inserted in the
indicated position and the source item is to
be aligned accordingly. Numeric character
positions to the right of an actual decimal
point in a PICTURE must consist of characters
of one type. The decimal point character must
not be the last character in the PICTURE
character string. Picture character P may not
be used if the period (.) is used.

Z, 	The characters Z and * are called replacement
characters. Each one represents a digit
position. While the program is running,
leading zeros to be placed in positions defined
by Z or * are suppressed, becoming blank or

, respectively.

Zero suppression ends at the first decimal
point (.), V, or 9 character in the PICTURE,
or at a nonzero digit. All digit positions to be
modified must be the same (either Z or *),
and contiguous starting from the left. Z or *
may appear to the right of an actual decimal
point only if all digit positions are the same.

If the value is nonzero, all Z or * characters
to the right of the decimal point are treated
as 9s. If the display data is zero, a Z to the
right of the decimal point also suppresses the
decimal point.

6-36

PICTURE
Clause

CR,DB CR and DB are called credit and debit
symbols and may appear only at the right
end of a PICTURE. These symbols occupy
two character positions. They indicate that
the specified symbol is to appear in the
indicated positions if the value of a source
item is negative. If the value is positive or
zero, spaces appear instead. The CR, DB, +,

and - are mutually exclusive (+ and - are
described further on).

The comma specifies insertion of a comma
between digits. Each insertion character is
counted in the size of the data item, but does
not represent a digit position. The comma
may also appear in conjunction with a
floating string, as described below. It must
not be the last character in the PICTURE
character string.

A floating string is a continuous string of at least two
characters of either $, +, or —, optionally interrupted by
one or more insertion commas and/or decimal points.
For example:

+~++

6-37

PICTURE
Clause

A floating string containing N + 1 occurrences of $, +,
or - defines N digit positions. When you move a numeric
value into a report item, the appropriate character floats
from left to right, so that the developed report item has
exactly one actual $, +, or - immediately to the left of
the most significant nonzero digit, in one of the positions
indicated by $, +, or - in the PICTURE. (Moving a
positive number into a field of - is an exception; see
next page.) Blanks are placed in all character positions
to the left of the $, +, or -.

If the most significant digit appears in a position to the
right of positions defined by the floating string, then
the developed item contains $, +, or - in the right-most
position of the floating string, and nonsignificant zeros
may follow.

The presence of an actual or implied decimal point in a
floating string is treated as if all digit positions to the
right of the point are indicated by the PICTURE
character 9 for the display of nonzero data.

In the following examples, b represents a blank in the
developed items.

PICTURE 	Numeric Value 	Developed Item

$$$999 	14 	 bbS014

--,--- ,999 	-456 	 bbbbbb-456

$$$$$$ 	14 	 bbb$14

A floating string need not constitute the entire PICTURE
of a report item, as shown in the preceding examples.
Restrictions on characters that may follow a floating
string are given later in the description.

When a comma appears to the right of a floating string,
the string character floats through the comma in order to
be as close to the leading digit as possible.

6-38

PICTURE
Clause

+,- The character + or - may appear in a PICTURE
either singly (that is, as a fixed sign control
character) or in a floating string. As a fixed sign
control character, the + or - must appear as
either the first or last symbol in the PICTURE.

The plus sign (+) indicates that the sign of the
item (either a plus or minus) is placed in the
character position, depending on the algebraic
sign of the numeric value.

The minus sign (-) indicates that either a blank or
a minus is placed in the character position,
depending on whether the algebraic sign of the
numeric value placed in the report field is
positive or negative, respectively.

B Each appearance of B in a PICTURE represents a
blank in the final edited value.

Each slash in a PICTURE represents a slash in the
final edited value.

o Each appearance of 0 (zero) in a PICTURE
represents a position in the final edited value where
the digit zero will appear.

Other rules for a report (edited) item PICTURE are:

• 	If you use one type of floating string, you cannot
use any other floating string.

• 	You must have at least one digit position character.

• 	If you use a floating sign string or fixed plus or
minus insertion character, you cannot use any other
of the sign control insertion characters (+, -, CR,
DB).

6-39

PICTURE
Clause

• 	The characters to the right of a decimal point up
to the end of a PICTURE, excluding the fixed
insertion characters +, -, CR, DB (if present), are
subject to the following restrictions:
- Only one type of digit position character may

appear. That means that the Z, , and 9, and the
floating-string digit position characters $, +, and
- are all mutually exclusive.

- If one of the numeric character positions to the
right of a decimal point is represented by +, -,

or Z, then all the numeric character positions
in the PICTURE must be represented by the
same character.

• The PICTURE character 9 can never appear to the
left of a floating string or replacement character.

Additional notes on the PICTURE clause:

• A PICTURE clause must only be used at the
elementary level.

• 	An integer enclosed in parentheses and following
an X, 9, $, Z, P, , B, —, or + indicates the number
of consecutive times the PICTURE character
occurs.

• Characters V and P are not counted in the space
allocation of a data item. CR and DB occupy two
character positions each.

6-40

PICTURE
Clause

• 	A maximum of 30 character positions is allowed
in a PICTURE character string. For example, both
PlC 99999 and PICTURE X(89) consist of five
characters.

• A PICTURE must contain at least one of the
characters A, Z, 'K, X, 9, or at least two consecutive
appearances of the +, -, or $ characters.

• 	The characters., S, V, CR, and DB can appear
only once in a PICTURE.

• When you specify DECIMAL-POINT IS COMMA,
the explanations for period and comma apply to
comma and period, respectively.

• The PICTURE clause cannot be used with the
VALUE IS clause in the Screen Section (see
"Screen Section" in this chapter).

6-41

PICTURE
Clause

Example: The examples below illustrate the use of PICTURE
to edit data. In each example, a movement of data
is implied, as indicated by the column headings. (Data
Value shows contents in storage; scale factor of this
source data area is given by the PICTURE.)

Source Area 	Receiving Area

PICTURE

9(5)

9(5)

9(5)

9(4) V9

V9(5)

S9(5)

S9(5)

S9(5)

S9(5)

9(5)

9(5)

S9(5)

S999V99

S999V99

Data

Value

12345

00123

00000

12345

12345

00123

-00001

00123

00001

00123

00123

12345

02345

00004

PICTURE

$$$,$$9.99
$$$,$$9.99

$$$,$$9.99
$$$,$$9.99

$$$,$$9.99

.99

.99
+++++++. 99

.99
+++++++. 99

.99

99CR

zzzVzz

zzzVzz

Edited Data

$12,345.00

$123.00

$0.00
$1 ,234.50

$0.12
123.00

-1 .00

+123.00

1.00

+123.00

123.00

**] 2345 00
2345

04

Figure 4. Examples of Editing Data with PICTURE

6-42

RECORD

Clause

Purpose: Since the size of each data record is defined fully by
the set of data description entries constituting the
record (level 01) declaration, this clause is always
optional and documentary.

Format: 	RECORD CONTAINS [Integer-1 TO]

integer-2 CHARACTERS

Remarks: Integer-2 should be the size of the biggest record in the
file declaration. If the records are variable in size,
integer-i must be specified and equal to the size of the
smallest record. The sizes are given as character
positions required to store the logical records.

6-43

REDEFINES
Clause

Purpose: The REDEFINES clause specifies that the same area
is to contain different data items, or provides an
alternative grouping or description of the same data.

Format: 	data-name-1 REDEFINES data-name-2

Remarks: The optional REDEFINES clause should be the first
clause following the data-name that defines the entry.
The data description entry for data-name-2 should not
contain a REDEFINES clause, nor an OCCURS clause.

When an area is redefined, all descriptions of the area
remain in effect. Thus, if B and C are two separate
items that share the same storage area due to
redefinition, the procedure statements MOVE X TO B
or MOVE Y TO C could be performed at any point
in the program.

In the first case, B would assume the value of X and
take the form specified by the description of B. In the
second case, the same physical area would receive Y
according to the description of C.

The following rules must be obeyed in order to
establish a proper redefinition:

I. The level of the definition must equal the level of
the redefinition and must not be level 88.

6-44

REDEFINES
Clause

2. There can be no lower level numbers between the
definition and the redefinition.

3. The length of the value in data-name-1 multiplied
by the number of times that data-name-1 occurs
cannot be greater than the length of the value in
data-name-2, unless data-name-1 is a level 01
data item. (This is permitted only outside the
File Section.)

4. Data-name-1, and entries subordinate to
data-name-1, must not contain any VALUE
clauses, except in level 88.

In the File Section, all level 01 entries that are
subordinate to a given FD entry implicitly represent
redefinitions of the same area.

Example 02 RECORD-ID
03 NAME 	PlC X(15).
03 FILLER PlC X.
03 NUMBER PlC 99.

02 NEW-RECORD REDEFINES RECORD-ID PlC x(18).

6-45

SIGN
Clause

Purpose: This clause allows you to specify the manner of
representing an operational sign.

Format: [SIGN IS] TRAILINGILEADING

[SEPARATE CHARACTER]

Remarks: For an external decimal item, there are four possible
manners of representing an operational sign; the choice
is controlled by the particular form of the SIGN
clause.

The following chart summarizes the effect of four
possible forms of this clause.

SIGN Clause Sign Representation

TRAILING
(default)

Embedded in right-most byte

LEADING Embedded in left-most byte

TRAILING
SEPARATE

Stored in separate right-most
byte

LEADING
SEPARATE

Stored in separate left-most
byte

Figure 5. Effects of SIGN Clause

646

SIGN
Clause

When the above forms are written, the PICTURE must
begin with S. If no S appears, the item is not signed
(and is capable of storing only absolute values), and the
SIGN clause is prohibited. When S appears at the front
of a PICTURE, but no SIGN clause is included in an
item's description, the default case, SIGN IS TRAILING,
is assumed.

The SIGN clause may be written at a group level; in this
case, the clause specifies the sign's format on any signed
subordinate external decimal item. The SEPARATE
CHARACTER phrase increases the size of the data item
by one character. The entries to which the SIGN
clause apply must be implicitly or explicitly described
as USAGE IS DISPLAY.

Note: When you specify the CODE-SET clause for
a file, you must describe all signed numeric data
for that file with the SIGN IS SEPARATE clause.

Any sign specification that does not specify
SEPARATE (for example, PlC S9(3)) produces output
with an alpha-character in the bit that contains both
the sign and the number. Refer to Figure 6.

Example: 02 TOTAL PlC 9(5) SIGN IS LEADING SEPARATE.

647

SIGN
Clause

Number Positive Negative

I A J

2 B K

3 C L

4 D M

5 E N

6 F 0

7 G P

8 H Q

9 I R

0 ()

Figure 6. Alpha-characters in Signed Bit

6-48

SYNCHRONIZED
Clause

Purpose: The SYNCHRONIZED clause allocates space for data
in an efficient manner, with respect to the computer
memory.

Format: SYNC SYNCHRoNIZED [LEFT! RIGHT]

Remarks: The SYNCHRONIZED specification is treated as
commentary only. In IBM COBOL, word alignment is
always on an even-byte boundary, which allows for
efficient use of the 8088 processor.

Exam' ple: 02 TOTAL PlC 999 SYNC.

649

USAGE

Clause

Purpose: The USAGE clause specifies the form in which numeric
data is represented.

Format: USAGE IS DISPLAYICOMPUTATIONALI

COMPUTATIONAL-O COMPUTATIONAL-

Remarks: DISPLAY defines the representation of an external
decimal (ASCII) data item, where I byte per character
is used.

COMPUTATIONAL, which may be abbreviated
COMP, is identical to DISPLAY.

COMPUTATIONAL-O, which may be abbreviated
COMP-O, defines an integer binary field.

COMPUTATIONAL-3, which may be abbreviated
COMP-3, defines a packed decimal (sometimes called
an internal decimal) field.

INDEX is explained in Chapter 9, "Table Handling by
the Indexing Method."

The USAGE clause may be written at any level. If a
USAGE clause is given at a group level, it applies to
each elementary item in the group. The USAGE
clause for an elementary item must not contradict the
USAGE clause of a group to which the item belongs.

If USAGE is not specified, the item is assumed to be in
DISPLAY mode.

	

Example: 01 AMT 	Plc 99 USAGE IS COMPUTATIONAL-3.

	

01 SUM 	PlC 999 COMP-0 VALUE 0.

6-50

VALUE
Clause

Purpose: The VALUE clause specifies the initial value of working
storage items.

Format: VALUE IS literal

Remarks: The VALUE clause must not be written in a data
description entry that also has an OCCURS or
REDEFINES clause, nor in an entry that is subordinate
to an entry containing an OCCURS or REDEFINES
clause. Furthermore, you cannot use the VALUE
clause in the File or Linkage Sections, except in level
88 condition descriptions.

The size of a literal given in a VALUE clause must be
less than or equal to the size of the item as given in the
PICTURE clause. The positioning of the literal within
a data area is the same as would result from specifying
a MOVE of the literal to the data area, except that
editing characters in the PICTURE have no effect on
the initialization, nor do the BLANK WHEN ZERO or
JUSTIFIED clauses.

The type of literal written in a VALUE clause depends
on the type of data item, as specified in the data item
formats. For edited items, values must be specified as
nonnumeric literals, and must be presented in edited
form. The literal may be a figurative constant.

If you do not specify an initial value for an item, you
should not assume that the item in Working-Storage
is initialized.

6-51

VALUE
Clause

The VALUE clause may be specified at the group level,
in the form of a correctly sized nonnumeric literal or a
figurative constant. In these cases, the VALUE clause
cannot be stated at the subordinate levels within the
group. However, the VALUE clause should not be
written for a group containing items with descriptions
including JUSTIFIED, SYNCHRONIZED and USAGE
(other than USAGE IS DISPLAY). For more
information, see "Level 88 Condition Names" in this
chapter.

Example: 01 AVERAGE-PAY PlC 9(5) VALUE 15000.
77 TOTAL 	PlC 99 	VALUE ZERO.

6-52

VALUE
Clause

Level 88 Condition Names

The level 88 condition name entry specifies a value, list
of values, or a range of values that an elementary item
may assume. If the elementary item has such a value,
the named condition is true; otherwise, it is false. The
format of a level 88 item's value clause is:

VALUE IS literal-1 [literal-2
VALUES ARE literal-1 THRU literal-2

The type of literal in a condition name entry must be
consistent with the data type of the conditional variable.

One or more level 88 entries must be immediately
preceded by the elementary item (which may be
FILLER) to which it pertains. Index data items should
not be followed by level 88 items.

Every condition name pertains to an elementary item
in such a way that the condition name may be qualified
by the name of the elementary item and the elementary
item's qualifiers.

A condition name is used in the Procedure Division in
place of a simple relational condition. A condition
name may pertain to an elementary item (a conditional
variable) requiring subscripts. In this case, the condition
name, when written in the Procedure Division, must be
subscripted according to the same requirements as the
associated elementary item.

In the following example, PAYROLL-PERIOD is the
conditional variable. The PICTURE associated with it
limits the value of the level 88 condition name to one
digit.

6-53

VALUE
Clause

02 PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY VALUE IS 1
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

Using the above description, the following procedural
condition name test may be written:

IF MONTHLY GO TO DO-MONTHLY

An equivalent statement is:

IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.

For an edited elementary item, values in a condition
name entry must be expressed in the form of nonnumeric
literals.

A VALUE clause may not contain both a series of literals
and a range of literals.

6-54

VALUE OF FILE-ID

Clause

Purpose: The VALUE OF FILE-ID clause appears in any FD
entry for a disk-assigned file, and specifies a filename
as it is known to the Disk Operating System (DOS).

Format: VALUE OF FILE-ID IS data-name lilteral

Remarks: Data-name-] and literal refer to a filename. They must
be entered as a data name or as a nonnumeric literal
of at most 14 characters. The filename is specified
according to the rules for filenames for DOS.
Remember that a DOS filename is in the form:

[1 character:] 1-8 characters[. 1-3 characters]

It must not contain any embedded space characters.

If a data-name is specified, the filename it contains
may be as many characters as desired, but it must end
with a space character.

A reminder: if a file is assigned to the printer, it is
unlabeled, and the VALUE clause must not be
included in the associated FD. If you have entered
ASSIGN TO DISK for a file, you must include both
LABEL RECORDS STANDARD and VALUE OF
FILE-ID clauses in the associated FD.

6-55

VALUE OF FILE-ID
Clause

Example: VALUE OF FILE-ID "A: MASTER. ASM"
VALUE OF FILE-ID newname

In the second example, the data item newname must
contain a name followed by a space. For example,

01 NEWNAME.
03 DRIVE PICTURE XX VALUE "A:".
03 FILLER PICTURE X(12) VALUE "CTLFILE.DAT

6-56

CHAPTER 7. PROCEDURE DIVISION

Contents

Purpose 	7-3
Format 	7-3
Remarks 	7-4
Example7-S

Declaratives and the USE Sentence 7-6
Example 	 7-8

Segmentation 	 7-9

ACCEPT Statement 	7-11 1
Format 1 ACCEPT Statement 7-12
Example 	7-13
Format 2 ACCEPT Statement 7-14
Example 	7-16
Format 3 ACCEPT Statement 7-17

Data Input Field 	7-18
Data Input and Data Transfer 7-21
WITH Phrase Summary 7-28

Format 4 ACCEPT Statement 7-35
Example 	7-37

ADD Statement 	7-38

ALTER Statement 	7-39

COMPUTE Statement 	7-40

DISPLAY Statement 	7-41
Position-spec 	7-41
Identifier, Literal, and ERASE 7-43
Screen-name 	7-43
Example 	7-44

DIVIDE Statement 7-45

EXHIBIT Statement 7-46

7-I

EXIT Statement . 7-47

GO TO Statement 	7-48

IF Statement 	7-49
Conditions 	7-50

INSPECT Statement 	7-55

MOVE Statement 	7-59

MULTIPLY Statement 	7-63

PERFORM Statement 	7-64

STOP Statement 	7-67

STRING Statement 	7-68

SUBTRACT Statement 	7-71

TRACE Statement 	7-72

UNSTRING Statement 	7-73

7-2

Purpose

In the Procedure Division, you tell your IBM Personal
Computer what you want it to do and how to do it.
The information you supplied in the Identification,
Environment, and Data Divisions is now used to process
input data and produce output data.

Format

The Procedure portion of a program must begin with
the header:

PROCEDURE DIVISION.

The rest of the Procedure Division may be subdivided
in three possible ways:

1. It consists only of paragraphs.

2. It consists of a number of sections (each section
subdivided into one or more paragraphs).

3. It consists of a Declaratives portion and a series of
sections (each section subdivided into one or more
paragraphs).

The general format of the Procedure Division is as
follows:

PROCEDURE DIVISION [USING [identifier-i] ...].

[DECLARATIVES.

[section-name SECTION. USE sentence.

[paragraph-name. [sentence] .. .] . . . 1
END DECLARATIVES.]

[[section-name SECTION. [segment number]]

[paragraph-name. [sentence] . . . 1 .. .1

The statement formats available within the Procedure
Division may be divided into five categories:

7-3

• 	I/O statements

• Data movement statements

• 	Arithmetic statements

• 	Sequence control statements

• 	Miscellaneous statements

Remarks

The Procedure Division can be logically thought of as a
series of modules, each with a specific task to perform.
Examples could be:

• 	Initialization

• 	File processing

• 	Data manipulation

• 	Subroutines

• 	Error handling

These modules can be constructed by using either only
paragraphs or sections and paragraphs, as necessary.
Sections are used to divide large COBOL programs into
segments that will fit in memory.

The declaratives portion of the Procedure Division is
designed to handle I/O errors. It is discussed in more
detail separately in this chapter. Refer to "Declaratives
and the USE Sentence" in this chapter for a complete
discussion.

Advanced topics (such as indexing of tables, file accessing,
interprogram communication and declaratives) are
discussed in subsequent chapters.

On the following pages, we present in alphabetic order
the header and each of the paragraphs in the Procedure
Division. We have provided examples of the headers,
paragraphs, and clauses.

7-4

Example

The following is an example of a Procedure Division.
This example shows the paragraphs in an order in which
they are commonly entered.

PROCEDURE DIVISION.
DECLARATIVES.

*In case there is an error
MISTAKE SECTION.

USE AFTER EXCEPTION DISK-FILE.
DISPLAY-ERROR.

EXHIBIT STATUS-FLAG.
DISPLAY "1-0 ERROR OCCURRED".
STOP RUN

END DECLARATIVES.
*Open the files, initialize counter
START-UP.
OPEN INPUT DISK-FILE OUTPUT PRINT-FILE.
MOVE ZERO TO COUNTER.
*Read data from and write data to file
READ-FILE.

READ DISK-FILE INTO PRINT-LINE
AT END GO TO EOJ.

ADD ONE TO COUNTER.
PRINT-FILE.

WRITE PRINT-LINE AFTER 2.
GO TO READ-FILE.

*Write counter message and stop
EOJ.

MOVE COUNTER-LINE TO PRINT-LINE.
WRITE PRINT-LINE AFTER 5.
STOP RUN.

C-)

7-5

Declaratives and the USE Sentence

The declaratives region provides a method of including
tasks that are processed not as part of the sequential
coding written by the programmer, but rather when a
condition occurs that cannot normally be tested by the
program.

Although the system automatically creates and checks
standard labels, and processes error recovery routines
in the case of input/output errors, you may add other
tasks to your COBOL program.

Since these tasks are processed only when an error in
reading or writing occurs, they cannot appear in the
regular sequence of procedural statements. They must
be written at the beginning of the Procedure Division
in a subdivision called declaratives.

Related tasks are preceded by a USE sentence that
specifies their function. A declarative section ends with
the occurrence of another section name with a USE
sentence or with the key words END DECLARATIVES.

Upon exiting the error procedure, control is passed
back to the next sentence after the one that produced
the error.

The key words DECLARATIVES and END
DECLARATIVES must each begin in Area A and be
followed by a period. Segment numbers, if used, must
be 0-49.

PROCEDURE DIVISION.

DECLARATIVES.

(section-name SECTION [segment-number]. USE sentence.

[paragraph-name. [sentence] .. .1 . ..)
END DECLARATIVES.

7-6

The USE sentence defines how the associated section of
coding is used. A USE sentence must immediately
follow a section header in the Declaratives Section of
the Procedure Division. It must be followed by a
period, which is then followed by a space. The remainder
of the section must consist of zero, one, or more
procedural paragraphs that define the procedures to be
used. The USE sentence itself is never processed; rather,
it defines the conditions necessary to process the USE
procedure. The general format of the USE sentence is:

USE AFTER STANDARD EXCEPTION I ERROR PROCEDURE
ON [filename... I
INPUTIOUTPUTII-OIEXTEND].

The words EXCEPTION and ERROR may be used
interchangeably. The associated Declaratives Section
is processed (by the PERFORM mechanism) after the
standard I/O recovery procedures for the files designated,
or after the INVALID KEY or AT END condition arises
on a statement lacking the INVALID KEY or AT END
clause. A given filename may not be associated with
more than one Declaratives Section.

Within a Declaratives Section, you cannot have a
nondeclarative procedure. Conversely, in the
nondeclarative section, you cannot have a reference to
procedure names that appear in the Declaratives
Section, except that PERFORM statements may refer
to a USE statement and its procedures. In a range
specification (see "PERFORM Statement"), if one
procedure name is in a Declaratives Section, then the
other must be in the same Declaratives Section.

The compiler inserts an exit from a Declaratives Section
that comes after the last statement in the section. All
logical program paths within the section must lead to
that exit point.

7-7

Example:

PROCEDURE DIVISION.
DECLARATIVES.
ERRS-1-SECTION.

USE AFTER ERROR PROCEDURE ON FILE1
ERRS-1-PARAGRAPH.

ADD 1 TO ERRS-1-STATUS.
ERRS-2-SECTION.

USE AFTER ERROR PROCEDURE ON FILE2.
ERRS-2-PARAGRAPH.

ADD 2 TO ERRS-2-STATUS.
END DECLARATIVES.

iE1

Segmentation

Program segmentation lets you run IBM Personal
Computer COBOL programs that are larger than
physical memory. When you use segmentation (that
is, when any section header in the program contains
a segment number), the entire Procedure Division
must be written in sections. Each section is assigned a
segment number by a section header of the form:

section-name SECTION [segment number].

where segment number must be an integer with a value
in the range from 0 through 99. If segment number is
omitted, it is assumed to be 0. Declaratives sections
must have segment numbers less than 50. All sections
which have the same segment number constitute a
single program segment and must occur together in
the source program. All segments with numbers less
than 50 must occur together at the beginning of the
Procedure Division.

Segments with numbers 0 through 49 are called fixed
segments and are always resident in memory while the
program is running. Segments with numbers greater
than 49 are called independent segments. Each
independent segment is treated as a program overlay;
only one is in memory at any given time.

An independent segment is in its initial state when
control is passed to it for the first time while the
program is running. It is also in its initial state when
control is passed to that section (implicitly or explicitly)
from another segment with a different segment number.
Specifically, an independent segment is reached
implicitly and is in its initial state when it is reached by
"falling through" the end of a fixed or different
independent segment.

7-9

Segmentation causes the following restrictions on the
use of the ALTER and PERFORM statements:

• A GO TO statement in an independent segment
must not be referred to by an ALTER statement
in any other segment.

• A PERFORM statement in a fixed segment may
have within its range only:
- Sections and/or paragraphs wholly contained

within fixed segments
or

- Sections and/or paragraphs wholly contained
in a single independent segment

• A PERFORM statement in an independent segment
may have within its range only:
- Sections and/or paragraphs wholly contained

within fixed segments
or

- Sections and/or paragraphs wholly contained
within the same independent segment as the
PERFORM statement

7-10

ACCEPT

Statement

Purpose: You use the ACCEPT statement in a program to obtain
low-volume input when the program is running.

Format: 	Four formats are available:

Format 1:

ACCEPT identifier-1 FROM

DATE I DAY I TIME I ESCAPE KEY

Format 2:

ACCEPT identifier-2

Format 3:

ACCEPT position-spec identifier-3

[WITH

(SPACE-FILL I ZERO-FILL I LEFT-JUSTIFY

RIGHT-JUSTIFY I TRAILING-SIGN I PROMPT
UPDATE I LENGTH-CHECK I AUTO-SKIP I BEEP

NO-ECHO I EMPTY-CHECK) ...]

Format 4:

ACCEPT screen name
[ON ESCAPE imperative-statement]

Remarks: The function of each form of the ACCEPT statement
is to acquire data from a source external to the
program and place it in a specified receiving field or set
of receiving fields. The forms differ primarily in the
data source with which they are designed to interface.

7-11

ACCEPT
Statement

Format I ACCEPT Statement

ACCEPT identifier-1 FROM

DATEIDAYITIME f ESCAPE KEY

Format 1 ACCEPT obtains date or time information
from DOS.

Any of several standard values may be obtained by use
of the Format 1 ACCEPT statement.

The formats of the standard values are:

DATE: A six-digit value of the form YYMMDD (year,
• month, day). Example: July 4, 1976, is 760704.

DAY: A five-digit "Julian date" of the form YYNNN,
where YY is the two low-order digits of year and NNN
is the day-in-year number between 1 and 366.
Example: January30, 1981, is8lO3O.

TIME: An eight-digit value of the form HHMMSSFF,
where HH is the hour (from 00 to 23), MM is the
minutes (from 00 to 59), SS is the seconds (from 00 to
59), and FF represents hundredths of a second (from
00 to 99). Example: 9:30:53.72 is 09305372.

ESCAPE KEY: A two-digit code generated by the key
that ended the most recently processed Format 3 or
Format 4 ACCEPT statement. Identifier-i can be
examined to determine exactly which key was typed.
You can stop inputting by pressing any of the following
keys, which causes the ESCAPE KEY value to be set
as shown:

7-12

ACCEPT
Statement

Terminator Character ESCAPE KEY Value

Backtab key (terminates
only Format 3 ACCEPT
statements)

99

Esc key 01

Field-terminator
(Enter key, Tab key)

00

Function key (01-10) 02-11

Figure 7. ESCAPE KEY Values When ACCEPT Ends

If input is stopped as a result of using the AUTO-SKIP
option (that is, no terminator key is struck), the
ESCAPE KEY value is set to 00.

Identifier-] should be an unsigned numeric integer
whose length agrees with the content of the system-
defined data item. If not, the standard rules for a
MOVE govern storage of the source value in the
receiving item (identifier -]).

Example: ACCEPT TODAY FROM DATE.
ACCEPT STATUS-ITEM FROM ESCAPE KEY.

7-13

ACCEPT
Statement

Format 2 ACCEPT Statement

ACCEPT identifier-2

Format 2 of the ACCEPT statement receives data typed
in from the keyboard.

You use Format 2 of the ACCEPT statement to accept
a string of input characters from the display in its
normal scrolling mode. When the ACCEPT statement is
used, input characters are read from the display until
the Enter key is pressed. Then a carriage return/line
feed pair is sent back to the display. The input data
string is considered to consist of all characters typed
prior to (but not including) the Enter key.

For a Format 2 ACCEPT with an alphanumeric
receiving field, the input data string is transferred to the
receiving field exactly as if it were being moved from
an alphanumeric field of length equal to the number of
characters in the string. (That is, left justification,
space filling, and right truncation occur by default;
right justification and left truncation occur if the
receiving field within a Working-Storage PICTURE
clause is described as JUSTIFIED RIGHT.) If the
receiving field is alphanumeric-edited, it is treated as an
alphanumeric field of equal length (as if each character
in its PICTURE were X), so that no insertion editing
occurs.

For a Format 2 ACCEPT with a numeric or
numeric-edited receiving field, the input data string
is subjected to a validity test which depends on the
PICTURE of the receiving field. (If the receiving field
is described as COMP-O, its PICTURE is treated as
S9(5) for purposes of this discussion.) The digits 0
through 9 are considered valid anywhere in the input
data string.

7-14

ACCEPT
Statement

The decimal point character (period or comma,
depending on the DECIMAL POINT IS clause of the
Configuration Section) is considered valid if both of
these conditions are true:

• 	It occurs only once in the input data string.

• 	The PICTURE of the receiving field contains a
fractional digit position (that is, a 9, Z, , or
floating insertion character which appears to the
right of either an assumed decimal point (V) or
an actual decimal point (.)).

The operational sign characters + and - are considered
valid only as the first or last character of the input
string and only if the PICTURE of the receiving field
contains one of the sign indicators S, +, -, CR, or DB.

All other characters are considered invalid. If the
input data string is invalid, the

INVALID NUMERIC INPUT -- PLEASE RETYPE

message is sent to the screen, and another input data
string is read.

When a valid input data string has been obtained, data
is transferred to the receiving field exactly as if the
instruction being processed were a MOVE to the receiving
field from a hypothetical source field. The source field
has the following characteristics:

• 	A PICTURE of the form S9 ... 9V9 ... 9.

• USAGE DISPLAY.

• 	A total length equal to the number of digits in the
input data string.

7-15

ACCEPT
Statement

• 	As many digit positions to the right of the
assumed decimal point as there are digits to the
right of the explicit decimal point in the input
data string (zero if there is no decimal point in
the input data string).

• 	Current contents equal to the string of digits
embedded in the input data string.

• 	A separate sign with a current negative status if
the input data string contains the character -; a
current positive status, otherwise.

Exarnple: 	ACCEPT DATA-1.

7-16

ACCEPT
Statement

Format 3 ACCEPT Statement

ACCEPT position-spec identifier-3
((WITH

[SPACE-FILL ZERO-FILL]l
[LEFT-JUSTIFY I
RIGHT-JUST IFY]

TRAILING-SIGN PROMPT UPDATE

LENGTH-CHECK J EMPTY-CHECK
AUTO-SKIPIBEEP I NO-ECHO] ...)

Format 3 of the ACCEPT statement accepts data into a
field from a specified position on the display screen. You
do this by using the position spec.

The following syntax rules must be observed when the
Format 3 ACCEPT is used:

• The SPACE-FILL and ZERO-FILL options may
not both be specified in the same ACCEPT
statement.

• The LEFT-JUSTIFY and RIGHT-JUSTIFY options
may not both be specified within the same ACCEPT
statement.

• 	If identifier-3 is described as a numeric-edited item,
the UPDATE option must not be specified.

• The TRAILING-SIGN option may be specified
only if identifier-3 is described as an elementary
numeric data item. If identifier-3 is described as
unsigned, the TRAILING-SIGN option is ignored.

• 	For an alphanumeric or alphanumeric-edited
identifier-3, the SPACE-FILL option is assumed if
the ZERO-FILL option is not specified, and the
LEFT-JUSTIFY option is assumed if the RIGHT -
JUSTIFY option is not specified.

7-17

ACCEPT

Statement

• 	For a numeric or numeric-edited identifier-3, the
ZERO-FILL option is assumed if the SPACE-FILL
option is not specified.

On the following pages, we discuss these additional
topics relating to the Format 3 ACCEPT statement:

• 	Data input field
- Location
- Characteristics

• 	Data input and data transfer
- Data characters
- Editing characters

• The WITH phrase

Data Input Field

The position-spec and receiving field (identifier-3)
specifications of the Format 3 ACCEPT statement are
used to define the location and characteristics of a data
input field on the display.

Location of the Data Input Field

The position-spec is of the form:

([LIN [-H- integer-1]Iinteger-2],
[CCL [+1- integer-311integer-4])

7-18

ACCEPT
Statement

The opening and closing parentheses and the comma (a
space must follow the comma) separating the two major
bracketed groups are required. The position spec
specifies the position on the screen at which the data
input field begins. LIN and COL are COBOL special
registers. Each behaves like a numeric data item with
USAGE COMP, but they may be referenced by every
COBOL program without being declared in the Data
Division.

If LIN is specified, the data input field begins on the
screen row whose number is equal to the value of the
LIN special register, incremented (or decremented) by
integer-] if # integer-1 (or - integer-i) is specified. If
integer-2 is specified, the data input field begins on
the row whose number is integer-2. If neither UN
nor integer-2 is specified, the data input field begins
on the screen row containing the current cursor
position.

If COL is specified, the data input field begins in the
screen column whose number is equal to the value of
the COL special register, incremented (or decremented)
by integer-3 if + integer-3 (or - integer-3) is specified.
If integer-4 is specified, the data input field begins in
the screen column whose number is integer-4. If
neither COL nor integer-4 is specified, the data input
field begins in the screen column containing the
current cursor position.

Characteristics of the Data Input Field

The characteristics (other than position) of the data
input field on the display are determined by the
receiving field's PICTURE specification (which is
treated as S9(5) in the case of an item whose USAGE
is COMP-O).

7-19

ACCEPT
Statement

For alphanumeric or alphanumeric-edited identifier-3,
the data input field is simply a string of data input
character positions starting at the screen location
specified by the position spec. The number of character
positions in the data input field equals the number of
character positions in the receiving field in memory.

For numeric or numeric-edited identifier-3, the data
input field may contain any or all of the following:

• 	Integer digit positions

• 	Fractional digit positions

• 	Sign position

• 	Decimal point position

There is one digit position for each 9, Z, , P, or
noninitial floating insertion symbol (a floating
insertion symbol is a +, -, or $ which is not the
left-most symbol in a PICTURE character string) in the
PICTURE of identifier -3.

Each digit position in the data input field is a fractional
digit position if the corresponding PICTURE character
is to the right of an assumed decimal point (V) or actual
decimal point () in the PICTURE of identifier-3.
Otherwise, it is an integer digit position. There is one
sign position if identifier-3 is described as signed, and no
sign position otherwise. There is one decimal point
position if there is at least one fractional digit position,
and no decimal point position otherwise.

7-20

ACCEPT
Statement

The data input positions that are defined occupy
successive character positions on the screen, beginning
with the position specified by position-Spec. If
TRAILING-SIGN is specified in the ACCEPT statement,
the data input positions must be in the following
sequence:

1. Integer digit positions (if any)

2. Decimal point position (if any)

3. Fractional digit positions (if any)

4. Sign position (if any)

If TRAILING-SIGN is not specified, the data input
positions must be in the following sequence:

1. Sign position (if any)

2. Integer digit positions (if any)

3. Decimal point position (if any)

4. Fractional digit positions (if any)

Data Input and Data Transfer

A character entered into the data input field by the
operator may be treated either as:

• 	An editing character

• 	A terminator character

• 	A data character

7-21

ACCEPT
Statement

When a terminator character is entered, the ACCEPT is
ended, and the ESCAPE KEY value is set as described
in Figure 7 in this chapter. This value can be
interrogated by using the Format 1 ACCEPT
statement, ACCEPT FROM ESCAPE KEY.

The editing characters are Ctrl-END (line-delete),
Ctrl-HOME, backspace, cursor right, and cursor left.
The action of the editing characters is described later in
this section. The following describes the input of data
characters only.

Data Characters—Alphanumeric

Consider first the Format 3 ACCEPT statement with
an alphanumeric or alphanumeric-edited receiving field.
An alphanumeric-edited receiving field is treated as an
alphanumeric field of the same length (as if every
character in its PICTURE is an X). Specifically, no
insertion editing occurs.

The initial appearance of the data input field depends
on the specifications in the WITH phrase of the ACCEPT
statement. If UPDATE is specified, the current contents
of identifier-3 are displayed in the input field. In this
case, all data input positions are treated as if they are
entered by the operator.

If UPDATE is not specified, but PROMPT is specified,
a period (.) is displayed in each input data position. If
neither UPDATE nor PROMPT is specified, the data
input field is not changed. The cursor is placed in the
first data input position, and characters are accepted as
they are entered by the operator until a terminator
character (normally Enter) is encountered.

7-22

ACCEPT
Statement

If AUTO-SKIP is specified in the ACCEPT statement,
the ACCEPT is also stopped if the operator enters a
character in the last (right-most) data input position.

As each input character is received, it is echoed to
(shown on) the screen, except that nondisplayable
characters (ASCII characters 0-32) are echoed as?.
(During input, ASCII characters 0-32 are echoed as?
but internally processed as the true character. During
output, IBM COBOL can display all 0-255 ASCII
characters in quoted literals.) If all positions of the data
input field are filled, additional input is ignored until a
terminator character or editing character (listed under
"Data Input and Data Transfer" in this chapter) is
encountered.

If RIGHT-JUSTIFY is specified in the ACCEPT
statement, the operator-entered characters are shifted
to the right-most positions of the data input field
when the ACCEPT is ended. All unentered character
positions are filled when the ACCEPT is ended: the
fill character is either space (if SPACE-FILL is in
effect) or zero (if ZERO-FILL is specified).

The contents of the receiving field are the same set of
characters that appear in the input field. However, the
operator-entered characters are controlled by the
JUSTIFIED specification in the receiving field's data
description, not by the RIGHT- or LEFT-JUSTIFY
option of the ACCEPT. Excess positions of the
receiving field are filled with spaces or zeros based on
the SPACE- or ZERO-FILL specification in the
ACCEPT statement.

7-23

ACCEPT
Statement

Data Characters—Numeric

Next, consider the Format 3 ACCEPT statement with
a numeric or numeric-edited receiving field. As
described above, the data input field on the screen
may contain integer digit positions, fractional digit
positions, or both. First assume that both are present;
the other cases will be treated as variations.

As with the alphanumeric ACCEPT, the data input
field may be initialized in a way determined by the
WITH options specified in the ACCEPT statement. If
UPDATE is specified (not permitted for a numeric-
edited receiving field), the integer and fractional parts
of the data input field are set to the integer and
fractional parts of the decimal representation of the
initial value of the receiving field, with leading and
trailing zeros included, if necessary, to fill all digit
positions. Except for leading zeros, these
initialization characters are treated as operator-
entered data. If UPDATE is not specified, but
PROMPT is specified, a zero is displayed in each input
digit position. In either of these cases (UPDATE or
PROMPT), a decimal point is displayed at the decimal
point position.

If neither UPDATE nor PROMPT is specified, the input
field on the screen is not initialized, except for the
sign position. The sign position is always initialized as
positive except when UPDATE is specified, in which
case it is initialized according to the sign of the current
contents of the receiving field. A positive sign position
is shown as a space, and a negative sign position is shown
as a minus sign.

The cursor is initially placed in the right-most integer
digit position, and characters are accepted one at a time
as they are entered by the operator.

7-24

ACCEPT
Statement

A received character may be treated in one of several
ways. If the incoming character is a digit, previously
entered digits shift one position to the left in the input
field, and the new digit appears in the right-most integer
digit position. If all integer digit positions have not
been filled, the cursor remains on the right-most digit
position, and another character is accepted.

If the entire integer part of the input field is filled, and
you specify AUTO-SKIP, the integer part ends, and
the cursor moves to the left-most fractional digit
position. If the integer part is filled, and you do not
specify AUTO-SKIP, the cursor moves to the decimal
point position. All following digits are ignored until
the integer part ends with a decimal point.

If the character entered is one of the sign characters +
or -, the sign position is changed to a positive or
negative status, respectively. Cursor position is not
affected.

If the character entered is a decimal point character, the
integer part is ended, and the cursor is moved to the
left-most fractional digit position.

If the character entered is a field terminator (normally
the Enter key), the ACCEPT ends, and the cursor is
turned off. Any other character is ignored.

When the integer part ends, the cursor is placed in the
left-most fractional digit position, and operator-
entered characters are again accepted. Digits are simply
echoed to the display.

7-25

ACCEPT

Statement

The sign characters + and - are treated exactly as they
were while integer part digits were being entered. The
field terminator character ends the ACCEPT. (If
AUTO-SKIP is in effect, filling the entire fractional
part also ends the ACCEPT.) Other characters are
ignored. After all digit positions of the fractional part
have been filled, further digits are also ignored.

If no fractional digit positions are present, the decimal
point is ignored as an input character, and entry of
integer part digits may be ended only by ending the
entire ACCEPT. If no integer digit positions are
present, the cursor is initially placed in the left-most
fractional digit position and entry of the fractional
part digits proceeds as described above.

When you end a Format 3 ACCEPT of a numeric or
numeric-edited item, data is transferred to the receiving
field. The exact form of the data in the receiving field
(after the ACCEPT is processed) is described in the
last paragraph of the discussion of the "Format 2
ACCEPT," where the role of the input data string
mentioned in that paragraph is taken by the string of
characters displayed in the data input field.

When the ACCEPT is processed, if SPACE-FILL is in
effect, leading zeros in the integer part of the data
input field (not in the receiving field) are replaced by
spaces, and the leading operational sign, if present, is
moved to the right-most space thus created.

7-26

ACCEPT
Statement

Editing Characters

The editing characters Ctrl-END (line-delete), backspace,
cursor right, and cursor left may be used to change data
which has already been entered (or supplied by the
COBOL runtime system as a result of a WITH UPDATE
specification). Entering CtrI-END restarts the ACCEPT,
and all data entered by the operator or initially present
in the receiving field is lost. The data input field on the
display is reinitialized if PROMPT is in effect.
Otherwise, the data input field is filled with spaces or
zeros according to the SPACE-FILL or ZERO-FILL
specification.

Typing the cursor right or cursor left moves the cursor
forward or back one data input position.

In no case, however, does the cursor right or cursor left
key move the cursor outside the range of positions,
including:

• 	The positions already entered by the operator (or
filled when WITH UPDATE is specified)

• 	The right-most data input position that the
cursor has occupied during the processing of this
ACCEPT

If the cursor is moved to a position of this range other
than the right-most, and a legal data character is
entered, it is displayed at the current cursor position
and the cursor is moved forward one data position.

7-27

ACCEPT
Statement

Typing the backspace key effectively cancels the last
data character entered. For alphanumeric and functional
numeric fields, the cursor is moved back one data
position, and a fill character (space or zero) is displayed
under the cursor. When the cursor is to the left of the
decimal point for a numeric ACCEPT, no fill character
is displayed and the cursor is not moved; but the
digit at the cursor position is deleted, and all digits to
the left of the cursor are shifted one position to the right.

The backspace character has no effect unless the cursor
is in position to accept a new data character; in other
words, it has no effect if the cursor right (or left) has
been used to move the cursor over already keyed
positions.

WITH Phrase Summary

The following list summarizes the effects of the WITH
phrase specifications for a Format 3 ACCEPT with an
alphanumeric or alphanumeric-edited receiving field:

• 	SPACE-FILL causes unkeyed character positions
of the data input field and the receiving field to be
space-filled when the ACCEPT ends.

• 	ZERO-FILL causes unkeyed character positions
of the data input field and the receiving field to
be set to ASCII zeros when the ACCEPT ends.

• LEFT-JUSTIFY is treated as commentary.

7-28

ACCEPT
Statement

• 	
RIGHT-JUSTIFY causes operator-entered
characters to occupy the right-most positions of
the data input field after the ACCEPT ends. Note
that the transferred data in the receiving field is
controlled by the JUSTIFIED declaration or
default of the receiving field's data description,
not by the WITH RIGHT-JUSTIFY phrase.

• 	PROMPT causes the data input field on the screen
to be set to all periods () before input characters
are accepted.

• 	UPDATE causes the data input field to be
initialized with the initial contents of the receiving
field and the initial data to be treated as operator-
entered data.

• LENGTH-CHECK causes a field terminator
character to be ignored unless every data input
position has been filled.

• EMPTY-CHECK causes terminator characters to
not be accepted unless at least one entry has been
made in the field.

• AUTO-SKIP forces the ACCEPT to end when all
data input positions have been filled. A terminator
character explicitly entered has its usual effect.

• 	BEEP causes the speaker to sound when the
ACCEPT is initialized and the system is ready to
accept operator input.

• 	NO-ECHO causes the field to be filled with
asterisks (*) for each character entered.

7-29

ACCEPT
Statement

The following list summarizes the effects of the WITH
phrase specifications for the Format 3 ACCEPT with a
numeric or numeric-edited receiving field:

• 	SPACE-FILL causes unkeyed digit positions of the
data input field (not of the receiving field) to the
left of the (possibly implied) decimal point to be
space-filled when the ACCEPT ends. Any leading
operational signs are displayed in the right-most
space thus created.

• 	ZERO-FILL causes all unkeyed digit positions of
the data input field to be set to zero when the
ACCEPT ends.

• LEFT-JUSTIFY and RIGHT-JUSTIFY have no
effect for a numeric or numeric-edited receiving
field.

• 	TRAILING-SIGN causes the operational sign to
appear as the right-most position of the data input
field. Ordinarily, the sign is the left-most position
of the field.

• 	PROMPT causes the data input field positions to
be initialized as follows before input characters
are accepted:
- Digit positions as zeros
- Decimal point position (if any) as the decimal

point character
- Sign position (if any) as a space

• 	UPDATE causes the data input field to be
initialized to the current contents of the receiving
field and causes this initial data to be treated like
operator-entered data.

7-30

ACCEPT
Statement

• LENGTH-CHECK causes a received decimal point
character to be ignored unless all integer digit
positions have been entered. A field terminator
character is ignored unless all digit positions have
been entered.

• EMPTY-CHECK causes terminator characters to
not be accepted unless at least one entry has been
made in the field.

• AUTO-SKIP causes the integer part of the ACCEPT
to end when all integer digit positions have been
entered and causes the entire ACCEPT to end when
all digit positions have been entered.

• 	BEEP causes the speaker to sound when the
ACCEPT is initialized and the system is ready to
accept operator input.

• 	NO-ECHO causes the screen to be filled with
asterisks (*) for each character entered.

7-31

ACCEPT
Statement

Receiving Field:

05 RS-DISCOUNT Plc X(8).

Initial Contents: Set up prior
ABCDEFGH to running

ACCEPT Statement:

ACCEPT (1, 1) RS-DISCOUNT

WITH PROMPT.

At Start of ACCEPT:

• (Cursor is at top

left-hand corner)

Operator Enters N:

N_ During the

ACCEPT

Operator Enters ONE:

NONE....

Operator Presses Enter key:

NONEbbbb

Final Contents

of Receiving Field: Result

NONEbbbb

Figure 8. Example I of Format 3 ACCEPT Statement

7-32

ACCEPT
Statement

Receiving Field:

10 VEND-NAME PlC X(12).

Initial Contents:

ACMEbHAMMERS Set up prior

to running

ACCEPT Statement:

ACCEPT (1, 1) VEND-NAME

WITH PROMPT UPDATE.

At Start of ACCEPT:

ACMEbHAMMERS (Cursor is at top

left-hand corner)

(1f operator presses Enter

key here, the receiving

field will not be changed.)

During

Operator Enters Line-delete: the ACCEPT

Operator Enters XYZ:

xyz

Operator Presses Enter key:

XYZbbbbbbbbb

Final Contents

of Receiving Field: Result

XYZbbbbbbbbb

Figure 9. Example 2 of Format 3 ACCEPT Statement

7-33

ACCEPT Statement

Receiving Field:

05 CREDIT PlC S9(4)V99.

Initial Contents:

+ Setup

111111 prior to running

ACCEPT Statement:

ACCEPT (LIN + 4, COL - 3)

CREDIT-LINE WITH PROMPT

TRAILING-SIGN.

At Start of ACCEPT:

0000.00b (Cursor position

of left-hand

Operator Enters 8: character is 4

0008.00b plus current LIN

and 3 less than

Operator Enters 7: the current COL)

0087. 100b

Operator Enters -:

0087.00-

Operator Enters 6: During

0876.00- the ACCEPT

Operator Enters N:

0876.00-

Operator Enters .:

0876.00-

Operator Enters 5:

0876.50-

Operator Presses Enter key:

0876.50-

Final Contents

of Receiving Field: Result

0876.50

Figure 10. Example 3 of Format 3 ACCEPT Statement

7-34

ACCEPT
Statement

Format 4 ACCEPT Statement

ACCEPT screen-name

[ON ESCAPE imperative-statement]

Format 4 of the ACCEPT statement is used to accept
data from an entire formatted screen. Screen items
having only VALUE literal or FROM clause have no
effect on the operation of the ACCEPT screen-name
statement (Format 4). If you have formatted your
comments under screen-name in the Screen Section
and want to display your comments on the screen,
then you should perform the DISPLAY screen-name
statement prior to the ACCEPT screen-name statement.

Format 4 of the ACCEPT statement transfers
information from the display to all TO and/or USING
fields specified in the Screen Section definition of
screen-name or to any screen item subordinate to
screen-name. Each such transfer consists of an implicit
Format 3 ACCEPT of a field defined by the appropriate
screen item's PICTURE followed by an implicit MOVE
to the associated TO or USING field. Fields are
accepted in the order in which they are defined under
the screen-name in the Screen Section. You can change
this order by using the backtab key (as described
below), but the position of the field on the screen does
not affect the order.

If the Esc key is pressed during data input, the entire
ACCEPT is ended without moving the current field to
the associated TO or USING item, the ESCAPE KEY
value is set to 01 (see "Format 1 ACCEPT Statement"),
and the ON ESCAPE statement is processed. Items
entered prior to the current item are updated before
control is passed to the ON ESCAPE statement.

7-35

ACCEPT
Statement

If a function key is typed, the appropriate ESCAPE
KEY value is set, and the entire ACCEPT ends.

If a field-terminator key (Enter, tab) is typed, the
ESCAPE KEY value is set to 00, and the cursor moves
to the next input field defined under screen-name, if
one exists. If the current field is the last field, the
entire ACCEPT ends.

If the backtab key is typed, the current field is ended,
and the cursor moves to the previous input field defined
under screen-name. If the current field is the first field,
the cursor does not move from that field. When a
field is ended by a function key, field-terminator key,
or backtab key, the contents of the current field are
moved to the associated TO or USING item, except
in the case where no data characters and no editing
characters have been entered in that field. This allows
the operator to tab forward or backward through the
input fields without affecting the contents of the
receiving items.

All the editing keys and validation features described
for the Format 3 ACCEPT apply to the Format 4
ACCEPT as well. Several Screen Section specifications
correspond to the Format 3 ACCEPT options:

AUTO corresponds to AUTO-SKIP
BELL corresponds to BEEP
FULL corresponds to LENGTH-CHECK
JUSTIFIED corresponds to RIGHT-JUSTIFY
SECURE corresponds to NO-ECHO
REQUIRED corresponds to EMPTY-CHECK

7-36

ACCEPT
Statement

If these are coded in the Screen Section, then the
effect is the same as if individual Format 3 ACCEPT
statements are performed. Also, if an input field
specifies the USING clause or both a FROM and TO
clause, the ACCEPT is processed with the UPDATE
option. Format 4 ACCEPT statements always use
the PROMPT and TRAILING-SIGN options when
performing the individual accepts.

If the screen item's PICTURE specifies a numeric-
edited or alphanumeric-edited input field, the
ACCEPT is performed as if the field is numeric or
alphanumeric, respectively. When the field is ended,
the data is edited according to the PICTURE and
redisplayed in the specified screen position. In this
case, the JUSTIFIED clause has no effect.

Moves from screen fields to receiving items follow the
standard COBOL rules for MOVE statements, except
that moves from numeric-edited fields are allowed. In
this case, the data is input as if the field is numeric
and the move uses only the sign, decimal point, and
digit characters.

Again, the Format 4 ACCEPT does not cause the
display of any text or prompting label information.
This can be accomplished by first displaying screen-name
(if VALUE clauses exist) and then accepting screen-name
(for corresponding input data). See the discussions of
"DISPLAY Statement" and "SCREEN Section."

Example: 	ACCEPT SCREEN-1.

7-37

ADD

Statement

Purpose: The ADD statement adds two or more numeric values
and stores the resulting sum.

Format: 	ADD numeric-li teral I data-name-i...

2.IGIVING data-name-n

[ROUNDED] [SIZE-ERROR-clause]

Remarks: Either the TO option or the GIVING option must be
specified.

When the TO option is used, the values of all the
data-names (including data-name-n) and literals in the
statements are added, and the resulting sum replaces
the value of data-name-n.

When you use the GIVING option, at least two
data-names and/or numeric-literals must be coded
between ADD and GIVING. The sum of the values
of these data-names and literals (not including
data-name-n) replaces the value of data-name-n.

The ROUNDED and SIZE ERROR options are discussed
in Chapter 2, "Arithmetic Statements."

Example: ADD INTEREST, DEPOSIT TO BALANCE ROUNDED.
ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY.

The first statement places the sum of INTEREST,
DEPOSIT, and BALANCE in item BALANCE. The
second statement places the sum of REGULAR-TIME
and OVERTIME earnings in item GROSS-PAY.

7-38

ALTER

Statement

Purpose: The ALTER statement modifies a simple GO TO
statement elsewhere in the Procedure Division, thus
changing the sequence in which program statements are
processed.

Format: ALTER paragraph TO

[PROCEED TO] procedure-name

Remarks: Paragraph (the first operand) must be a COBOL
paragraph that consists of only a simple GO TO
statement; the ALTER statement in effect replaces the
former operand of that GO TO by procedure-name.
Consider the ALTER statement in the context of the
following program segment.

Example: SECTION MF-READ.
GATE. 	GO TO ME-OPEN.
MF-OPEN. OPEN INPUT MASTER-FILE.

ALTER GATE TO PROCEED TO
NORMAL.

NORMAL. 	READ MASTER-FILE, AT END GO
TO EOF-MASTER.

The above code shows the technique of "shutting a
gate," providing a one-time initializing program step.

7-39

COMPUTE
Statement

Purpose: The COMPUTE statement evaluates an arithmetic
expression and then stores the result in designated
numeric or report (numeric edited) items.

Format: 	COMPUTE data-name-1 [ROUNDED]

[data-name-n [rounded]] ... =

data-n ame-2 jnumeric-literal I
arithmetic-expression

[SIZE-ERROR-clause]

Remarks: An arithmetic expression is a proper combination of
- numeric literals, data names, arithmetic operators,

and parentheses. See "Arithmetic Expressions" in
Chapter 2 for more information. Note also that
COMPUTE may have multiple targets.

Example: COMPUTE GROSS-PAY ROUNDED = BASE-SALARY *
(1 + 1.5 * (HOURS - 40) I 40).

COMPUTE A, B(I) = -C - D(3).

VIE, K

DISPLAY

Statement

Purpose: The DISPLAY statement outputs data to the screen or
printer at runtime without the complexities of file
definition.

Format: DISPLAY ([position-spec]

(identifier jliteralIERASE)

[UPON mnemonic-name] I [screen-name])

Remarks: The DISPLAY statement must be coded in accordance
with the following rules:

• Mnemonic-name must be defined in the PRINTER
IS clause of the SPECIAL-NAMES paragraph of the
Configuration Section.

• Screen-name must be defined in the Screen
Section of the Data Division.

The DISPLAY statement causes output to be sent to the
screen, unless UPON mnemonic-name is specified, in
which case output is sent to the printer. Each display
item (that is, each occurrence of identifier, literal, or
ERASE) is processed in turn as described in the
paragraphs below. Then, if no position-spec is coded
in the entire DISPLAY statement, a carriage return and
a line feed are sent to the receiving device.

Position-spec

For each display-item, if position-spec is specified, the
cursor is positioned prior to the transfer of data for
this item.

7-41

DISPLAY

Statement

Position-spec is of the form:

((LIN [+1— integer-1]Iinteger--2],
[COL [+1- integer-31integer-41)

The opening and closing parentheses and the comma
separating the two major bracketed groups are required.
The position-spec specifies the position on the screen
at which the cursor is to be placed. LIN and COL are
COBOL special registers. Each behaves like a numeric
data item with USAGE COMP-O, but they may be
referenced by every COBOL program without being
declared in the Data Division.

• To display the value in LIN or COL, the value must
first be moved to a Working-Storage data item, and
then that data item may be displayed.

If LIN is specified, the cursor is placed on the screen
row whose number is equal to the value of the LIN
special register, incremented (or decremented) by
integer-1 if + integer-] (or - integer-1) is specified. If
integer-2 is specified, the cursor is placed on the row
whose number is integer-2. If neither LIN nor
integer-2 is specified, the cursor is placed on the screen
row containing the current cursor position.

If COL is specified, the cursor is placed in the screen
column whose number is equal to the value of the
COL special register, incremented (or decremented) by
integer-3 if + integer-3 (or - integer-3) is specified. If
integer-4 is specified, the cursor is placed in the screen
column whose number is integer4. If neither COL nor
integer-4 is specified, the cursor is placed in the screen
column that contains the current cursor position.

7-42

DISPLAY
Statement

Identifier, Literal, and ERASE

If identifier or literal is specified for a given display
item, the contents of identifier or the value of literal
are sent to the receiving device. Since the data transfer
occurs without conversion or reformatting, we
recommend that numeric data be moved to numeric-
edited fields for purposes of DISPLAY.

If ERASE is specified and if position-spec is coded for
this or a previous display item, the screen is cleared
from the current cursor position to the end of the
screen. The initial cursor position for the next display
item is the position specified by the position-spec
coded in the ERASE display item, if present, or the
position in which the cursor was left by the previous
display item. If ERASE is specified and no position-
spec has been encountered up to this point in the
DISPLAY statement, no action is taken.

Screen-name

The DISPLAY screen-name statement transfers
information from screen-name (or from each elementary
screen item subordinate to screen-name) to the screen.
For each such screen item having a VALUE, FROM, or
USING specification, the specified literal or field is
the source of the displayed data. For a field having only
a TO clause, the effect is as if FROM ALL "." (period)
had been specified.

743

DISPLAY
Statement

The source data is moved implicitly to a temporary
item defined by the appropriate screen item's PICTURE
(or by the length of the data in the case of a VALUE
literal). Then an implied identifier type DISPLAY of
the constructed temporary is processed as modified by
the positioning and control clause coded in the
definition of the appropriate screen item.

Example: DISPLAY DATA-]
DISPLAY (10, 12) DATA-i.
DISPLAY "DATA-1 = " DATA-1.
DISPLAY SCREEN-1.

7-44

DIVIDE

Statement

Purpose: The DIVIDE statement divides two numeric values and
stores the quotient.

Forniat: 	DIVIDE data-name-i numeric-literal-i
BY I INTO
data-name-2 Inumeric-literai-2

[GIVING data-name-31 [ROUNDED]

[SIZE-ERROR-clause]

Remarks: The BY means that the first operand (data-name-] or
numeric-literal-1) is the dividend (numerator), and the
second operand (data-name-2 or numeric-literal-2) is the
divisor (denominator). If you do not use the GIVING
option in this case, then the first operand must be a
data name, in which the quotient is stored.

The INTO means that the first operand is the divisor
and the second operand is the dividend. If you do not
use the GIVING option in this case, then the second
operand must be a data name, in which the quotient
is stored.

Division by zero always causes a size error condition.

The ROUNDED and SIZE ERROR options are discussed
in Chapter 2, "Arithmetic Statements."

Example: DIVIDE VALUE] BY 100.
DIVIDE TOTAL-NUM INTO AMT GIVING AVERAGE.

I0
ir
Irri

I

7-45

EXHIBIT

Statement

Purpose: The EXHIBIT statement prints or displays requested
data names and data values at designated points for
debugging purposes.

Format: 	EXHIBIT NAMED ([position -spec]

(identifier literal ERASE)>

[UPON mnemonic-name]

Remarks: This statement produces a printout of values of the
indicated literal, or data items in the format data-name
= value. For more details concerning the syntax, see
"DISPLAY Statement" or "SOURCE-COMPUTER
Paragraph."

Note: You may often want to include this
statement on source lines that contain D in
column 7, so that this statement is ignored by
the compiler unless WITH DEBUGGING MODE
is included in the SOURCE-COMPUTER
paragraph.

Example: 	EXHIBIT DATA]
EXHIBIT (10,12) DATA].

D 	EXHIBIT COUNTER.

7-46

EXIT
Statement

Purpose: The EXIT statement is used where it is necessary to
provide an end point for a procedure.

Format: 	EXIT.

Remarks: EXIT must appear in the source program as a one-word
paragraph preceded by a paragraph name. An exit
paragraph provides an end point to which preceding
statements may transfer control if you decide to bypass
some part of a paragraph or section.

Example: END-POINT.
EXIT.

7-47

GO TO

Statement

Purpose: The GO TO statement transfers control from one
portion of a program to another.

Format: 	GO TO [procedure-name-1 [[procedure -name- 2]

DEPENDING ON data-name]}

Remarks: The simple form GO TO procedure-name changes the
path of flow to a designated paragraph or section. If
the GO statement is without a procedure-name, then
that GO statement must be the only one in a
paragraph, and must be altered by an ALTER statement
before control gets to it.

The more general form designates N procedure-names
as a choice of N paths to transfer to, if the value of
data-name is 1 to N, respectively. Otherwise, there is
no transfer of control, and the program proceeds in
the normal sequence. Data-name must be a numeric
elementary item and have no positions to the right of
the decimal point.

If a GO (non-DEPENDING) statement appears in a
sequence of imperative statements, the GO statement
must be the last statement in that sequence.

Example: GO TO HOURS-CALC.
GO TO DO-WEEKLY, DO-SEMI, DO-MONTHLY

DEPENDING ON PAYROLL-PERIOD.

7-48

IF

Statement

Purpose: The IF statement lets you specify a series of procedural
statements to be processed in the event a stated
condition is true. Optionally, you may specify an
alternative series of statements to be processed if the
condition is false.

Format: IF condition
statement(s)-i NEXT SENTENCE

[ELSE

statement(s) -21 NEXT SENTENCE]

Remarks: The IF statement must be followed immediately by a
period.

Example: IF BALANCE = 0 GO TO NOT-FOUND.
IF T LESS THAN 5 NEXT SENTENCE

ELSE GO TO T-1-4.
IF ACCOUNT-FIELD = SPACES OR

NAME = SPACES ADD 1 TO
SKIP-COUNT ELSE GO TO BYPASS.

The first series of statements is performed only if the
designated condition is true. The second series of
statements (ELSE part) is processed only if the
designated condition is false. Refer to Appendix F for
a discussion of nested IF statements.

Regardless of whether the condition is true or false, the
next sentence is processed after the appropriate series
of statements, unless a GO TO is contained in the
imperatives that are performed, or unless the nominal
flow of program steps is superseded because of an active
PERFORM statement.

749

IF

Statement

Conditions

A condition is either a simple condition or a compound
condition. The four simple conditions are the relational,
class, condition name, and sign condition tests. A simple
relational condition has the following structure:

operand-1 relation operand-2

where operand is a data name, literal, or figurative
constant.

A compound condition may be formed by connecting
two conditions, of any sort, by the logical operator
AND or OR; for example, A < B OR C = D. Refer to
Appendix E for further permissible forms involving
parentheses, NOT, or abbreviations.

The simplest "simple relations" have three basic forms,
expressed by the relational symbols equal to, less than,
or greater than (that is, , <, or>).

7-50

IF

Statement

Another form of simple relation that may be used
involves the reserved word NOT, preceding any of the
three relational symbols. In summary, the six simple
relations in conditions are:

Relation 	Meaning

= 	Equal to

< 	Less than

> 	Greater than

NOT = 	Not equal to

NOT < 	Greater than or equal to

NOT> 	Less than or equal to

Let's briefly discuss how relation conditions can be
compounded. The reserved words AND or OR let you
specify a series of relational tests, as follows:

• 	Individual relations connected by AND specify a
compound condition that is met (true) only if all
the individual relationships are met.

• 	Individual relations connected by OR specify a
compound condition that is met (true) if any one
of the individual relationships is met.

7-51

IF
Statement

The following is an example of a compound relation
condition containing both AND and OR connectors.
Refer to Appendix E for formal specification of
evaluation rules.

IF X = Y AND FLAG = 7' OR SWITCH = 0
GOTO PROCESSING.

In the above example, the program runs as follows,
depending on various data values.

X Y
Data Value

FLAG 	SWITCH
Does Control Go
to PROCESSING?

10 10 Z 	1 Yes

1011 Z 	I No

10 II Z 	0 Yes

1010 P 	1 No

6 3 P 	0 Yes

6 6 P 	1 No

Figure II. Effects of Conditions on Program Flow

7-52

IF
Statement

The reserved word phrases EQUAL TO, LESS THAN,
and GREATER THAN are accepted equivalents of ,
<, and >, respectively. Any form of the relation may
be preceded, optionally, by the word IS.

Before we discuss class test, sign test, and condition
name test conditions, we will discuss methods of
performing comparisons.

Numeric Comparisons: The data operands are compared
after alignment of their decimal positions. The results
are defined mathematically, with any negative values
being less than zero, which in turn is less than any
positive value. An index-name or index item (see
Chapter 10) may appear in a comparison. Comparison
of any two numeric operands is permitted regardless
of length and of the formats specified in their respective
USAGE clauses.

Character Comparisons: Unequal-length comparisons
are permitted, with spaces being assumed to extend the
length of the shorter item, if necessary. Relationships
are defined in the ASCII code; in particular, the letters
A-Z (and a-z) are in an ascending sequence, and digits
are less than letters. When compared, group items are
treated simply as characters. Refer to Appendix G for
all ASCII character representations. If one operand is
numeric and the other is not, the numeric operand
must be an integer and have an implicit or explicit
USAGE IS DISPLAY.

Returning to our discussion of simple conditions, there
are three more forms of a simple condition, in addition
to the relational form, namely: class test, condition-
name test (88), and sign test.

7-53

IF

Statement

A class test condition has the following syntactical
format:

data-name IS [NOT] NUMERIC IALPHABETIC

This condition specifies an examination of the data
item content to determine whether it is numeric or
alphabetic. When the test is for numeric, all characters
must be proper digit representations (0 . . . 9) with an
operational sign if SIGN IS SEPARATE is specified.
When the test is for alphabetic, only uppercase

alphabetic (A. . . Z) or blank space characters must be
present. The NUMERIC test is valid only for a group,
decimal, or character item (not having an alphabetic
PICTURE). The ALPHABETIC test is valid only for a
group or character item (PICTURE an-form).

A sign test has the following syntactical format:

data-name IS [NOT] NEGATIVE ZERO IPOSITIVE

This test is equivalent to comparing data-name to zero
in order to determine the truth of the stated condition.

In a condition-name test, a conditional variable is tested
to determine whether its value is equal to one of the
values associated with the condition-name. A
condition-name test is expressed by the following
syntactical format:

condition-name

where condition-name is defined by a level 88 Data
Division entry. (See "Level 88 Condition Names" in
Chapter 6.)

7-54

INSPECT
Statement

Purpose: The INSPECT statement lets you examine a character-
string item. Options permit various combinations of the
following actions:

• 	Counting appearances of a specified character

• 	Replacing a specified character with another

• 	Limiting the above actions by requiring the
appearance of other specific characters

Format: INSPECT data-name-1

[TALLYING-clause]

[REPLACING-clause]

Where TALLYING-clause has the format:

TALLYING data-name-2 FOR

(ILEADING operand-3 ICIcRs)
[BEFORE IAFTER INITIAL operand-41

and REPLACING-clause has the format:

REPLACING (ALLLEADING IFIRST operand-5

CHARACTERS)

BY operand-6

[BEFORE AFTER INITIAL operand-7]

Remarks: Because data-name-1 is to be treated as a string of
characters by INSPECT, it should be described
(implicitly or explicitly) by USAGE IS DISPLAY
(DISPLAY is assumed if no USAGE clause is specified).
It must not be described by USAGE IS INDEX,
COMP-O, or COMP-3. Data-name-2 must be a numeric
data item.

7-55

INSPECT
Statement

In the above formats, operand-n may be a quoted literal
of length I, a figurative constant signifying a single
character, or a data name of an item whose length is 1.

You must have either a TALLYING-clause or a
REPLACING-clause, or both. If both are present,
TALLYING-clause must be first.

The TALLYING-clause causes character-by-character
comparison, from left to right, of data-name-],
incrementing data-name-2 by one each time a match is
found. If BEFORE INITIAL operand-4 is specified,
the counting process stops upon encountering a
character in data-name-1 which matches operand-4. If
AFTER INITIAL operand-4 is present, the counting
process begins only after the system detects a character
in data-name-1 that matches operand-4.

Also going from left to right, the REPLACING-clause
replaces characters under conditions specified by the
REPLACING-clause. If BEFORE INITIAL operand-7
is present, replacement stops after detection of a
character in data-name-] that matches operand- 7.
If AFTER INITIAL operand-7 is present, replacement
starts after detection of a character in data-name-1
matching operand- 7.

With bounds on data-name-1 thus determined, tallying
and replacing is done on characters as specified by the
following:

• CHARACTERS implies that every character in
data-name-1 is to be tallied or replaced.

• 	ALL operand means that all characters in
data-name-I which match the operand character
are to participate in TALLYING/REPLACING.

7-56

INSPECT
Statement

• 	LEADING operand specifies that only characters
matching operand from the left-most portion of
data-name-I which are contiguous (such as leading
zeros) are to participate in TALLYING or
REPLACING.

• 	FIRST operand specifies that only the first-
encountered character matching operand is to
participate in REPLACING. (This option is
unavailable in TALLYING.)

When both TALLYING and REPLACING clauses are
present, the two clauses behave as if two INSPECT
statements were written, the first containing only a
TALLYING-clause and the second containing only a
REPLACING-clause.

In developing a TALLYING value, the final result in
data-name-2 is equal to the tallied count plus the initial
value of data-name-2.

In the first example below, the item COUNTX is
assumed to have been set initially to zero elsewhere in
the program.

Example: 	INSPECT ITEM TALLYING COUNTX FOR ALL "L"
REPLACING LEADING "A" BY "E"
AFTER INITIAL

Original (ITEM): 	SALAMI 	ALABAMA
Result (ITEM): 	SALEMI 	ALEBAMA
Final (COUNTX): 	1

7-57

INSPECT
Statement

INSPECT WORK-AREA REPLACING ALL DELIMITER
BY TRANSFORMATION

Original (WORK-AREA): 	NEW YORK N Y 	(length 16)

Original (DELIMITER): 	(space)
Original (TRANSFORMATION): .(period)

Result (WORK-AREA): 	NEW.YORK. .N.Y..

Note: If any data-name-] or operand-n is
described as signed numeric, it is treated as if it is
unsigned.

7-58

MOVE

Statement

Purpose: You use the MOVE statement to move data from one
area of memory to another and to perform conversions
and/or editing on the data that is moved.

Format: MOVE data-name-i literal TO data-name-2

[data-name-3...]

Remarks: The data represented by data-name-I or the specified
literal is moved to the area designated by data-name-2.
Additional receiving fields may be specified (data-
name-3, data-name-4, etc.).

When a group item is a receiving field, characters are
moved without regard to the level structure of the
group involved and without being edited.

Subscripting or indexing associated with data-name-2
is evaluated immediately before data is moved to the
receiving field. The same is true for other receiving
fields (data-name-3, etc.), if any.

But in the source field, subscripting or indexing
(associated with data-name-1) is evaluated only once,
before any data is moved.

7-59

MOVE

Statement

To illustrate, consider the statement

MOVE A(B) TO B, C(B),

which is equivalent to

MOVE A(B) TO temp

MOVE temp TO B

MOVE temp TO C(B)

The value temp is an intermediate result field assigned
automatically by the compiler.

The following considerations pertain to moving items:

• 	Numeric (external or internal decimal, binary,
numeric literal, or ZERO) or alphanumeric to
numeric or report:
- The items are aligned by decimal points, with

generation of zeros or truncation on either
end, as required. If the source is alphanumeric,
it is treated as an unsigned integer and should
not be longer than 3 1 characters.

- When the types of the source field and
receiving field differ, conversion to the type of
the receiving field takes place. Alphanumeric
source items are treated as unsigned integers
with a USAGE IS DISPLAY clause.

- The items may have special editing performed
on them with suppression of zeros, insertion of
a dollar sign, etc., and decimal point
alignment, as specified by the receiving area.

7-60

MOVE

Statement

- Do not move an item whose PICTURE declares
it to be alphabetic or alphanumeric edited to a
numeric or report item. Do not move a
numeric item of any sort to an alphabetic item.

Numeric integers and numeric report items can
be moved to alphanumeric items with or
without editing, but operational signs are not
moved in this case, even if you have specified
SIGN IS SEPARATE.

• 	Nonnumeric source and destinations:
- The characters are placed in the receiving area

from left to right, unless JUSTIFIED RIGHT
applies.
If the receiving field is not completely filled
by the data being moved, the remaining
positions are filled with spaces.

- If the source field is longer than the receiving
field, the move ends as soon as the receiving
field is filled.

- When overlapping fields are involved, results are
not predictable.

- An item having USAGE IS INDEX cannot
appear as an operand of a MOVE statement.
See "SET Statement" in this chapter.

7-61

MOVE
Statement

Example:

Source Field Receiving Field

PICTURE Value PICTURE Value before MOVE Value after MOVE

99V99 1234 S99V99 9876- 1234

99V99 1234 99V9 987 123
S9V9 12- 99V999 98765 01200

XXX A213 XXXXX Y9X8W A2Bbb

9V99 123 99.99 87.65 01.23

Figure 12. Examples of Data Movement

Notes:

In the above table, b represents a blank.

2. The number represented as the Value is
not necessarily what would be seen if you
displayed it with the DISPLAY statement
(see "SIGN Clause").

7-62

MULTIPLY

Statement

Purpose: The MULTIPLY statement multiplies two numeric data
items and stores the product.

Format: 	MULTIPLY data-name-11numeric-literal-1 BY
(data-name-2 [GIVING data-name-31I

numeric-literal-2 GIVING data-name-3)

[ROUNDED] [SIZE-ERROR-clause]

Remarks: When the GIVING option is omitted, the second
operand must be a data name; the product replaces the
value of data-name-2.

Note: Because this order might seem somewhat
unnatural, we recommend that you use the GIVING
option. For example, a new BALANCE value is
computed by the statement MULTIPLY
BALANCE BY 1.03 GIVING BALANCE. This is
equivalent to MULTIPLY 1.03 BY BALANCE.

The ROUNDED and SIZE ERROR options are discussed
in Chapter 2, "Arithmetic Statements."

Example: MULTIPLY VALUE] BY VALUE2.
MULTIPLY TAX-RATE BY GROSS GIVING TAX-AMT.

7-63

PERFORM
Statement

Purpose: The PERFORM statement lets you process a separate
body of program steps.

Format: Two formats of the PERFORM statement are available:

Option I

PERFORM range [integerldata-name TIMES]

Option 2

PERFORM range

[VARYING index-name Idata-name

FROM amount-1 BY amount-2

UNTIL condition.

(A more extensive version of Option 2 is available for
varying two or three items concurrently, as explained
in Appendix I.)

Remarks: Range is:

procedure-name-1 [THRU THROUGH

procedure-name-2]

Procedure-name-1 may be a paragraph name or a
section name.

7-64

PERFORM

Statement

If only a paragraph name is specified, the return is
after the paragraph's last statement. If only a section
name is specified, the return is after the last statement
of the last paragraph of the section. If a range is
specified, control is returned after the appropriate last
sentence of a paragraph or section. These return points
are valid only when a PERFORM has been processed
to set them up; in other cases, control passes right
through.

The generic operands amount-1 and amount-2 may be
numeric literals, index names, or data names. In
practice, these amount specifications are frequently
integers, or data names that contain integers; and the
specified data-name often is used as a subscript within
the range.

In Option 1, the designated range is performed a fixed
number of times, as determined by an integer or by the
value of an integer data-item. If no TIMES phrase is
given, the range is performed once. When any
PERFORM has finished, program control proceeds to
the next statement following the PERFORM
statement.

In Option 2, the range is performed a variable number
of times, in a step-wise progression, varying from an
initial value of data-name = amount-1, with increments
of amount-2, until a specified condition is met. At
this time, control proceeds to the next statement after
the PERFORM.

7-65

PERFORM
Statement

Note: The condition in an Option 2 PERFORM
is evaluated prior to each attempted processing
of the range. Consequently, it is possible to not
perform the range, if the condition is met at the
outset. Similarly, in Option 1, if data-name <0,
the range is not processed at all.

At runtime, you cannot have concurrently active
PERFORM ranges whose end points are the same.

Example: PERFORM READ-DATA THRU WRITE-DATA.
PERFORM ARITHMETIC-SECTION 10 TIMES.

• PERFORM CYCLE VARYING SUBSCRIPT
FROM 1 BY 1 UNTIL > 10.

7-66

STOP
Statement

Purpose: The STOP statement stops or delays the object program
while it is running.

Format: 	STOP RUN 11iteral

Remarks: STOP RUN ends a program, returning control to the
Disk Operating System (DOS). If used in a sequence
of imperative statements, it must be the last statement
in that sequence.

The form STOP literal displays the specified literal on
the screen and suspends the program. The program is
resumed only after operator intervention. Presumably,
the operator performs a function suggested by the
content of the literal, prior to resuming the program
by pressing the Enter key.

Example: STOP RUN.
STOP "CHECK DATA BEFORE CONTINUING".

7-67

STRING
Statement

Purpose: The STRING statement allows concatenation of multiple
sending data item values into a single receiving item.

Format: 	STRING (operand-i...
DELIMITED BY operand-2ISIZE)

INTO identifier-1

[WITH POINTER identifier-2]

[ON OVERFLOW imperative-statement]

Remarks: In this format, operand means a nonnumeric literal,
one-character figurative constant, or data name.
Identifier-] is the receiving data item name, which
must be alphanumeric without editing symbols or the
JUSTIFIED clause. Identifier-2 is a counter and must
be an elementary numeric integer data item of
sufficient size (plus 1) to point to positions within
identifier-i.

If no POINTER phrase exists, the default value of the
logical pointer is one. The logical pointer value
designates the beginning position of the receiving field
into which data placement begins. During movement
to the receiving field, the criteria for terminating an
individual source are controlled by the DELIMITED
BY phrase:

DELIMITED BY The entire source field is moved
SIZE 	 (unless the receiving field

becomes full).

7-68

STRING
Statement

DELIMITED BY The character string specified by
operand-2 	operand-2 is a search pattern

which, if found to match a
contiguous sequence of sending
characters, terminates the
function for the current sending
operand (and causes automatic
switching to the next sending
operand, if any).

If at any point the logical pointer (which is
incremented by one for each character stored into
identifier-]) is less than one or greater than the size of
identifier-1, no further data movement occurs. The
imperative-statement given in the OVERFLOW phrase
(if any) is performed. If there is no OVERFLOW
phrase, control is transferred to the next statement.

There is no automatic space fill into any position of
identifier-1. That is, unaccessed positions are unchanged
upon completion of the STRING statement.

Upon completion of the STRING statement, if there is
a POINTER phrase, the resultant value of identifier-2
equals its original value plus the number of characters
moved during the STRING statement.

7-69

STRING

Statement

Example: STRING SOURCE-STRING DELIMITED BY SIZE
INTO DESTINATION-STRING.

STRING STRING-1 DELIMITED BY
INTO STRING-2
WITH POINTER S-POINTER.

STRING NAME DELIMITED BY SIZE
INTO NEW-NAME
ON OVERFLOW GO TO PROC-NAME.

7-70

SUBTRACT

Statement

Purpose: The SUBTRACT statement subtracts one or more
numeric data items from a specified item and stores the
difference.

Format: SUBTRACT (data-name-i I numeric-literal-i)
FROM (data-name-m [GIVING data-name-n] I
numeric literal-rn GIVING data-name-n)

[ROUNDED] [SIZE-ERROR-clause]

Remarks: The SUBTRACT statement adds the values of all the
operands that precede FROM and subtracts that sum
from the value of the item following FROM.

The result (difference) is stored in data-name-n, if there
is a GIVING option. Otherwise, the result is stored in
data-name-m.

The ROUNDED and SIZE ERROR options are discussed
in Chapter 2, "Arithmetic Statements".

Example: SUBTRACT TAX, FICA, OTHER FROM GROSS-PAY.
SUBTRACT TAX, FICA, OTHER FROM GROSS-PAY

GIVING NET-PAY.

7-71

TRACE
Statement

Purpose: The TRACE mode displays program procedure names
on your screen in the order in which you run them.

Format: READY RESET TRACE

Remarks: When you run a READY TRACE statement, the
TRACE mode causes every section and paragraph name
to be printed each time it is entered. The RESET
TRACE statement stops such printing.

A printed list of procedure names, in the order in
which they are run, is valuable when you try to find a
program error. It helps you find the point at which
the actual program flow departed from the expected
program flow.

For more information on debugging, see "SOURCE-
COMPUTER Paragraph" in Chapter 5.

Example: READY TRACE.
PERFORM PARA-A THRU PARA-Z.

RESET TRACE.

7-72

UNSTRING

Statement

Purpose: The UNSTRING statement causes data in a single
sending field to be separated into subfields that are
placed into multiple receiving fields.

Format: UNSTRING identifier-1

[DELIMITED BY [ALL] operand-1

[OR [ALL] operand-2] ...]

INTO (identifier-2

[DELIMITER IN identifier-31

[COUNT IN identifier-4])

[WITH POINTER identifier-5]

[TALLYING IN identifier-6]

[ON OVERFLOW imperative-statement]

Remarks: The delimiters used to separate subfields are entered in
the DELIMITED BY phrase. Each time a succession
of characters matches one of the nonnumeric literals,
one-character figurative constants, or data item values
named by operand-i, the current collection of sending
characters is ended and moved to the next receiving
field specified by the INTO-clause. When the ALL
phrase is specified, more than one contiguous occurrence
of operand-i in identifier-i is treated as one occurrence.

When two or more delimiters exist, an OR condition
exists. Each delimiter is compared to the sending field
in the order specified in the UNSTRING statement.

Identifier-i must be a group or character string
(alphanumeric) item. When a data item is employed
as any operand-i, that operand must also be a group or
character string item.

7-73

UNSTRING

Statement

Receiving fields (identifier-2) may be any of the
following types of items:

• 	An unedited alphabetic item

• 	A character-string (alphanumeric) item

• A group item

• 	An external decimal item (numeric, usage
DISPLAY) whose PICTURE does not contain a
P character

When an examination encounters two contiguous
delimiters, the current receiving area is either space or
zero filled, depending on its type. If there is a
DELIMITED BY phrase in the UNSTRING statement,
then there may be DELIMITER IN phrases following
any receiving item (identifier-2) mentioned in the
INTO clause. In this case, the character(s) that
delimits the data moved into identifier-2 is stored in

identifier-3, which should be an alphanumeric item.

If a COUNT IN phrase is present, the number of
characters moved into identifier-2 are moved to

identifier-4, which must be an elementary numeric
integer item.

If there is a POINTER phrase, then identifier-S must
be an integer numeric item, and its initial value becomes
the initial logical pointer value. If there isn't a
POINTER phrase, then a logical pointer value of one
is assumed.

The examination of source characters begins at the
position in identifier-1, specified by the logical pointer;
upon completion of the UNSTRING statement, the
final logical pointer value is copied back into identifier-5.

7-74

UNSTRING
Statement

When the value of the logical pointer is less than one or
exceeds the size of identifier- i, overflow occurs.
Control passes over to the imperative statements given
in the ON OVERFLOW clause, if any.

Overflow also occurs when all receiving fields have
been filled prior to exhausting the source field.

During the course of source field scanning (looking
for matching delimiter sequences), a variable-length
character string is developed. When the character
string is completed by recognition of a delimiter or
by acquiring as many characters as the size of the
current receiving field can hold, the character string
then moves to the current receiving field in the
standard MOVE fashion.

If there is a TALLYING IN phrase, identifier-6 must be
an integer numeric item. The number of receiving
fields acted upon, plus the initial value of identifier-6,
is produced in identifier-6 upon completion of the
UNSTRING statement.

Any subscripting or indexing associated with
identifier- i, 5, or 6 is evaluated only once at the
beginning of the UNSTRING statement. Any
subscripting associated with operand-i or identifier-2,
3, or 4 is evaluated immediately before access to the
data-item.

7-75

UNSTRING
Statement

Example: UNSTRING SOURCE-FIELD
DELIMITED BY ALL SPACE OR 1•hl

INTO FIELD-1
DELIMITER IN DELJM-i
COUNT IN CNT-1

FIELD-1
DELIMITER IN DELJM-2

FIELD-3
COUNT IN CNT-3

FIELD-4
FIELD-5

WITH POINTER S-POINTER
TALLYING IN TALLY-CNT
ON OVERFLOW DISPLAY u**OVERFLOW**

7-76

CHAPTER 8. DATA INPUT AND OUTPUT

Contents

Introduction 	8-3

How to Handle Printer Files 8-4

How to Handle Communication Files8-5

How to Handle the Display/Keyboard8-6
Display Output 8-6
Keyboard Input 	8-6

How to Handle Diskette Files 8-7

What Is Sequential File Organization? 8-8
Syntax Considerations 	 8-8
Procedure Division Statements for

Sequential Files 	 8-8

What Is Relative File Organization? 8-9
Syntax Considerations 	 8-9
RELATIVE KEY Clause 	8-10
FILE STATUS Reporting 	8-11
Procedure Division Statements for

Relative Files 	8-11 1

What Is Indexed File Organization?8-12
Syntax Considerations 8-14
RECORD KEY Clause 8-14
FILE STATUS Reporting 8-15
Procedure Division Statements for
Indexed Files 8-16

CLOSE Statement 8-18

DELETE Statement (Indexed I/O)8-19

DELETE Statement (Relative I/O)8-20

8-1

OPEN Statement 	 . 8-21

READ Statement (Indexed I/O) 	8-23

READ Statement (Relative I/O) 	8-25

READ Statement (Sequential I/O) 8-27

REWRITE Statement (Indexed I/O) 8-29

REWRITE Statement (Relative I/O) 8-30

REWRITE Statement (Sequential I/O) 8-31

START Statement (Indexed I/O) 	8-32

START Statement (Relative I/O) 	8-33

WRITE Statement (Indexed I/O) 	8-34

WRITE Statement (Relative I/O) 	8-35

WRITE Statement (Sequential I/O) 8-36

8-2

Introduction

IBM COBOL allows you to select specific formats when
outputting data to files and/or the printer. IBM COBOL
also offers a variety of methods for organizing and
accessing the data in those files.

In this chapter, we will discuss the following methods
with which you can input or output data in a COBOL
program:

• 	Printer files

• Communication files

• 	Display/keyboard

• 	Diskette files

We will also discuss the three types of diskette file
organization:

• 	Sequential

• 	Relative

• 	Indexed

8-3

How to Handle Printer Files

Printer files should be viewed as a stream of characters
going to the printer. Records should be defined as the
fields to appear on the printer. No extra characters
are needed in the record for carriage control. Carriage
return, line feed, and form feed are sent to the printer as
needed between lines. Note, however, that blank
characters (spaces) on the end of a print line are
truncated to make printing faster.

To send a file to the printer, you use the SELECT
filename ASSIGN TO PRINTER clause. Then under
FD, you must specify the clause LABEL RECORD
IS OMITTED, and you must not specify the VALUE
OF FILE-ID clause.

You can also send files to the printer by using the DOS
reserved words LPT1 and PRN. If you assign these to
the VALUE OF FILE-ID clause, IBM COBOL treats
the files as disk files. (That is, you assign the files to
disk in the SELECT clause, but DOS sends the files to
the printer.)

8-4

How to Handle Communication Files

If you have the asynchronous communications adapter,
you can communicate with other IBM Personal
Computers by assigning the DOS reserved words AUX
or COM I in the VALUE OF FILE-ID clause in your
program. DOS recognizes these words and sends the
file to the RS232 port. Any protocols must be
handled by your programs.

If you have connected your IBM Personal Computer to
a printer (other than the IBM Personal Computer
Printer) through the RS232 port, then you should
assign AUX in the VALUE OF FILE-ID clause.

How to Handle the Display /Keyboard

Display Output

Normally, output to the screen is done by the DISPLAY
or EXHIBIT statement. Characters are sent one at a
time to the screen. If no cursor positioning is specified
for any of the displayed items, carriage return and line
feed are sent following the last displayed item. Otherwise,
no assumptions about carriage control are made.

You can also send output to the display by assigning
the name CON or USER to the VALUE OF FILE-ID
clause.

CON is a DOS reserved word for the display device.
Output written to CON is buffered as a file and thus
appears on the display in blocks of characters at a time.

USER is a special COBOL reserved word for the display.
Output written to USER is not buffered and thus
appears on the display on a character-by-character basis.

Keyboard Input

All input from the keyboard is done by Formats 2, 3,
and 4 of the ACCEPT statement. One of two methods
of input is used, depending on the type of ACCEPT
being performed.

For a Format 2 ACCEPT, a full line of input is typed,
using the DOS facilities for character echo and input
editing, ending with the Enter key. The editing
characters for Formats 3 and 4 have no effect.

For a Format 3 or 4 ACCEPT, each character typed is
read directly by the runtime ACCEPT module by
using a call to the Disk Operating System (DOS). The
ACCEPT module performs all necessary character echo
and input editing functions using the editing control
characters, function keys, and terminator keys
described with "ESCAPE KEY Values" under "Format
1 ACCEPT Statement" in Chapter 7.

8-6

How to Handle Diskette Files

File access is defined in the Environment Division,
Input-Output Section under File-Control. The actual
filename and layout are specified in the Data Division,
in the File Section.

Diskette files must have LABEL RECORD IS
STANDARD declared and have a VALUE OF FILE-ID
clause. File ID formats are described under "How to
Compile a COBOL Program" in Chapter 3. Block
clauses are checked for syntax but have no effect on
any type of file.

Three types of data files can be stored on diskettes
and used by your programs. Files have three types of
organizations:

• 	Sequential (regular sequential and line sequential)

• 	Relative

• 	Indexed

The types of organizations are discussed later in this
chapter, accompanied by the Procedure Division
statements used with each type.

8-7

What Is Sequential File Organization?

The format of regular sequential organization files is
that of a 2-byte count of the record length followed
by the actual record, for as many records as exist in the
file. This type of file is normally created by a COBOL
program.

The line sequential organization has each record
followed by Enter and a line feed delimiter, for as
many records as exist in the file. This type of file is
normally created by using an editor.

Both organizations pad remaining space in the last
physical block with Ctrl-Z characters, indicating end-of-
file. To make maximum use of diskette space, records
are packed together with no unnecessary bytes in
between.

Syntax Considerations

In the Environment Division, the SELECT entry must
specify ORGANIZATION IS SEQUENTIAL, or
ORGANIZATION IS LINE SEQUENTIAL. The
ORGANIZATION clause is optional for sequential files
(not line sequential), so this clause may be omitted.
The ACCESS clause is also optional, but if entered, it
must specify ACCESS MODE IS SEQUENTIAL.

Procedure Division Statements for Sequential Files

The I/O statements for sequential files follow the
discussions of relative and indexed files. Each statement
discussion includes the format and an example.

Note: See Sequential File Status reporting on
page 5-9.

What Is Relative File Organization?

The format of relative files is always that of fixed-
length records of the size of the largest record defined
for the file. No delimiter is needed; therefore, none is
provided. Deleted records are filled with hex value
"00". Additionally, 6 bytes are reserved at the
beginning of the file to contain system bookkeeping
information.

Relative organization is restricted to diskette files.
Records are differentiated on the basis of a relative
record number, which may range from 1 to 32,767.
Unlike the case of an indexed file, where the identifying
key field occupies a part of the data record, relative
record numbers are conceptual and are not embedded
in the data records.

A relative organization file may be accessed either
sequentially, dynamically, or randomly. In sequential
access mode, records are accessed in the order of
ascending record numbers.

In random access mode, the sequence of record access
is controlled by the program, by placing a number in a
relative key item. In dynamic access mode, the program
may inter-mix random and sequential access at will.

Syntax Considerations

In the Environment Division, the ACCESS and
ORGANIZATION clause formats are:

ACCESS MODE IS SEQUENTIAL IRANDOMIDYNAMIC

ORGANIZATION IS RELATIVE.

8-9

ASSIGN, RESERVE, and FILE STATUS clause formats
are identical to those specified in Chapter 5, under
"FILE-CONTROL Paragraph."

In the associated FD entry, STANDARD LABELS must
be declared, and a VALUE OF FILE-ID clause must be
included.

The first byte of the record area associated with a
relative file must not be set to binary zero by using a
COMP-0 or COMP-3 item, nor set to LOW-VALUE for
an alphanumeric item.

RELATIVE KEY Clause

In addition to the usual clauses in the SELECT entry,
a clause of the form:

RELATIVE KEY IS data-name-1

is required for random or dynamic access mode. It is
also required for sequential access mode if a START
statement exists for such a file.

Data-name-] must be described as an unsigned integer
item not contained within any record description of
the file itself. Its value must be positive and nonzero.

8-10

FILE STATUS Reporting

If a FILE STATUS clause appears in the Environment
Division for a relative file, the designated two-character
data item is set after every I/O statement. The
following table summarizes the possible settings:

File Status 	File Status
Left 	Right 	Meaning

0 	 0 Successful completion
1 	 0 EOF
2 	 2 Attempt to write a

duplicate key
2 	 3 No record found
2 	 4 Disk space full
3 	 0 Permanent error
9 	 1 File structure destroyed

Procedure Division Statements for Relative Files

Within the Procedure Division, the verbs OPEN,
CLOSE, READ, WRITE, REWRITE, DELETE, and
START are available, just as for files whose organization
is indexed. (Therefore, the statements in Figure 14
also apply to relative files.)

The OPEN and CLOSE statements described under
sequential files are applicable to relative files, except
for the EXTEND phrase.

8-11

What Is Indexed File Organization?

Each indexed file declared in a COBOL program
generates two diskette files. The file specification in
the VALUE OF FILE-ID clause specifies a file
containing data only. The filename included in the
file specification is concatenated with an extension
KEY to form the file specification of the key file.

The key file contains keys, pointers to keys, and
pointers to data. The format of this file is very
complex, but it follows the guidelines for a prefix
B-tree.

The data file consists of data records. Each data record
is preceded by a 2-byte length field and a I-byte

reference count that indicates whether a record has
been deleted. The data file is terminated by a control
record that has a length field containing the number
2 followed by 2-bytes of high-values.

The key file is divided into 256-byte units, called
granules. Five possible granule types exist. The
following list shows the granule type indicator values,
which are located in the first byte of each granule:

Value Type Indicator

1 Data set control block
2 Key set control block
3 Node
4 Leaf
5 Deleted granule

Figure 13. Granule Type Indicators

Note: See Indexed File Recovery Utility
(REBUILD) in Appendix K.

8-12

The key file contains only one data set control block
in the first granule, one key set control block for the
primary file key, and additional key set control blocks
for alternate keys.

Damaged flags exist in the fourth byte of the data set
control block and in the fourth byte of each key set
control block. These flags are set to nonzero values
when the file is opened for updating, and restored to
zero when the file is closed.

Indexed-file organization provides for recording and
accessing records of a data base by keeping a directory
(called the control index) of pointers that enable
direct location of records having particular unique key
values. An indexed file must be assigned to DISK in
its defining SELECT sentence.

A file whose organization is indexed can be accessed
either sequentially, dynamically, or randomly.

Sequential access provides access to data records in
ascending order of RECORD KEY values.

In random access, you control the order of access to
records. Each record desired is accessed by placing
the value of its key in a key data item prior to an
access statement.

In dynamic access, the program logic may change
from sequential access to random access, and vice versa,
at will.

8-13

Syntax Considerations

In the Environment Division, the ACCESS and
ORGANIZATION clause formats are:

ACCESS MODE IS SEQUENTIALIRANDOMIDYNAMIC
ORGANIZATION IS INDEXED.

ASSIGN, RESERVE, and FILE STATUS clause formats
are identical to those specified in Chapter 5, under
"FILE-CONTROL Paragraph."

In the FD entry for an indexed file, both LABEL
RECORDS STANDARD and a VALUE OF FILE-ID
clause must appear. The formats of sequential files
apply, except that only the DISK-related forms are
applicable.

RECORD KEY Clause

The general format of this File Section clause, which
is required, is:

RECORD KEY IS data-name-1

where data-name-] is an item defined within the record
descriptions of the associated file description. It is a
group item or an elementary alphanumeric item. The
maximum key length is 60 bytes and the key should
never be made to contain all nulls.

If you specify random access mode, the value of
data-name-1 designates the record to be accessed by
the next DELETE, READ, REWRITE, or WRITE
statement. Each record must have a unique record key
value.

8-14

FILE STATUS Reporting

If a FILE STATUS clause appears in the Environment
Division for an indexed file, the designated two-character
data item is set after every I/O statement. The following
table summarizes the possible settings:

File Status 	File Status
Left 	Right 	Meaning

0 	 0 Successful completion
0 EOF

2 	 1 Key not in sequence
2 	 2 Attempt to write a

duplicate key
2 	 3 No record found
2 	 4 Disk space full
3 	 0 Permanent error
9 	 1 File structure destroyed

File Status "21" arises if ACCESS MODE is
SEQUENTIAL, and

• 	You do not write to an indexed file in ascending
sequence

or

• 	A key is altered prior to processing a REWRITE
statement

In an OPEN INPUT or OPEN 1-0 statement, a File Status
of "30" means File Not Found.

File Status "9 1 " occurs on an OPEN INPUT or OPEN
1-0 statement for a relative or indexed file whose
structure has been destroyed (for example, by a system
crash during output to the file). When this status is
returned on an OPEN INPUT, the file is considered to
be open, and READ statements may be processed. On
an OPEN 1-0, however, the file is not considered to be
open, and all I/O operations fail. The other settings
are self-explanatory.

8-15

Note that Disk Space Full occurs with Invalid Key (2)
for indexed and relative file handling, whereas it occurs
with Permanent Error (3) for sequential files.

If an error occurs when you run the program and no
AT END or INVALID KEY statements are given and
no appropriate Declarative ERROR section is supplied
and no FILE STATUS is specified, the error is
displayed on the screen, and the program ends.

Procedure Division Statements for Indexed Files

The syntax of the sequential file OPEN statement also
applies to indexed files, except that EXTEND is not
applicable.

The following table summarizes the available statement
types and whether they are permissible with the
ACCESS mode and the OPEN option in effect. Where
X appears, the statement is permissible; otherwise, it
is not valid under the associated ACCESS mode and
OPEN option.

In addition to the following statements, CLOSE is
permissible under all conditions; the same format
shown for SEQUENTIAL files is used.

8-16

ACCESS Procedure OPEN Option in Effect
MODE IS Statement INPUT OUTPUT 1-0

READ X X
WRITE X

SEQUENTIAL REWRITE X
START X X
DELETE X

READ X
WRITE X X

RANDOM REWRITE X
START
DELETE X

READ X X
WRITE X X

DYNAMIC REWRITE X
START X X
DELETE X

Figure 14. Procedure Statements for Indexed Files

CLOSE
Statement

Purpose: The CLOSE statement causes the system to make the
proper disposition of the file.

Format: 	CLOSE filename [WITH LOCK]

Remarks: You must use a CLOSE statement when the file has
stopped processing. When a file is closed or has never
been opened, you cannot READ from, REWRITE to,
or WRITE to that file. Any of these three statements
would cause a runtime error and make the program end.

If LOCK is used, the file cannot be reopened during the
current job. If LOCK is not specified immediately
after a filename, then that file may be reopened later
in the program if the program logic requires it.

If you try to CLOSE a file that is not currently open,
you get an error when you run the program, and the
program stops abnormally.

Example:

CLOSE MASTER-FILE-IN WITH LOCK, WORK-FILE.
CLOSE PRINT-FILE, TAX-RATE-FILE, JOB-PARAMETERS

WITH LOCK.

..

DELETE Statement
(Indexed I/O)

Purpose: The DELETE statement logically removes a record
from an indexed file.

Format: 	DELETE filename RECORD [INVALID KEY

imperative-statement...]

Remarks: For a file in the sequential access mode, the last I/O
statement performed for filename would have been a
successful READ statement. The record that was
read is deleted. Consequently, no INVALID KEY
phrase should be specified for sequential access mode
files.

For a file having random or dynamic access mode,
the record deleted is the one associated with the
record key. If there is no such matching record, the
invalid key condition exists, and control passes to the
imperative statements in the INVALID KEY clause.
Control passes to an applicable Declarative ERROR
section if no INVALID KEY clause exists.

Example: DELETE DISK-FILE RECORD.

8-19

DELETE Statement
(Relative I/O)

Purpose: You use the DELETE statement to remove a record
from a file.

Format: The format of the DELETE statement is the same for a
relative file and an indexed file:

DELETE filename RECORD

[INVALID KEY imperative-statement...]

Remarks: For a file in a sequential access mode, the immediately
previous action would have been a successful READ
statement; the record previously made available is
logically removed from the file. If the previous READ
was unsuccessful, an error occurs when you run the
program, and the program ends. Therefore, an
INVALID KEY phrase may not be specified for
sequential access mode files.

For a file declared with dynamic or random access mode,
the removal action pertains to whatever record is
designated by the value in the RELATIVE KEY item.
If no such numbered record exists, the INVALID KEY
condition arises.

Example: DELETE DISK-FILE RECORD
INVALID KEY

DISPLAY "KEY ERROR"
GO TO ERROR-RTN.

OPEN
Statement

Purpose: For a sequential INPUT file, opening initiates reading
the file's first records into memory, so that subsequent
READ statements may be processed without waiting.

For an OUTPUT file, opening makes available a record
area for development of one record, which is
transmitted to the assigned output device when the
WRITE statement is processed.

Format: 	OPEN INPUTII-OIOUTPUTIEXTEND filename

Remarks: The OPEN statement must be processed before you
can perform input or output to a file.

The OPEN OUTPUT statement causes an existing file
of the same name to be replaced by the file created
with OPEN OUTPUT.

An OPEN 1-0 statement is valid only for a file assigned
to a diskette. It permits use of the REWRITE
statement to modify records which have been accessed
by a READ statement. The WRITE statement may
not be used in 1-0 mode for files with sequential
organization. The file must exist on diskette when
the file is opened. It cannot be created by OPEN 1-0.

When the EXTEND phrase is specified, the OPEN
statement positions the file immediately after the last
logical record of that file. The file must already exist on
diskette. Subsequent WRITE statements referencing
the file add records to the end of the file. Thus,
processing proceeds as though the file had been opened
with the OUTPUT phrase and positioned at its end.
EXTEND can be used only for sequential or line
sequential files.

8-21

OPEN
Statement

Failure to precede (in terms of time sequence) file
reading or writing by an OPEN statement is an error
which causes the program to stop. Furthermore, a file
cannot be opened if it has been closed WITH LOCK.

Sequential files opened for INPUT or 1-0 access must
have been written in the appropriate format described
in the beginning of this chapter.

Example: OPEN INPUT DISK-FILE, OUTPUT PRINT-FILE.

8-22

READ Statement

(Indexed I/O)

Purpose: The READ statement accesses the data in your files.

Format: 	Format 1 (Sequential Access):

READ filename [NEXT] RECORD [INTO data-name-i]

[AT END imperative-statement 	.]

Format 2 (Random or Dynamic Access):

READ filename RECORD [INTO data-name-i]

[KEY IS data-name-21

[INVALID KEY imperative-statement...]

Remarks: Format 1 without NEXT must be used for all files having
sequential access mode. Format 1 with the NEXT
option is used for sequential reads of a file with
dynamic access mode.

The AT END clause is performed when the logical
end-of-file condition arises. If this clause is not written
in the source statement, an appropriately assigned
Declaratives ERROR section is given control at end-of-
file time, if available.

Format 2 is used for files in random access mode or for
files in dynamic access mode when records are to be
retrieved randomly.

In Format 2, the INVALID KEY clause specifies the
action to be taken if the access key value does not
refer to an existent key in the file. If you do not have
an INVALID KEY clause, the appropriate Declaratives
ERROR section, if supplied, is given control.

8-23

READ Statement
(Indexed I/O)

The optional KEY IS clause must designate the record
key item declared in the file's SELECT entry. This
clause serves as documentation only. You must ensure
that a valid key value is in the designated key field prior
to performing a random access READ.

The rules for sequential files regarding the INTO phrase
apply here as well.

Example: READ DISK-FILE NEXT RECORD
AT END GO TO WRITE-REPORT.

READ DISK-FILE INTO WORK-AREA.

8-24

READ Statement
(Relative I/O)

Purpose: You use the READ statement to access the data in your
files.

Format: 	Format 1:

READ filename [NEXT] RECORD [INTO data-name]

[AT END imperative-statement.. .]

Format 2:

BEAD filename RECORD [INTO data-name]

[INVALID KEY imperative-statement...]

Remarks: Format 1 must be used for all files in sequential access
mode. The NEXT phrase must be present to achieve
sequential access if the file's declared mode of access is
dynamic. The AT END clause, if given, is performed
when the logical end-of-file condition exists, or, if not
given, the appropriate Declaratives ERROR section is
given control, if available.

Format 2 is used to achieve random access with the
declared mode of access either random or dynamic.

If a Relative Key is defined (in the file's SELECT
entry), a Format 1 READ statement updates the
contents of the RELATIVE KEY item (data-name-1)
so as to contain the record number of the record
retrieved.

8-25

READ Statement
(Relative I/O)

For a Format 2 READ, the record that is retrieved
is the one whose relative record number is prestored
in the RELATIVE KEY item. If no such record exists,
however, the INVALID KEY condition arises, and is
handled by one of the following:

• 	The imperative statements given in the INVALID
KEY portion of the READ

• 	An associated declaratives section

The rules for sequential files regarding the INTO phrase
apply here as well.

Example: READ DISK-FILE NEXT RECORD
AT END GO TO WRITE-REPORT.

READ DISK-FILE INTO STORAGE-PLACE
INVALID KEY

DISPLAY "INVALID KEY"
GO TO ERROR-ROUTINE.

8-26

READ Statement

(Sequential I/O)

Purpose: The READ statement makes available the next logical
data record of the designated file from the assigned
device, and updates the value of the FILE STATUS
data item, if one is specified.

Format: READ filename RECORD [INTO data-name]

[AT END imperative-statement...]

Remarks: Since at some time the end-of-file will always be
encountered, you should always include the AT END
clause. The reserved word END is followed by any
number of imperative statements, all of which are
performed only if the end-of-file situation arises.
The last statement in the AT END series must be
followed by a period to indicate the end of the
sentence.

If end-of-file occurs but there is no AT END clause
on the READ statement, an applicable Declarative
procedure is performed. If neither AT END nor a
declarative exists and no FILE STATUS item is
specified for the file, a runtime I/O error is
processed.

When a data record to be read exists, the program
performs the sentence that follows the successful
READ statement.

When more than one level 01 item is subordinate to a
file definition, these records share the same storage
area. Therefore, you must be able to distinguish
between the types of records that are possible, in order
to determine exactly which type is currently available.
This is accomplished with a data comparison, using
an IF statement to test a field which has a unique value
for each type of record.

8-27

READ Statement

(Sequential I/O)

The INTO option lets you specify that a copy of the
data record is to be placed into a designated data field
in addition to the file's record area. The data-name
must not be defined in the File Section.

Also, the INTO phrase should not be used when the file
has records of various sizes as indicated by their record
descriptions. Any subscripting or indexing of data-name
is evaluated after the data has been read but before it is
moved to data-name. Afterward, the data is available
in both the file record and data-name.

Diskette files occur as blocked input and output. For
instance, a READ fills a physical buffer initially, and
then additional READs may simply obtain the next
logical record from the input buffer. The actual
transmission of data from a diskette occurs as
necessary.

If the actual record is shorter than the file record area,
the file record area is padded on the right with spaces.

Example: READ DISK-FILE INTO DATA-FIELD
AT END GO TO WRITE-REPORT.

READ FILE-3.

8-28

REWRITE Statement
(Indexed I/O)

Purpose: The REWRITE statement logically replaces an existing
record.

Format: 	REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement... I

Remarks: For a file in sequential access mode, the last READ
statement must have been successful in order for a
REWRITE statement to be valid. If the value of the
record key in record-name (or corresponding part of
data-name, if FROM appears in the statement) does not
equal the key value of the record just previously
read, then the invalid key condition exists and the
imperative statements are processed, if they are present.
Otherwise, an applicable Declaratives ERROR section
is run, if one is available.

For a file in a random or dynamic access mode, the
record to be replaced is specified by the record key;
no previous READ is necessary. The INVALID KEY
condition exists when the record key's value does not
equal that of any record stored in the file.

Example: REWRITE FILE-RECORD FROM HOLD-AREA.

8-29

REWRITE Statement
(Relative I/O)

Purpose: You use the REWRITE statement to replace a record
in a file.

Fonnat: The format of the REWRITE statement is the same for
a relative file and an indexed file:

REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement 	.1

Remarks: For a file in sequential access mode, the immediately
previous action would have been a successful READ;
the record thus previously made available is replaced
in the file by the REWRITE. If the previous READ
was unsuccessful, an error occurs when you run the
program, and the program ends. Therefore, no
INVALID KEY clause is allowed for sequential access.

For a file declared with dynamic or random access
mode, the record that is replaced by the REWRITE
is the one whose ordinal number is preset in the
RELATIVE KEY item. If no such item exists, the
INVALID KEY condition arises.

Example: REWRITE NAME-RECORD.
REWRITE NAME-RECORD FROM HOLD-RECORD

INVALID KEY GO TO ERROR-RTN.

REWRITE Statement
(Sequential I/O)

Purpose: The REWRITE statement replaces a logical record on a
sequential DISK file.

Format: REWRITE record-name [FROM data-name]

Remarks: Record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.
Record-name and data-name must refer to separate
storage areas.

When this statement is processed, the file to which
record-name belongs must be open in the 1-0 mode.

If a FROM part is included in this statement, the effect
is as if MOVE data-name TO record-name is performed
just prior to the REWRITE.

REWRITE replaces the record that was accessed by the
most recent successfully completed READ statement.
If the record which you are rewriting to the file is
longer than the file's record, only as many bytes as will
fit are actually rewritten. On the other hand, if the
record which you are rewriting to the file is shorter
than the file's record, unpredictable information will be
written after the record until the beginning of the next
record in the file.

Example: REWRITE NAME-RECORD FROM WS-HOLD.

8-31

START Statement
(Indexed I/O)

Purpose: The START statement enables an indexed file to be
positioned for reading at a specified key value. This
is permitted for files open in either sequential or
dynamic access modes.

Format: START filename [KEY IS GREATER THAN!

NOT LESS THANJ EQUAL TO data-name]

[INVALID KEY imperative-statement...]

Remarks: Data-name must be the declared record key, and the
value to be matched by a record in the file must be
prestored in the data-name. When this statement is
processed, the file must be open in the INPUT or
1-0 mode.

If the KEY phrase is not present, equality between a
record in the file and the record key value is sought.
If key relation GREATER or NOT LESS is specified,
the file is positioned for next access at the first record
greater than, or greater than or equal to, the indicated
key value.

If no matching record is found, the imperative
statements in the INVALID KEY clause are performed,
or control goes to an appropriate Declaratives ERROR
section.

Example: START DISK-FILE KEY GREATER THAN KEY-VALUE.

8-32

START Statement
(Relative I/O)

Purpose: You use the START statement to specify the beginning
position for file reading operation.

Format: The format of the START statement is the same for a
relative file and an indexed file:

START filename [KEY IS GREATER THAN

NOT LESS THANEQUAL TO data-name]

(INVALID KEY imperative-statement. .. I

Remarks: This statement specifies the beginning position for
reading operations; it is permissible only for a file
whose access mode is defined as sequential or dynamic.

Data-name may only be that of the previously declared
RELATIVE KEY item, and the number of the relative
record must be stored in it before START is performed.
When performing this statement, the associated file
must be currently open in INPUT or 1-0 mode.

If the KEY phrase is not present, equality between a
record in the file and the record key value is sought. If
key relation GREATER or NOT LESS is specified, the
file is positioned for next access at the first record
greater than, or greater than or equal to, the indicated
key value.

If no such relative record is found, the imperative
statements in the INVALID KEY clause are performed,
or control goes to an appropriate Declaratives ERROR
section.

Example: START DISK-FILE KEY EQUAL REL-KEY.

8-33

WRITE Statement

(Indexed I/O)

Purpose: The WRITE statement releases a logical record for an
output or input-output file.

Format: WRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement...]

Remarks: Just before the WRITE statement is processed, a valid
(unique) value must be in that portion of the record-
name (or data-name-1 if FROM appears in the
statement) that serves as RECORD KEY.

In the event of an improper key value, the imperative
statements are performed if the INVALID KEY clause
appears in the statement. Otherwise, an appropriate
Declaratives ERROR section is started, if applicable.
The INVALID KEY condition arises if one of these
conditions exists:

• 	For sequential access, key values are not
ascending from one WRITE to the next WRITE

• 	The key value is not unique

• 	The allocated disk space is exceeded

Example: WRITE FILE-RECORD FROM DATA-AREA
INVALID KEY GO TO GET-VALID-KEY.

8-34

WRITE Statement
(Relative I/O)

Purpose: You use the WRITE statement to perform output to a
file.

Format: The format of the WRITE statement is the same for a
relative file as for an indexed file:

WRITE record-name [FROM data-name]

[INVALID imperative-statement..

Remarks: If access mode is sequential, then completion of a
WRITE statement causes the relative record number of
the record just output to be placed in the RELATIVE
KEY item.

If access mode is random or dynamic, then you must
preset the value of the RELATIVE KEY item in order
to assign the record an ordinal (relative) number.

The INVALID KEY condition arises if there already
exists a record having the specified ordinal number, or
if the disk space is exceeded.

Example: WRITE DATA-RECORD FROM HOLD-RECORD
INVALID GO TO ERROR-ROUTINE.

8-35

WRITE Statement
(Sequential I/O)

Purpose: You use the WRITE statement for file output.

Format: WRITE record-name [FROM data-name-11

[(AFTER IBEF0RE) ADVANCING

(operand LINE (S) I PAGE)]
[AT END-OF-PAGE EOP imperative-statement]

Remarks: Depending on the device assigned, "written" output
may take the form of printed matter or magnetic
recording on a diskette. We remind you also that you
use READ with filename, but you use WRITE with
record-name. The associated file must be open in the
OUTPUT mode at the time when the WRITE
statement is processed.

Record-name must be one of the level 01 records
defined for an output file, and may be qualified by the
filename. The WRITE statement releases the logical
record to the file and updates its FILE STATUS item,
if one is specified.

If the data to be output has been developed in Working-
Storage or in another area (for example, in an input
file's record area), the FROM suffix lets you stipulate
that the designated data (data-name-1) is to be copied
into the record-name area and then output from there.
Record-name and data-name-i must refer to separate
storage areas.

When you try to write beyond the externally defined
boundaries of a sequential file, a declarative procedure
is performed (if available), and the FILE STATUS (if
available) indicates a boundary violation. If neither
is available, an error occurs when the program runs.

8-36

WRITE Statement

(Sequential I/O)

The ADVANCING option is restricted to line printer
output files, and lets you control the line spacing on the
paper in the printer. Operand is either an unsigned
integer literal or a data name; values from 0 to 120 are
permitted:

Integer
	

Carriage Control Action

0 	No spacing

Normal (single spacing)

2 	Double spacing

3 	Triple spacing
• 	S
• 	•
• 	S

Single spacing (that is, AFTER ADVANCING 1 LINE)
is assumed if there is no BEFORE or AFTER option
in the WRITE statement.

Use of the key word AFTER implies that the carriage
control action precedes printing a line, whereas use of
BEFORE implies that writing precedes the carriage
control action.

If PAGE is specified, the data is printed BEFORE or
AFTER the printer is repositioned to the next
physical page. However, if a LINAGE clause is
associated with the file, the repositioning is to the
first line that can be written on the next logical page
as specified in the LINAGE clause.

If the END-OF-PAGE phrase is specified, the LINAGE
clause must be specified in the file description entry
for the associated file. EOP means END-OF-PAGE.

8-37

WRITE Statement
(Sequential I/O)

An end-of-page condition is reached when a WRITE
statement with the END-OF-PAGE phrase causes
printing or spacing within the footing area of a page
body. This occurs when such a WRITE statement
causes the LINAGE-COUNTER to equal or exceed the
FOOTING value, if specified. In this case, after the
WRITE statement is processed, the imperative statement
in the END-OF-PAGE phrase is processed.

A page overflow condition is reached whenever a WRITE
statement cannot be fully accommodated within the
current page body. This occurs when a WRITE
statement would cause the LINAGE-COUNTER to
exceed the value specified as the size of the page body in
the LINAGE clause. In this case, the record is printed
before or after (depending on the phrase used) the
printer is repositioned to the first line of the next logical
page. The imperative statement in the END-OF-PAGE
clause, if specified, is processed after the record is
written and the printer has been repositioned.

Clearly, if no FOOTING value is specified in the
LINAGE clause, or if the end-of-page and overflow
conditions occur simultaneously, then only the overflow
condition is effective.

Example:

WRITE PRINT-LINE FROM DATA-FIELD AFTER 2 LINES.
WRITE RECORD-1

CHAPTER 9. TABLE HANDLING BY THE
INDEXING METHOD

Contents

Index Names and Index Items 9-3
Relative Indexing 	9-4

SEARCH Statement—Format I 9-5

SEARCH Statement—Format 2 9-8

SET Statement 9-11 1

9-1

Index Names and Index Items

In addition to the capabilities of subscripting described
in Chapter 3, IBM COBOL provides the indexing
method of table handling. You define a table in the
Data Division by using the OCCURS clause.

An index name is declared not by the usual method of
level number, name, and data description clauses, but
implicitly by appearance in the INDEXED BY index-
name part of an OCCURS clause. An index name must
be unique.

An index data item is an item defined by the USAGE
IS INDEX phrase. An index data item must not have
a PICTURE.

An index name or index data item may only be
modified by:

• A SET statement

A SEARCH statement

• 	A CALL statement's USING list with the
corresponding PROCEDURE HEADER USING
list in the subprogram

An index name or index data item may be used:

• 	In a relation condition

• As the variation item in a PERFORM VARYING
statement

• 	In place of a subscript

In all cases, the process is equivalent to dealing with a
binary word integer subscript. You must initialize (by
using SET, SEARCH, or PERFORM) index-name to
some value before you use it.

9-3

When you refer to an item in a table controlled by an
OCCURS clause, the reference is expressed with a
proper number of subscripts (or indexes), separated by
commas. The whole is enclosed in matching
parentheses. For example:

TAX-RATE (BRACKET, DEPENDENTS)
XCODE (I, 2)

The subscripts can be:

• 	Integer decimal items

• 	Integer constants

• Binary integer (COMPUTATIONAL-0 or INDEX)
items

• 	Index names

Subscripts may be qualified, but not subscripted
themselves. A subscript may be signed; but if it is, it
must be positive. The lowest acceptable value is 1,
pointing to the first element of a table. The highest
permissible value is the maximum number of
occurrences (up to a maximum of 1023) of the item
as specified in its OCCURS clause.

Relative Indexing

A further capability exists, called relative indexing. In
this case, a subscript is expressed as:

name + integer-constant

where a space must be on either side of the plus or
minus, and name may be any proper index name. For
example:

XCODE (I + 3, J

9-4

SEARCH Statement—Format 1

Purpose: You use the SEARCH statement to perform a linear
search of a table.

Format: SEARCH table [VARYING identifierindex-name]

[AT END imperative-statement-11

(WHEN Condition-1

NEXT SENTENCE Ii mperative-statement_ 2)

Remarks: Table is the name of a data item having an OCCURS
clause that includes an INDEXED-BY list. Table must
be written without subscripts or indexes, because the
nature of the SEARCH statement causes automatic
variation of an index-name associated with a particular
table.

The four possible uses of VARYING are:

• 	NO VARYING phrase: the first-listed index-name
for the table is varied.

• 	VARYING index-name in a different table: the
first-listed index-name in the table's definition is
varied, implicitly, and the index-name listed in the
VARYING phrase is varied in like manner,
simultaneously.

• VARYING index-name defined for table: this
specific index-name is the only one varied.

• 	VARYING integer-data-item-name: both this
data-item and the first-listed index-name for table
are varied, simultaneously.

9-5

SEARCH Statement—Format 1

Interpretation of the term VARYING follows these
steps:

The initial value is assumed to have been established
by an earlier statement, such as SET.

2. If the initial value exceeds the maximum declared
in the applicable OCCURS clause, the SEARCH
operation ends at once; and if an AT END phrase
exists, the associated imperative-statement-] is
performed.

3. If the value of the index is within the range of valid
indexes (1, 2, ... up to and including the maximum
number of occurrences), then each WHEN-
condition is evaluated until one is true or all are
found to be false. If one is true, its associated
imperative statement is performed and the SEARCH
operation ends. If none is true, the index is
incremented by one and step (3) is repeated. Note
that incrementation of index applies to whatever
item and/or index is selected according to the four
uses of VARYING stated above.

If the table is subordinate to another table, an index-
name must be associated with each dimension of the
entire table via INDEXED BY phrases in all the OCCURS
clauses. Only the index-name of the SEARCH table is
varied (along with another VARYING index-name or
data-item).

To search an entire two-dimensional or three-dimensional
table, a SEARCH must be performed several times with
the other index-names set appropriately each time,
probably with a PERFORM, VARYING statement.

9-6

SEARCH Statement—Format 1

Example: SEARCH DATA-TABLE
AT END GO TO WRITE-REPORT
WHEN ID-NUMBER = ID-CODE (INDEX-VALUE)
GO TO PROCESS-DATA.

9-7

SEARCH Statement—Format 2

Purpose: Format 2 SEARCH statements deal with tables of
ordered data.

Format: SEARCH ALL table

[AT END imperative-statement-i ...]

WHEN condition

(NEXT SENTENCE Iimperative -statement - 2 . . .}

Remarks: Only one WHEN clause is permitted, and the
following rules apply to the condition:

1. Only a simple relational condition or condition-
name may be used, and the subject must be
properly indexed by the first index-name
associated with table (along with sufficient other
indexes if multiple OCCURS clauses apply).

Each subject data-name (or the data-name
associated with condition-name) in the condition
must be mentioned in the KEY clause of the
table. The KEY clause is a part of the OCCURS
clause having the following format:

ASCENDINGIDESCENDING KEY IS data-name

where data-name is the name defined in this data
description entry (following level number) or one
of the subordinate data-names. If more than one
data-name is given, then all of them must be the
names of entries subordinate to this group item.

The KEY phrase indicates that the repeated data
is arranged in ascending or descending order
according to the data-names which are listed (in
any given KEY phrase) in decreasing order of
significance. More than one KEY phrase may be
specified.

9-8

SEARCH Statement—Format 2

2. In a simple relational condition, only the equality
test (using relation = or IS EQUAL TO) is
permitted.

3. Any condition-name variable (Level 88 items) must
be defined as having only a single value.

4. The condition may be compounded by use of the
logical connector AND, but not OR.

5. In a simple relational condition, the object (to the
right of the equal sign) may be a literal or an
identifier. The identifier must NOT be referenced
in the KEY clause of the table or be indexed by
the first index name associated with the table.
(The term identifier means data-name, including
any qualifiers, subscripts, and indexes.)

If you do not follow these rules, you may get
unpredictable results. Unpredictable results also occur
if the table data is not ordered in conformance with
the declared KEY clauses, or if the keys referenced in
the WHEN-condition are not sufficient to identify a
unique table element.

In a Format 2 SEARCH, a nonserial type of search
operation may take place, relying upon the declared
ordering of data. The initial setting of the index-name
for table is ignored and its setting is varied automatically
during the searching, always within the bounds of the
maximum number of occurrences.

If the condition (WHEN) cannot be satisfied for any
valid index value, control is passed to imperative-
statement-1, if the AT END clause is present, or to the
next sentence if there is no AT END clause.

9-9

SEARCH Statement—Format 2

If all the simple conditions in the single WHEN-condition
are satisfied, the resultant index value indicates an
occurrence that allows those conditions to be satisfied,
and control passes to imperative-statement-2.
Otherwise, the final setting is not predictable.

Example: SEARCH ALL PRODUCT-TABLE
AT END GO TO WRITE-REPORT
WHEN PRODUCT-NO = PRODUCT-CODE (INDEX-1)

GO TO PROCESS-DATA.

9-10

SET Statement

Purpose: The SET statement lets you change index names, index
items, or binary subscripts for table handling purposes.

Format: 	The two formats are:

Format I:

SET index-name-i Iindex-item-i data-name-i

TO index-name-21index-item-21data-name-2 Iinteger-2

Format 2:

SET index-name--3 ... UP BY J DOWN BY

data-name-4 I integer-4

Remarks: Format 1 is equivalent to moving the TO value (that is,
integer-2) to multiple receiving fields written
immediately after the verb SET.

Format 2 is equivalent to reducing (DOWN) or
increasing (UP) each of the quantities written
immediately after the verb SET. The amount of the
reduction or increase is specified by a name or value
immediately following the word BY.

In any SET statement, data-names are restricted to
integer items.

Example: SET INDEX-] TO 1.
SET INDEX-2 UP BY 1

9-11

CHAPTER 10. INTERPROGRAM
COMMUNICATION

Contents

How Communication is Handled 10-3
Assembler Subroutines 10-3
Example 10-5

COBOL Program 10-5
ASSEMBLER Program 10-6

Chain Parameters 10-7

CALL Statement 10-9

CHAIN Statement 10-10

EXIT PROGRAM Statement 10-11

LINKAGE Section 10-12

PROCEDURE DIVISION Header with CALL
and CHAIN 10-13

10-1

How Communication Is Handled

Separately compiled COBOL program modules may be
combined into one single program. Interprogram
communication is made possible through the use of the
Linkage Section of the Data Division (which follows
the Working-Storage Section) and by the CALL
statement and the USING list appendage to the
Procedure Division header of a subprogram module.

The program chaining facility allows a COBOL program
to transfer control to another program and, optionally,
to pass data items as parameters to the chained program.

Assembler Subroutines

It is also possible for an IBM COBOL program to call
assembler subroutines. (Refer to IBM Personal
Computer MACRO Assembler for instructions on
writing assembly language programs.) The IBM
COBOL runtime system transfers execution to a
subroutine by means of a machine language FAR CALL
instruction. Execution should return via the MACRO
Assembler RET instruction.

Parameters are passed by reference (that is, by passing
the address of the parameter). Parameter addresses
are passed on the stack.

10-3

Low Memory

IP Register Value

CS Register Value

Parameter n

Top of Stack 	Parameter 1 	Subprogram

Main Program

High Memory

Figure 15. Contents of Stack at Entry to a Routine

The called routine must preserve the BP register
contents and remove the parameter addresses from the
stack before returning.

The subroutine can expect only as many parameters
as are passed, and the calling program is responsible
for passing the correct number of parameters. Neither
the compiler nor the runtime system checks for the
correct number of parameters. It is entirely up to you
to determine that the type and length of arguments
passed by the calling program are acceptable to the
called subroutine. Numeric values must be passed as
binary (COMP-0).

The stack space used by an IBM COBOL program is
contained within the program boundaries, so assembler
programs that use the stack must not overflow or
underflow the stack.

10-4

The most certain way to assure safety is to save the
COBOL stack pointer upon entering the routine, and
to set the stack pointer to another stack area. The
assembler routine must then restore the saved COBOL
stack pointer before returning to the main program.

To call a subprogram, use the name of the subprogram
in the COBOL CALL statement. The name of an
assembler subprogram is defined by a PUBLIC
pseudo-op and is declared as PROC FAR. (The name
of a COBOL subprogram is the name entered in the
PROGRAM-ID paragraph.) Then link the subprogram
to the main program using the IBM Personal Computer
Linker, as described in Chapter 3 and in Appendix C,
"The Linker (LINK) Program."

Example

COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PARM] 	PlC 99 COMP-0 VALUE 45.
77 PARM2 	PlC 99 COMP-0 VALUE 50.
77 PARM3 	PlC 99 COMP-0 VALUE 0.
77 PAR] 	PlC 99.
77 PAR2 	PlC 99.
77 PAR3 	PlC 99.
PROCEDURE DIVISION.
THIS-IS-IT.

CALL 'ADDIT' USING PARM] , PARM2, PARM3.
MOVE PARM1 TO PAR]
MOVE PARM2 TO PAR2.
MOVE PARM3 TO PAR3.
DISPLAY PAR] ' + 	PAR2 ' = ' PAR3.
STOP RUN

10-5

ASSEMBLER Program

assume cs:codeseg

parm struc ;stack definition

savebp dw ? ;saved caller's 	bp

dw ? ;caller's 	ip reg

dw ? ;caller's cs 	reg

parm3 dw ? ;addr 3rd parameter

parm2 dw ? ;addr 2nd parameter

parml dw ;addr 1st parameter

parm ends

codeseg segment para

public addit ;entry point

addit 	proc far ;long call

push bp ;save bp of caller

mov bp,sp ;set up stack frame

mov bx,[bp].parml ;get addr of parml

mov ax,[bx] ;put value in ax

mov bx,[bp].parm 2 ;get addr of parm2

add ax,[bx] ;add values

mov di,[bp].parm 3 ;get addr of parm3

tiiov [di],ax ;put result into parm3

POP bp ;restore caller's 	bp

ret 6 ;restore stack

addit 	endp

codeseg ends

end

10-6

Chain Parameters

The parameters that are passed between the programs
with a CHAIN USING statement are stored at the
highest available memory address. The memory layout
follows, starting at the highest available address and
proceeding toward location zero. (See Figure 16.)

1. 32 bytes are reserved for stack space.

2. The length of the first parameter in the USING list
is stored in two bytes, high-order byte first.

The parameter is stored as a string of bytes in the
same order as they were stored in the Data
Division, beginning at the address of the length
minus the length itself.

4. Each parameter in the USING list follows, in order,
each preceded by its length.

The chained program must expect the same number and
format of parameters as were passed, as the compiler
and runtime system cannot check the number or format.

10-7

Low Memory

High Memory

Last byte of parameter 2

Length of parameter 2 (low byte)

Length of parameter 2 (high byte)

First byte of parameter 2

Last byte of parameter 1

Length of parameter 1 (low byte)

Length of parameter 1 (high byte)

S

S

Stack
Space

(32 bytes)

Figure 16. Memory Layout When Chaining Programs

10-8

CALL
Statement

Purpose: The CALL statement allows a COBOL program to
transfer control to a subprogram.

Format: 	CALL literal [USING data-name ...]

Remarks: Literal is a subprogram name defined as the
PROGRAM-ID of a separately compiled program;
literal is nonnumeric.

Data-names in the USING list are made available to the
called subprogram by passing addresses to the
subprogram; these addresses are assigned to the Linkage
Section items declared in the USING list of that
subprogram. Therefore, the number of data-names
specified in matching CALL and Procedure Division
USING lists must be identical.

Note: Correspondence between lists is by position,
not by identical spelling of names.

Example: CALL "SUBPRG' USING PARM , PARM2, PARM3.
CALL "COBSUB".

10-9

CHAIN
Statement

Purpose: The CHAIN statement allows a COBOL program to
transfer control to any other program and, optionally,
to pass data items as parameters to the chained program.

Format: CHAIN literal identifier-i

(USING identifier-2...1

Remarks: Literal and identifier-i must be alphanumeric, and
identifier- i must contain a terminating space. Each
occurrence of identifier-2 must be defined in the
Working-Storage or Linkage Section or in the record
area of a file open at the time the CHAIN statement
is processed.

When the CHAIN statement is processed, the value of
literal or identifier-i, up to but not including the first
space encountered (or the end of the literal), is
interpreted as the name of a DOS format program file.
The named program is loaded into memory and run.
All program and data structures of the chaining
program are lost, except that the USING clause may
be used to transfer parameters to the chained program.

The chained program need not be a COBOL program.
If it is, it must be a main program.

Example: CHAIN "NEXTFILE.CUB".
CHAIN MENU USING EGGS, HAM, 0-U.

10-10

EXIT PROGRAM
Statement

Purpose: The EXIT PROGRAM statement, appearing in a called
subprogram, causes control to be returned to the next
statement after CALL in the calling program.

Format: EXIT PROGRAM.

Remarks: This statement must be a paragraph by itself. If it
appears in a main program, it causes no action.

Example: EXIT PROGRAM.

10-11

LINKAGE
Section

Purpose: The Linkage Section describes data made available in
memory from another program module.

Format: 	Any record description clause may be used to describe
items in the Linkage Section as long as the VALUE
clause is not specified for other than level 88 items.

Remarks: Record description entries in the Linkage Section
provide data-names by which data-areas reserved in
memory by other programs may be referenced. Entries
in the Linkage Section do not reserve memory areas
because the data is assumed to be present elsewhere in
memory, in the calling program. The Linkage Section
occurs in the called program where the CALL
statement appears in the calling program.

Example: LINKAGE SECTION.
01 PARAMETER-1 	PlC 999.
01 PARAMETER-2 	PlC 999.
01 PARAMETER-3 	PlC 999.

10-12

PROCEDURE DIVISION Header
with CALL and CHAIN

Purpose: This header describes the linkage and parameter
initialization requirements of a called or chained
program.

Format: The header of a chained main program is coded as:

PROCEDURE DIVISION [CHAINING data-name-i...].

Data-name-1 must be in the Working-Storage Section of
your program.

The header of a subprogram is coded as:

PROCEDURE DIVISION USING [data-name-2...].

Data-name-2 must be in the Linkage Section of your
program

Remarks: A main program must be linked by itself or with any
number of subprograms. It may then be run
independently or started by a CHAIN statement in
another program.

A subprogram must be linked with exactly one main
program and, optionally, any number of other
subprograms. You can run a subprogram only by using
the CALL statement. For a description of the linking
process, see Appendix C, "The Linker (LINK) Program."

10-13

PROCEDURE DIVISION Header
with CALL and CHAIN

A chained or called program should have a chaining list
or USING list if and only if the invoking CHAIN or
CALL statement has a USING list. The USING list
must contain at least one item. Also, the numbers of
entries in the lists should be equal, and entries with
corresponding positions in the two lists should
reference data items of the same size and USAGE.
Failure to conform to these rules cannot be diagnosed
by the compiler and can cause unpredictable results
when the program runs.

The values of the data items named in the Procedure
Division header are established when the program is
initialized. They are established by using the contents
of corresponding data items named in the invoking
CALL or CHAIN statement. In the case of CALL, the
identification is made by passing pointers. Therefore,
if the value of a data item named in a Procedure
Division USING clause is changed while the subprogram
is running, the corresponding data item in the calling
program reflects the change after control is returned
from the subprogram.

10-14

APPENDIXES

Contents

APPENDIX A. COBOL ERROR MESSAGES 	. A-3
Compile Time Errors A-4

Command Input and DOS-dependent I/O
Errors A-4

Syntax Errors A-7
Runtime Errors A-22

APPENDIX B. RESERVED WORDS B-i

APPENDIX C. THE LINKER (LINK)
PROGRAM C-i

Introduction C-i
Files C-2

Input Files C-2
Output Files C-2
VM.TMP (Temporary File) C-3

Definitions C-4
Segment C-4
Group C-S
Class C-S

Command Prompts C-6
Detailed Descriptions of the Command Prompts . 	C-8

Object Modules [.OBJ] C-8
Run File [filename 1.EXEJ C-9
List File [NUL.MAP] C-9
Libraries [.LIB] C-i 0
Parameters C-i 1
/DSALLOCATION C-i 1
/HIGH C- 12
/LINE C-12
/MAP C-13
/PAUSE C-13
/STACK:size C-i 3

How to Start the Linker Program C-14
Before You Begin C-14
Example C-i 8

Example Linker Session C-i 9

A-i

Load Module Memory Map 	 . C-23
How to Determine the Absolute Address

of a Segment C-24
Messages 	. C-25

APPENDIX D. SAMPLE SESSIOND-I
Individual Screen OutputD-I I
Printer Output D-12

APPENDIX E. ADVANCED FORMS OF
CONDITIONS E- I

Evaluation Rules for Compound
ConditionsE-1

Parenthesized Conditions E-2
Abbreviated Conditions E-2
NOT, the Logical Negation Operator E-3

APPENDIX F. NESTING OF IF STATEMENTS . F-I

APPENDIX G. ASCII CHARACTER CODES . . G-I

APPENDIX H. TABLE OF PERMISSIBLE
MOVE OPERANDS H-1 I

APPENDIX I. PERFORM WITH VARYING AND
AFTER CLAUSES I-I

APPENDIX J. EXAMPLE PROGRAMS WITH
VIDEO MODE J-1

Example COBOL Programi-I
Example ASSEMBLER ProgramJ-2

APPENDIX K. INDEXED FILE RECOVERY
UTILITY (REBUILD) K-I

Introduction K-I
How the Utility Works K-2
When to Use REBUILD K-3

Diskette Full K-3
Abnormal Termination K-3
Unusable Space K-4

Using REBUILD K-S
Sample REBUILD Session K-8

INDEX 	X-1

A-2

APPENDIX A. COBOL ERROR MESSAGES

This appendix lists all of the error messages which you
may encounter while you are compiling and running
an IBM COBOL program. Each message is accompanied
by a brief explanation of what caused the error.

The messages are organized in two sections:

• 	Compile time errors

• 	Runtime errors

A-3

Compile Time Errors

Two different types of errors can be detected by your
IBM Personal Computer during compilation:

• Command input errors and errors caused when a
DOS-dependent I/O operation encounters a
problem.

• Syntax errors in the COBOL program.

Command Input and DOS-dependent I/O Errors

The following messages may be displayed whenever the
error occurs during the compile. Each of the seven
messages is followed here by an additional explanation.
When you get one of these messages, you should correct
the problem and retry the compile.

A-4

Message 	 Explanation

?Bad filename 	A filename is not constructed
according to the rules of DOS.

?File not found 	You have specified a filename
for input that does not exist.

?Bad switch: /X 	You have entered a slash
parameter ("/") that the
compiler does not recognize.

?Command error:'X' 	You have an invalid entry (X)
in the command line.

?Can't create file 	An output file cannot be
opened.

?Disk X full 	 The diskette in the specified
drive is full. If X is blank,
it refers to the default drive.

?Overlay n not found 	One of the COBOL compiler
overlay files (COBOLn.OVR)
is not present on the diskette.

?Memory Full 	See explanation following.

?Compiler Error 	See explanation following.

A-S

Two error messages that occur infrequently and are also
displayed on the console must be noted. One is
?Memory Full. This occurs when there is insufficient
memory for all the symbols and other information the
compiler obtains from your source program. It
indicates that the program is too large and must be
decreased in size or split into separately compiled
modules.

The symbol table of data names and procedure names
is usually the largest user of space during compilation.
All names require as many bytes as there are characters
in the name, and there is an overhead requirement of
about 10 bytes per data-name and 2 bytes per procedure-
name. On the average, each line in the Data Division
requires about 14 bytes of memory during compilation,
and each line in the Procedure Division requires about
3-1/4 bytes.

The other error message is the following:
?Compiler Error in Phase n at address. It occurs when
the compiler becomes confused. It is usually caused by
one of four problems:

• 	The source program is incorrect. You can
sometimes determine the cause by compiling
increasingly larger chunks of your program, starting
with only a few lines, until the error recurs.

• 	The source program diskette is damaged.

• 	The compiler or one of the overlay files has been
damaged. In this case, you should try your
backup copy.

• 	A stack overflow may cause this error. You can
try the /P option to correct this type of error.

With both of these error messages, compilation stops
immediately.

A-6

Syntax Errors

Diagnostic messages are listed at the bottom of a
compiled program listing and also on the screen. They
consist of two parts:

1. The associated source line number or file occurrence
- four digits, followed by a colon (:).

2. An English explanation of the error detected by the
compiler. If this text begins with an IF/ or a /W!,
then it is only a warning; if not, it is an error
sufficiently severe to prevent you from linking and
running an object program.

Regardless of whether a listing has been requested, the
errors/warnings (if any) are always listed on the screen
at the end of compilation. Also, a message displaying
the total number of errors/warnings is displayed. This
allows you to make a simple change to a COBOL
program, recompile it without a listing and still know
whether the compiler encountered any questionable
statements in the program.

The following diagnostic messages are issued by the
compiler. The messages are listed in alphabetical order,
with the /F/ and /W/ warnings alphabetized at the end
of the rest of the compilation messages. When a /F/
message appears, the line number associated with it
represents the order of files as found in the File Section.

A FILE-ID NAME IS UNDEFINED.

A data name specified in a VALUE OF FILE-ID clause
is not defined.

A PARAGRAPH DECLARATION IS REQUIRED
HERE.

An EXIT statement is not followed by a section or
paragraph header.

A-7

AREA A NOT BLANK IN CONTINUATION LINE.

A character was encountered in Area A.

AREA-A VIOLATION; RESUMPTION AT NEXT
PARAGRAPH/SECTION/DIVISION/VERB.

The entry starting in one of columns 8-12 cannot be
interpreted as a division header, section name, paragraph
name, file description indicator, or 01 or 77 level
number.

CLAUSES OTHER THAN VALUE DELETED.

The data description of a level 88 item includes a
descriptive clause other than VALUE IS.

ELEMENT LENGTH ERROR.

The length of the quoted literal is over 120 characters,
or the numeric literal is over 18 digits, or the
identifier/name is over 30 characters.

ERRONEOUS FILENAME IS IGNORED.

An entry which has not been declared as a filename
appears where a filename is required.

ERRONEOUS QUALIFICATION; LAST
DECLARATION USED.

The qualifiers used with a data name are incorrect or not
unique.

ERRONEOUS RERUN-ENTRY IS IGNORED.

A RERUN clause of the 1-0-CONTROL paragraph
contains a syntax error.

A-8

ERRONEOUS SUBSCRIPTING; STATEMENT
DELETED.

Too few or too many subscripts are provided for a data
name.

EXCESSIVE LITERAL POOL OR DISPLAY STRING
LENGTH.

The total length of the literals contained within a single
paragraph is greater than 4096 bytes.

EXCESSIVE NUMBER OF FILES/4KB
WORKING-STORAGE BLOCKS.

The sum of (number of files declared) + (size of
WORKING-STORAGE divided by 4KB and rounded
up) + (number of level 01 and level 77 entries in the
LINKAGE SECTION) is greater than 14.

EXCESSIVE OCCURS NESTING IS IGNORED.

OCCURS clauses are nested more than three deep.

EXCESSIVE SEGMENT NUMBER.

A section header contains a section number greater
than 99.

EXCESSIVE SEGMENT NUMBER IN
DECLARATIVES.

A section header in the DECLARATIVES region
contains a section number greater than 49.

A-9

FILE NOT SELECTED; ENTRY BYPASSED.

An FD is given for a filename which does not appear in
any SELECT sentence.

FILL CHARACTER CONFLICT.

In a Format 3 ACCEPT statement, SPACE-FILL and
ZERO-FILL are both specified.

FRACTIONAL EXPONENT OR NEGATIVE
SCALED BASE (99P).

In a COMPUTE statement, an exponent is a numeric
literal with a decimal point or a numeric data item
described with a digit to the right of an assumed decimal
point, or the PICTURE of an exponentiation base (entry
preceding **) contains the character P as the rightmost
digit.

GROUP ITEM, THEREFORE PIC/JUST/BLANK/
SYNC IS IGNORED.

A phrase which is only allowed for elementary data
items is used in the description of an item which is
followed immediately by an item of a higher level
number.

GROUP SIZE GREATER THAN 4095; LENGTH SET
TO!.

The size of an item at a level other than 01 is declared
to be greater than 4095 bytes.

ILLEGAL CHARACTER.

An invalid character has been encountered.

A-b

ILLEGAL COPY FILENAME.

The filename for the copy file is in error.

ILLEGAL MOVE OR COMPARISON IS DELETED.

The operands of a MOVE statement or relational
condition are of incompatible class.

IMPERATIVE STATEMENT REQUIRED.
STATEMENT DELETED.

A conditional statement is contained within a
conditional statement other than IF.

IMPROPER CHARACTER IN COLUMN 7.

An invalid character in column 7 has been encountered.

IMPROPER PICTURE. PlC X ASSUMED.

An invalid PICTURE clause has been encountered.

IMPROPER PUNCTUATION.

Incorrect punctuation has been encountered. For
instance, a comma or period must be followed by a
space.

IMPROPER REDEFINITION IGNORED.

The data name specified in a REDEFINES clause is not
at the same level as the current data name, or it is
separated from it by an item with a lower level number.

A-il

IMPROPERLY FORMED ELEMENT.

Incorrect syntax for an item has been encountered. For
instance, you could have used multiple decimal points
in a numeric literal.

INCOMPLETE (OR TOO LONG) STATEMENT
DELETED.

A verb immediately follows a partial statement form, or
an otherwise acceptable statement is too large for the
compiler to read.

INVALID KEY SPECIFICATION.

The key item for a relative or indexed file should not be
subscripted, or it is inconsistent with the file organization
in class or USAGE.

INVALID QUOTED LITERAL.

A literal of zero length, improper construction, or
missing end quotes has occurred.

INVALID RECORD SIZE(S) IGNORED.

The RECORD clause of an FD contains an error.

INVALID SELECT-SENTENCE.

The syntax of a SELECT sentence in the FILE-
CONTROL paragraph is incorrect.

A-12

/W/ BLANK WHEN ZERO IS DISALLOWED.

The BLANK WHEN ZERO phrase appears in the
description of an alphanumeric or alphanumeric-edited
item.

/W/ DATA DIVISION ASSUMED HERE.

The DATA DIVISION header is missing.

/W/ DATA RECORDS CLAUSE WAS INACCURATE.

The record name(s) given in a DATA RECORDS clause
are not consistent with the record descriptions
following the file description.

fW/ FD-VALUE IGNORED SINCE LABELS ARE
OMITTED.

The VALUE OF FILE-ID clause is used in the
description of a file which is assigned to PRINTER.

fW/ FILE SECTION ASSUMED HERE.

The FILE SECTION header is missing.

fW/ INVALID BLOCKING IS IGNORED.

The BLOCK clause of an FD contains an error.

/W/ 'LABEL RECORD STANDARD' REQUIRED.

The LABEL RECORD(S) STANDARD phrase is not
present in the FD of a file assigned to DISK.

A-19

APPENDIX C. THE LINKER (LINK)
PROGRAM

Introduction

The Linker (LINK) program is a program that:

• Combines separately produced object modules.

• 	Searches library files for definitions of unresolved
external references.

• 	Resolves external cross-references.

• 	Produces a printable listing that shows the
resolution of external references and error messages.

• Produces a relocatable load module.

In this appendix, we show you how to start LINK. You
should read all of this appendix before you start LINK.

c-i

Files

The linker processes the following input, output, and
temporary files:

Input Files

Type
Default

.ext
Override

ext
Produced

by

Object .OBJ Yes Compiler'
or MACRO
Assembler

Library .LIB Yes Compiler User
Automatic (None) N/A*

Response

Figure 17. Input Files Used by the Linker

*N/A_Not applicable.

Output Files

Type
Default

.ext
Override

.ext Used by

Listing .MAP Yes User

Run .EXE No Relocatable
loader
(COMMAND.COM)

Figure 18. Output Files Used by the Linker

'One of the optional compiler packages available for use with the
IBM Personal Computer DOS.

C-2

VM.TMP (Temporary File)

LINK uses as much memory as is available to hold the
data that defines the load module being created. If the
module is too large to be processed with the available
amount of memory, the linker may need additional
memory space. If this happens, a temporary diskette
file called VM.TMP is created on the DOS default drive.

A message is displayed to indicate when the overflow
to diskette has begun. Once this temporary file is
created, you should not remove the diskette until
LINK ends. When LINK ends, the VM.TMP file is
deleted.

If the DOS default drive already has a file by the name
of VM.TMP, it will be deleted by LINK and a new file
will be allocated. The contents of the previous file are
destroyed; therefore, you should avoid using VM.TMP
as one of your own filenames.

C-3

Definitions

Segment, group, and class are terms that appear in this
chapter and in some of the messages at the end of this
appendix. These terms describe the underlying function
of LINK. An understanding of the concepts that define
these terms provides a basic understanding of the way
LINK works.

Segment

A segment is a contiguous area of memory up to 64K
bytes in length. A segment may be located anywhere in
memory on a paragraph (I 6-byte) boundary. Each of
the four segment registers defines a segment. The
segments can overlap. Each 16-bit address is an offset
from the beginning of a segment. The contents of a
segment are addressed by a segment register/offset pair.

The contents of various portions of the segment are
determined when machine language is generated.

Neither size nor location is necessarily fixed by the
machine language generator because this portion of the
segment may be combined at linker time with other
portions forming a single segment.

A program's ultimate location in memory is determined
at load time by the relocation loader facility provided
in COMMAND.COM, based on your response to the
Load Low parameter. The Load Low parameter is
discussed later in this appendix.

C-4

Grou p

A group is a collection of segments that fit together
within a 64K-byte segment of memory. The segments
are named to the group by the assembler or compiler.
A program may consist of one or more groups.

The group is used for addressing segments in memory.
The various portions of segments within the group are
addressed by a segment base pointer plus an offset. The
linker checks that the object modules of a group meet
the 64K-byte constraint.

Class

A class is a collection of segments. The naming of
segments to a class affects the order and relative
placement of segments in memory. The class name is
specified by the assembler or compiler. All portions
assigned to the same class name are loaded into memory
contiguously.

The segments are ordered within a class in the order
that the linker encounters the segments in the object
files. One class precedes another in memory only if a
segment for the first class precedes all segments for the
second class in the input to LINK. Classes are not
restricted in size. The classes are divided into groups
for addressing.

C-s

Command Prompts

After you start the linker session, you receive a series
of four prompts. You can respond to these prompts
from the keyboard, respond to these prompts on the
command line, or use a special diskette file that is
called an automatic response file to respond to the
prompts. An example of an automatic response file
is provided in this appendix. Refer to the section
called "How to Start the Linker Program" in this
appendix for information on how to start the Linker
session.

LINK prompts you for the names of the object, run,
list, and library files. When the session is finished,
LINK returns to DOS. The DOS prompt is displayed
when LINK has finished. If the LINK is unsuccessful,
LINK displays a message.

The prompts are described in their order of appearance
• on the screen. The default is shown in square brackets

(E 1), in the response column. Prompts that are not
followed by a default require a response from you.

C-6

PROMPT RESPONSES

Object Modules [.OBJ }: filespec[+filespec2 . .. 1

Run File [filename 1 .EXE]: filespec [/P]

List File [NUL.MAP]: [filespec]

Libraries [.LIB]: [filespec[-I-filespec ... II

Figure 19. Command Prompts for the Linker

Notes:

If you enter a filespec without specifying the
drive, the default drive is assumed. The
libraries prompt is an exception.

2. You can end the linker session prior to its
normal end by pressing Ctrl-Break.

C-7

Detailed Descriptions of the

Command Prompts

The following detailed descriptions contain
information about the responses that you can enter to
the prompts.

Object Modules [.OBJ]:

Enter one or more filespecs for the object modules to
be linked. If the extension is omitted, LINK assumes
the filename extension .OBJ. If an object module has
another filename extension, the extension must also be
specified. Object filenames may not begin with the @
symbol. (@is reserved for using an automatic response
file.)

Filespecs must be separated by single plus (+) signs or
blanks.

LINK loads segments into classes in the order
encountered.

If you specify an object module, but LINK cannot
locate the file, a prompt requests you to insert the
diskette containing the specific module. This permits
.OBJ files from several diskettes to be included. On a
single-drive system, diskette exchanging can be done
safely only if VM.TMP has not been opened. A message
will indicate if VM.TMP has been opened. The VM.TMP
file is discussed earlier in this appendix.

IMPORTANT: If a VM.TMP file has been opened, you
should not remove the diskette containing the VM.TMP
file.

If a VM.TMP file has been opened and the linker is
unable to locate an object module on the same drive on
which VM.TMP has been allocated, the linker session
ends.

C-S

Run File [filename 1.EXE]:

The filespec you enter is created to store the Run
(executable) file that results from the LINK session.
All Run files receive the filename extension .EXE,
even if you specify another extension. If you specify
another extension, your specified extension is ignored.

The default filename for the Run file prompt is the first
filename specified on the object module prompt.

List File [NUL.MAPJ:

The List file is not created unless you specifically
request it. You can request it by overriding the default
with a filespec or a drive ID. If the linker is unable to
locate an object module on the same drive on which
the list file has been allocated, the linker session ends.

The List file contains an entry for each segment in the
input (object) modules. Each entry also shows the
offset (addressing) in the Run file.

The DOS reserved filename NUL with the default
extension .MAP is used if you do not enter a filespec.

Note: If the List file is allocated to a diskette, it
must not be removed until the LINK has ended.

To avoid generating the .MAP file on a diskette, you
can specify the display as the List file device. For
example:

List File [NIJL.MAP]: CON

C-9

If you direct the output to your display, you can also
print a copy of the output by pressing the Ctrl-PrtSc
keys.

Libraries [.LIB]:

The valid responses are either listing the library filespecs,
or pressing the Enter key. If you just press the Enter
key, LINK defaults to the library provided as part of
the Compiler package. The Compiler package also
provides the location of the library. For linking objects
from just the MACRO Assembler, there is no automatic
default library search.

When LINK attempts to reference a library file and
cannot find it, a prompt requests you to enter the drive
identifier containing the library.

If you answer the library prompt, you may specify a
list of drive IDs and filespecs separated by plus (-I-) signs
or spaces. A drive ID tells the linker where to look for
all subsequent libraries on the library prompt. The
automatically searched library filespecs are conceptually
placed at the end of the response to the library prompt.

When linking an object module produced by the IBM
Personal Computer COBOL Compiler which looks for
the libraries COBOL 1 .LIB and COBOL2.LIB on drive
A, the following library prompt responses may be used:

Libraries [.LIB]:B:

Look for COBOL I .LIB and COBOL2.LIB on drive B.

Libraries [.LIB]:B:USERLIB

Look for USERLIB.LIB on drive B and COBOL1.LIB
and COBOL2.LIB on drive A.

c-to

Libraries [.LIB]:A:+USERLIB1+USERI.1B2+E 3 :+IJSERLIB 3 +A:

Look for USERLIB 1 .LIB and USERLIB2.LIB on
drive A, USERLIB3.LIB on drive B, and
COBOLI.LIB and COBOL2.LIB on drive A.

You can enter from 1-8 library filespecs. The filespecs
must be separated by plus signs or spaces.

LINK searches the library files in the order in which
they are listed to resolve external references. When
LINK finds the module that defines the external
symbol, the'module is processed as another object
module.

If two or more libraries have the same filename,
regardless of the location, only the first library in the
search order is searched.

Parameters

At the end of any of the four linker prompts, you
may specify one or more parameters that instruct the
linker to do something differently. Only the / and
first letter of any parameter are required.

/DSALLOCATION

The /DSALLOCATION parameter directs LINK to
load all data defined to be in DGROUP at the high-end
of the group. If the /HIGH parameter is specified,
(module loaded high), this allows any available storage
below the specifically allocated area within DGROUP
to be allocated dynamically by your application and
still be addressable by the same data space pointer.

Note: The maximum amount of storage which
can be dynamically allocated by the application is
64K (or the amount actually available) minus the
allocated portion of DGROUP.

c-Il

If the /DSALLOCATION parameter is not specified,
LINK loads all data defined to be in the group whose
group name is DGROUP, at the low-end of the group,
beginning at an offset of 0. The only storage thus
referenced by the data space pointer should be that
specifically defined as residing in the group.

All other segments of any type in any group other than
DGROUP are loaded at the low-end of their respective
groups, as if the /DSALLOCATION parameter were not
specified.

For certain compiler packages, DSALLOCATION is
automatically used.

/HIGH

The tHIGH parameter causes the loader to place the
Run image as high as possible in storage. If you specify
the /HIGH parameter, you tell the linker to cause the
loader to place the Run file as high as possible without
overlaying the transient portion of COMMAND.COM ,
which occupies the highest area of storage when loaded.
If you do not specify the /HIGH parameter, the linker
directs the loader to place the Run file as low in
memory as possible.

The /HIGH parameter is used with the
/DSALLOCATION parameter.

/LINE

For certain IBM Personal Computer language processors,
the /LINE parameter directs LINK to include the line
numbers and addresses of the source statements in the
input modules in the List file.

C-i 2

/MAP

The /MAP parameter directs LINK to list all public
(global) symbols defined in the input modules. For
each symbol, LINK lists its value and segment-offset
location in the Run file. The symbols are listed at the
end of the List file.

/PAUSE

The /PAUSE parameter tells LINK to display a message
to you. This message requests you to insert the diskette
that is to receive the Run file.

/STACK :size

The size entry is any positive decimal value up to
65536 bytes. If you do not use the /STACK, you
specify that the original stack size provided by the
assembler or compiler is to be used.

If you specify a value greater than 0 but less than 5 12,
the value 512 is used. This value is used to override
the size of the stack that the assembler or compiler has
provided for the load module being created.

If the size of the stack is too small, the results of
executing the resulting load module are unpredictable.

At least one input (object) module must contain a
stack allocation statement. This is automatically
provided by compilers. For the assembler, the source
must contain a SEGMENT command that has the
combine type of STACK. If a stack allocation
statement was not provided, LINK returns the following
message: Warning: No Stack statement.

C-13

How to Start the Linker Program

Before You Begin

Make sure the files you will be using for the LINK
are on the appropriate diskettes.

• Make sure you have enough free space on your
diskettes to contain your files and any generated
data.

• 	Make sure that the DOS default drive is correct.
If the default is drive B, you will need to add A:
to the following commands.

You can start the Linker program by using one of three
options:

Option 1—Console Responses

From your keyboard, enter:

LINK

The linker is loaded into memory and displays a series
of four prompts, one at a time, to which you must
enter the requested responses. (Detailed descriptions
of the responses that you can make to the prompts are
discussed in this appendix in the section called
"Command Prompts.")

If you enter an erroneous response, such as the wrong
filespec or an incorrectly spelled filespec, you must
press Ctrl-Break to exit LINK, then you must restart
LINK. If the response in error has been typed but not
entered, you may delete the erroneous characters, for
that line only.

c-i 4

An example of a Linker session, using the console
response option, is provided in this appendix in the
section called "Example Linker Session."

As soon as you have entered the last filename, the linker
begins to run. If the linker finds any errors, it displays
the errors on the screen as well as in the listing file.

Note: After any of these responses, before
pressing Enter, you may continue the response
with a comma and the answer to what would be
the next prompt, without having to wait for that
prompt. If you end any with the semicolon (;),
the remaining responses are all assumed to be the
default. Processing begins immediately with no
further prompting.

Option 2—Command Line

From your keyboard, enter:

LINK objlist,runfile,rnapfile,liblist/parms;

Your linker is loaded and immediately performs the
tasks indicated by the command field as shown in the
above example.

When you use this command line, the prompts described
in Option I are not displayed if you specified an entry
for all four files or if the command line ends with a
semicolon.

If an incomplete list is given and no semicolon is used,
the linker prompts for the remaining unspecified files.
The /parms are never prompted for, but may be added to
the end of the command line or to any file specification
given in response to a prompt. Each prompt displays its
default, which may be accepted by pressing the Enter
key, or overridden with an explicit filename or device
name. However, if an incomplete list is given and the
command line is terminated with a final semicolon, the
unspecified files default without further prompting.

C-is

Certain variations of this command line are permitted.

Examples:

fl LINK module

Object Module is module.OBJ. A prompt is given,
showing the default of module.EXE. After the response
is entered, a prompt is given showing the default of
NUL.MAP. After the response is given, a prompt is
displayed showing the default of .LIB.

2) LINK module;

If the semicolon is added, no further prompts are
displayed. The object module of module . OBJ is linked,

the runfile is put into module.EXE, and no Iistfile is

produced.

3) LINK module,,;

This is similar to the above example, except the listfile
is produced in module . MAP.

4) LINK module,,

Using the same example, but without the semicolon,
module.OBJ is linked, and the runfile is produced in

module.EXE, but a prompt is given with the default of

module.MAP.

5) LINK module,,NUL;

No listfile is produced. The runfile is in module.EXE.
No further prompts are displayed.

C-i 6

Option 3—Automatic Responses

From your keyboard, enter:

LINK @filespec

It is often convenient to save responses to the linker
for use at a later time. This is especially useful when
long lists of object modules need to be specified.

For this option, you enter a filespec preceded by an
symbol in place of a prompt response or part of a
prompt response. The prompt is answered by the
contents of the diskette file. The filespec may not be
a reserved DOS filename.

Before using this option, you must create the automatic
response file. It contains several lines of text, each
of which is the response to a linker prompt. These
responses must be in the same order as the linker prompts
that were discussed earlier in this chapter. If desired, a
long response to the object module or libraries prompt
may be contained across several lines by using a plus
sign (+) to continue the same response onto the next
line.

Use of the filename extension is optional and may be any
name. There is no default extension.

Use of this option permits the command that starts
LINK to be entered from the keyboard or within a
batch file without requiring any response from you.

C-17

Example

Automatic Response File—Resp 1

MODA+MODB+MODC
MODD-i-MODE+MODF

Automatic Response File—Resp2

Runfile/P
Printout

Command line

LINK @Resp+mymod,@Resp2:

Notes:

1. In this example, the use of the plus sign
causes the modules listed in the first two lines
and any module entered by the operator in
response to the object module prompts to be
considered as the input object modules.

2. Each of the above lines ends when you press
the Enter key.

c-I 8

Example Linker Session

This example shows you the type of information that
is displayed during a linker session.

Once you enter:

B>a:l ink

the system responds with the following messages:

IBM Personal Computer Linker

Version 1.10 (C) Copyright IBM Corp 1982

Object Modules[OBJ]: example

Run Fi le[EXAMPLE. EXE]: example/MAP
List File [NUL.MAP]:prn/line

Libraries [.LIB]:

C-19

Notes:

By responding pm to the List file prompt,
we send our output to the printer.

2. By just pressing Enter in response to the
Libraries prompt, an automatic library search
is performed.

3. By specifying the /MAP parameter, we get
both an alphabetic listing and a chronological
listing of public symbols.

4. By specifying the /LINE parameter, LINK
gives us a listing of all line numbers for all
modules. The /LINE parameter can generate a
large amount of output. (The /LINE parameter
is not functional for IBM COBOL.)

If LINK cannot locate a library on the specified
drive, the following message is displayed:

Cannot find library A:COBOL1.LIB

Enter new drive letter:

The drive that the indicated library is located on
must be entered.

Once LINK locates all libraries, the linker MAP
displays a list of segments in the relative order of
their appearance within the load module. The list
looks like this:

C-20

Start Stop Length Name Class

00000H 00028H 0029H MAINQQ CODE

00030H 000F6H OOC7H ENTXQQ CODE

OO100H OO100H 0000H INIXQQ CODE

OO100H 038D3H 37D4H FILVQQ CODE CODE

038D4H 04921H 104EH FILUQQ CODE CODE

074A0H 074AOH 0000H HEAP MEMORY

074A0H 074A0H 0000H MEMORY MEMORY

074AOH 0759FH 0100H STACK STACK

075A0H 07925H 0386H DATA DATA

07930H 082A9H 097AH CONSI CONST

The information on the Start and Stop columns shows
a 20-bit hex address of each segment relative to location
zero. Location zero is the beginning of the load module.
The addresses displayed are not the absolute addresses
of where these segments are loaded. To find the
absolute address of where a segment is actually loaded,
you must determine where the segment listed as being
at relative zero is actually loaded; then add the absolute
address to the relative address shown in the .MAP listing.
The procedure you use to determine where relative
zero is actually located is discussed in this appendix, in
the section called "How to Determine the Absolute
Address of a Segment."

Now, because we specified the /MAP parameter, the
public symbols are displayed by name and by value.
For example:

C-21

Address 	Publics by Name

0492:0003H ABSNQQ

06CD:029FH ABSRQQ

0492:00A3H ADDNQQ

06CD:0087H ADDRQQ

0602:000FH ALLHQQ

S

OOlO:1BCEH WT4VQQ

OOlO:1D7EH WTFVQQ

0010:1887H WTIVQQ

0010:19E2H WTNVQQ

OOlO:llB2H WTRVQQ

Address 	Publics by Value

0000:0001H MAIN

0000:0010H ENTGQQ

0000:0010H MAINQQ

0003:0000H BEGXQQ

0003:0095H ENDXQQ

S

F82B:F31CH CRCXQQ

F82B:F31EH CRDXQQ

F82B:F322H CESXQQ

F82B:F5B8H FNSUQQ

F82B:F5EOH OUTUQQ

The addresses of the public symbols are also in the
segment:offset format, showing the location relative to
zero as the beginning of the load module. In some
cases, an entry may look like this:

F8CC:EBE2H

This entry appears to be the address of a load module
that is almost one megabyte in size. Actually, the area
being referenced is relative to a segment base that is
pointing to a segment below the relative zero beginning
of the load module. This condition produces a pointer
that has effectively gone negative. The chart on the
following page is provided to illustrate this point.

C-22

When LINK has completed, the following message is
displayed:

Program entry point at 0003:0000

Load Module Memory Map

Low Memory

Data Segment
Base

64K Segment

(Relative to the load
module, this location is
below zero, or negative)

(Data elements
have large offsets
from the data
segment bases)

S

Data Area

Code

S

S

Relative Zero

Load Module

High Memory

Figure 20. Load Module Memory Map

C-23

How to Determine the Absolute

Address of a Segment

The linker .MAP displays a list of segments in the
relative order of their appearance within the load
module. The information displayed shows a 20-bit
hex address of each segment relative to location zero.
The addresses that are displayed are not the absolute
addresses of where these segments are actually located.
To determine where relative zero is actually located,

Load the application.

Note the segment value in CS and the offset within
that segment to the entry point as shown in IP.
The last line of the linker .MAP also describes this
entry point, but uses relative values, not the
absolute values shown by CS and IP.

2. Subtract the relative entry as shown at the end of
the .MAP listing from the CS:IP value. For
example, let's say CS is at 05DC and IP is at zero.

The linker .MAP shows the entry point at
0100:0000. (0100 is a segment ID or paragraph
number; 0000 is the offset into that segment.)

In this example, relative zero is located at
04DC:0000, which is 04DCO absolute.

If a program is loaded low, the relative zero location is
located at the end of the Program Segment Prefix, or in
the value in DS plus 1001-1.

C-24

Messages

All messages, except for the warning messages, cause
the LINK session to end. Therefore, after you locate
and correct a problem, you must rerun LINK.

Messages appear both in the listfile and on the display
unless you direct the listfile to CON, in which case the
display messages are suppressed.

A complete list of linker messages follows:

About to generate .EXE file

Change diskettes and press any key.

An internal failure has occurred

Report this problem to your authorized IBM Personal
Computer Dealer.

Attempt to access data outside of segment bounds

The object module is probably bad.

Bad Numeric Parameter

An invalid number was found on the /STACK
parameter.

Cannot find file filename

Change diskettes and press any key. This error is
unrecoverable if either VM.TMP or the listfile has been
opened to a diskette where the object cannot be
located.

C-25

Cannot find library libraryname

Enter new drive letter.

Cannot open overlay

Cannot open temporary file

The directory is full.

DUP record too complex

A problem exists in an object module created from an
assembler source program. A single DUP requires 1024
bytes before expansion.

Fixup offset exceeds field width

• A machine language processor instruction refers to an
address with a NEAR attribute instead of a FAR
attribute.

Invalid format file

A library is in error.

Invalid object module

Object module(s) incorrectly formed or incomplete
(as when the language processor is stopped in the
middle).

Invalid Switch

The linker found an invalid parameter on the command
line or on a prompt.

Out of space on list file

C-26

Out of space on run file

Out of space on VM.TMP

No more diskette space remains to expand the
VM.TMP file.

Program size exceeds capacity of linker

The load module is too big for processing.

Segment size exceeds 64K

Attempted to combine identically named segments,
which resulted in segment requirement of greater than
64K. 64K-bytes is the addressing limit.

Stack Size Exceeds 64K

A number greater than 65536 was found on the /STACK
parameter.

Symbol defined more than once

The linker found two or more modules that define a
single symbol name.

Symbol table capacity exceeded

The limit is about 30K. Use shorter and/or fewer
names.

There was/were number errors detected

Too many libraries specified

The limit is 8 libraries.

C-27

Too many external symbols in one module

The limit is 256 external symbols per module.

Too many groups

The limit is 10, including DGROUP.

Too many public symbols in one module

The limit is 1024 public symbols.

Too many segments or classes

The limit is 256 (segments and classes taken together).

Too many overlays

The limit is 64.

Unexpected end-of-file on library

Unexpected end-of-file on VM.TMP

The diskette containing VM.TMP has been removed.

Unresolved external reference

A call statement reference could not be found.

VM.TMP is an illegal file name and has been ignored

VM.TMP cannot be used for object filename.

C-28

c

a)>.)
> -a

S-a)
-a S.-

0a)

a)
4-) >.)
4-) CU
(i) -

-
V)>-4
•-
-a (U

4-''a)
(U a) -
E c
S._ 	S.-
0 4- 4--'
4- 5.- U,
..a)

A C

APPENDIX D. SAMPLE SESSION

4-)
a)

U)

-a

0
4-)
(U
5-
0
(A

a)

4-'

a)
4-)
4-'
a)

. v)

-a

-a
a)
4-)
4-)

a) (U
> E

> S. 0
' - 4-

-a -i-'
a)
4-'

•1 (U (U 	4-'
4- Xa)

•1 -a
a) 	•1•

a) a) > 	•-a
4-) -
4-) 4) S.- 	•

U, 0D
1 a)

- >
• 1

V.; S.-
c - 4-'4-)

S.-a)(U
a) a)-E

a) -
- (U 0

>,Li
a)

I I I 	I
I
I

I
I

I 	I
(UI

I I W 	I
V.; 	a)

LJJ W

AA A A AA

a)

:3

a)

4)

(I)
a)
.4)

(U

4.)
If)

:3

•o

If)
If)
a)
If)

a)

0
E
(U
If)

0

0

a)

F-

uJ

(U

:3
-a
a)

a)

E
0
C)

0
•1-)

a)

E
0

C)

-J

co

C)

a)
4)
:3

E
0

C-)

(U

0
If)

a)

'-4

a)

4)

4-
0

w

(0

If)

LLI

a)

E

(li
4-)

a)

I-

E
co
S.-

0
5-

4-)
(U
I-)

0
(U

(U

a)

0
a)
><
a)

LiJ

0

(I)

a)
U)

0

S.-

0

4)
co

a)
E
:3
0
0
-a

5-
0
4-

a)
S.-
(U

U)
uJ
V.;
=,

w
Of

NO

-

D-1

ci)

ci)

a-
E
0
0

-4-)

E

0
a;

.4)

co
E
S.-
0

C'-.

>-

S.-
ci)

-4-)
0

4)

E
S.-
0
U-

ci)
-4-)
4)

ci)

U,

-c

0

S.-
0
U,

ci)

4)

0

-c
LU

4-
0

>-,
a-
0
0

ci)

LU

E

5-

0
S.-
a-

ci)

4)

.4.-)

0

-c
ci)0

.— 4.-)

a--
0
(_) •1

—. -c
V)LJJ -

0
Oci)ci) 0

0
.— .— I-I S.-
-c
ci) 	I

u a--

o 	LU -
C.' 	o: ci)

ai cX2-K

LU
LU

U)

LU
I—
U)
LU

CDI
=

UJ
or

U,

•L*J
UJ 	 F-

	

M: CM— 	z

C) 	Cn:fr-
	•

— LU Ui

Ui

CD
'-4
I— •cLU

'-4 I_-.4>-
U- 	 I— U)

'-'
F-c 	I

	

(!3 I— LU 	z
UicvF- L)

'C Ui Ui
4-' o

-3C4C 9C

D-2

LU
I-

I-

I-

C,,
(1)

LU
-J

c I-
-I =
&,

-I

I-

•LU

CD I-LU
v-)

WE-

L)

-iLU

UJtj

LU
I-
I-

L)

LU

C,) 	L)
CD 	LU
W •
c,w I

LU LU '-

uJF-o
•ILU

'-' 	 C."
C,) 	CD j c
i-sF--

L)
i-sW

LU

I

-

C)ULi 	CD

V)LIJV)

UJLU
N.J (1) NJ

LIJ LU LU

-J-J--J

c)o
OO)O)

O)LC)
C)
0)0)0)

4-4 5-I I-i

2
CD
'-5

I-
L)
LU >->-
(ñW

LU'- 	I 	I

WLiJI-
CD LU C)

(
'-4

CD N- r- N- -
N-

9C

=
L)

>-
LU 	c

CL

LU
LU

C,)
LUJ 	 LU

L)

cLLU 	 CL
- 	C,,

LU LU 	LU 	LU
==, = =

C) 	CD C)
C'J C'.i 	C'.J 	C'J

><>< 	><)<

LW L) C)
5-I 	4 	4-I

•UJLU LU 	LU
I- 	J 	J _i 	J

l__J__J J 	-
Q 4-I 4-4

LU LL. LL. U 	Li
C)

LU C\i C'J C-J 	C'J = CD CD CD 	C)

CD

C)CDr- (;)CD--C.'J 	- u)Cor--- 	(;) 	CD
---s----C\JC\JC'JCJ C'JC\JCC\J C.') •cj•C)

C)
LU

D-3

	

(Jl(/ 	(I) 	V) •V)

	

LU— LU 	LU WV)LU
(—) 	(—) 	(—) 	(—) 	C)

	

- __j CL 	 w 0
(f) 	(f) NJ L')

	

UJLUW 	LU LULULU
D = 	 = D

cDcc

	

C\JC"J 	 r-4C

	

C)C)C) 	C)C)C)C)C)

	

_O__ 	CL CL CL CL CL

LU C)
LL) 	LU 	LU

>—=

	

• LU LU LU 	LU 	LU C) LU

	

c"J __I J •J 	- J _J _J I

cr-

	

LU LL Li. L 	 LU U

	

LU(\JCJC\J 	LU 	CIA (\C
ccc

cJ)J 	- L)
LU 	(r) LU
()I—(—)

ci— LU
(I) — N4 (,D

LU LU LU LU

-'
 -bq C)

O 4 Ci

	

- 	o o
>< >< 	>< 	o•

	

C) C) C) C) 	C) C)

CL CL Q

LU

	

I— 	 LU
Of i:z

• 	 •I
LU 	 I 	 >— D

WLUJLU F— —1
_ _I - 	 I

c3v)
I 	 i c
J LL. Li F- L

F- 	 I-

	

c'Jcc'J 	c\J
F- cD c c' LU c c

cD 	 cD 	 CD
9c4c.3c

(L; — C\J j- U)

L()ULOLC)U)L()

D-4

LU
LU
>-
C)

LU •
w CL

CL LU

-
(-)

LW

• 	• 	• LU
C) C) LU 	LU 	LU

LU 	LU

>- 	>- 	>- LU C)
C) 	C) 	C) F-

LU LU - 	J 	J Li
F—I—CL 	CL 	CL 1.P)

-
LU 	LU 	LU LU >-

C)
,- C'.J C) 	C) 	C) =CL

I 	'F— 	I- 	F- —J
• 	i LLUJ

LU LU - 	- 	- F- J LU 	• C)
Cl < I—C) 	<
C:t • 	C F— LU LU Of

LU LU 	= 	= I C) LU 	F— 	I
= = 	0_ 	CL CL 	J F— - 	c: >-

LU-CC c< C)JLU

LU (D C) 	w 	(!) C!) C) C) LU

F-0 V)V)LUC)I-
U L 	>- C 	L I— = C

C) o
i LU LU 	CL <t CL >— CL F- LU LU 	LU 	>

I 	—J 	I I - -C)
F- 	F- F- >- ' LO 	CJ

1--C'JC)
I 	I 	LL C) LU C) (.) C) CL 	I I-

I— I— F- 	I 	< 	I '-i I 	I
= 	= _j - — 	- •zj- (I)
CL 	w I-. (-) 	(I) I-I 	• -- -- C)

C) 	I— 	 . 	LU F- •Of
CL CL C) CL ZD = >— 	>— 	LU

U) 	C) 	- 	— 	= — = F— 	0 CL < I— Z I— NJ
I-. = 	LU LU 	C) 	C) C) 	Li J CL 	J CL

3 CL 	F- F- LU LL LU U LU LL. LU F- CL D CL LU Cl- LU LU
LU i-i. 	3 	C 	. D 	> Cr > ,— C) C!) U) C) U) C) 	-
0- C)LU C) LUC)LU C)0E-)-iC)C)

C!) C) 	 CL 	CL CL 	U) 0 C) 	C)
LU<

CL

C)CL I—
WI

C)

CL i-i
.3'

cC N— 03 (;) (L ,- 	r) - LO C) N— 06 CD C) - (\i CD 	UD C)

D-5

S.-
()

4.-)

5-
CL

a)

4-)

0
4-)

-I-)

a)
-c
4-)

0
c
C)
U,

-J

CD
cm
ci
C)

c

LU

OR

1

ci)
.>

C

C)

4)

a)

(I) NJ

L

CD
CO

CD
C-)>,

a) r
- 	a)
4-) S.-

4-)
S_a)
a) -
C

LU
V) a)

LU

I-

tnuJ

±
LU
I-LU

>- I
-J>-

LU
I-

=
LiJ

u-i 	.3c
LU

c-.4uJ
.1-

I 	 •
(I) LU CD >- C) 'D

<LU CL
zCDIIUJ

CiV) IC)
II 	IIJ I 	C)

LLJW F-<Z
ii CD O. c C)

Q--4 	I— 	Li- I

CD >-

ALULUI-
 I 	>-

LU 	 Cci- iF-
 LiJLULiJ 	I I-

ci I— I— LU I (f) 	(P1

C- CL 	Ne LU 	c
i 	LU LU LU Q LU

-uj 	NJ
C) C) =D 	LU

= 	Cl- LU I— LU

CD CD CD CD

cOcxJcrDcO

> - OD
S.-
o ii

4.-) CO
() CD
a)
S..--

- oo

C) C\JC\J

4-)

0
o
-J CD

()C.)

-J
CD

LU • '- i--
Of

a) 	A ACD<
LUCL

D-6

I-
C)

U-

C)
C)

LU
NJ

LU

>-
I-

(1)
LU

C\J
co

LL-
LU

ci) 	 C)
LU

.,-5.(\J

EC)0i 	- 	 (/D
o 	- 	•.. 	0::

0i—' 	=
•

_J)-1 () 	> 	 C) 	LU
C) 	c 	(OC).. 	C)C)V)

0.r1 	i-.c
i—F- 	II—J

C) 	 •• - U) 	C) c< C)
...-.4) 	tiQ_J 	LU

.__4- 	M S.-
(1) >) 0 	C) >) - 	C) C) LU

C)(O 	=3 	_J:•
00 	.0 	_JW

L C) 	LJLJLJ 	<0
E—o 	 U)

WQ)
EE 	CZ) LU_J

CD 4) 	C C •- 	LU C) U-
(OC) 	0)G)4-.' 	=:o::

• 0) 	- .- (I) 	-I 0. 	.
o 	•r- r 	- 	U-
(I) 	- 	4-4--- 	•I-4

ci)00- 	()4-)ci)
0•-O 	000

(flC) 	S-ci)S.. 	c'-r--
S.. -. 	: 	N. C)

co () C) 	0-0 0 	C) C) C)
-'-- 	V)C)U) 	C)C)C)

-J
CD
co
C)
C)

(I)

0)

•
C
S..

S.-
- 0

U)
-
	

S.-
0
S.-
S.-

LU

C,-)

D-7

- >-
>-c:z:

a- -
LL-

LL. CD
CD

LU
WI-

WI-

UJ
LU-

>->-

-J -J
a- a-

I.-'

L()U)

-J

CD
co

C)

S.-
(1)

LU

LL)

(1)
WV)

()cD

V)N1

WW

—J—J

OC)

0)0)

Q.) (.j

LU
—J

U-

>->-

Oft c
LU
V)

UJLiJ 	c
UJUJ 	J

L)

0
ow r—r--
•r— N.N

0
S.- 4-'

a-
a-

	

-. 	•1c9c

	

._-4- 	C•)r) 	C) CD

	

0 	c'JCJ 	kDN-

w-cv-) 	0) 	 LC)
'.0

W4(

E
ci)

4-)

4-

0
4-'

LU

0

U

-a

0

U)

S.-
0
5-
S.-
ci

ci)
ci)
S.-

4)

4-)
0

z
LU

C)
>

c'J
03

C)
4-)
4-)

C) 	• 1 	i- C)
03030303 -

•,- s_c'J I 	I 	I 	I (I)

CL 003 >., - 0303 CO
E C..) 0) S- C) .- .- .- - 	-
0 	.— 0 I 	I

c-) 0 ri 4-) 03.— .- ,-
Di 	• S.- 	3 U C) .- .- .- (1) C

_J.-L) > C) E
C) 	C (0C)•. - S... •.-
Di 4-) 	• • 11 C) •.- CJ 	r CD co -I--) Di

,— i— . - a-> r 	.-
C-) 0) .- U) (I) S.- C") 03 0'. 0.

r 	4..) 11 0 _J 0) 0 C) C\J C'I C'.J C'J C
c0S.- 	• C .0 •.- C)(0

C) >, 0 C) >, .- r 4- _J C C)
-4-) 	0.. U) C-) 	CO 	=3 c 4- 4-) 	S.-

00 •0.c 5- (0 4) U)
(0 - (0 4) 4-) 	c:

4) •.- S-C)
(U C) - C)C
E E 0) S.- " 0 3. ()
COCOC 0 . 0 co 0 C

— CD +. C C - C) _J C) 	Di C) 2=
(0 C) ..0 C) 	C) 4-' (1) C-) co C) C)
C 	• 0) .- .- U) S.- I I I I
0.—•s- •.- •.- •r-• 0 I I I I
(I) 	S.- 4-9-.— S-
S- C >) S.- I I -J _J -.J I LU
C) 0 C.. C) 4-' 	C) LU J _J 	.J (I) 	C)
D. •.- 0 U 0 0 S.- 	C> C) C) =) -

U) C-) S.- 	C) 	S.- 0 UJ LU •.- -. Q 	Ci LU
S.-

Di C) i
:, 	r-
0-0 0 A A

0 _J >- >- >-
A C)

C)
A

0 	5-
A 4-'

U) CD (I) Di Di Di LU 0 O 0 Di Di (I)

D-9

-J

C-)

E
co
S-
o)
0
S.-
0

ci)

C

S.-

0
C

0
ci)

0
E
0
0

4-)
-4

U)

IN

0
5--
>)
(U
0

NO

-

(U

A

(\J
cXD

00 00 00 00 00
I 	I 	I 	I 	I

o >, - 	cxDOD
0 r C) I- I-f 	 I

— 0 I 	I 	I 	I 	I
4- OD — ,— —

S.- m S.- LI C) — .- .-

- (U S.--
C\J 	cD c) co

-0 00) N...-
- c 	co o 0) Co

i—i a.i c'.j C\J çj C'.j C)
S.. 	S.- r--iW.. c)
ci)>) ><

LiJ ,
0 C) 	•CL••

OL) •_J.0 (U
E L_J 	J 	11

00 C) 	•C -
__JI-. 0

a) >- => _J 0) CO LU
— C) r— 	• .-J C) <c CO
(0— 0 L_JL_.J 0 CO C) 0 LU
C 	• tL..J I

Or- 0 	a) V) I
U) I
5- C r-- •r- 	r- I ...J _J_J_J
ci) 0 4-' -.- U 	S.- J _i _J _J

r- 0 Li.. 	(U S... 	C) C) C) C)
U) ci) 	4-' 	5-- LU - i-
s- C 	(I) . O —1>- >->->-

co w - 	•r- 	r- A Aim
•• C) of _J _J c LU O 0 0.. 0

D-1O

Individual Screen Output

(\J
In

LU
L)

LU
>-
-J

Ct
	

>-
-J 	 -J

-J
U- 	 LU

	
L)
'-4 = 	U)

LI)
	

(-)
	

(')
	

U)
	

in
c)
	

LU

L
	

Co
>-
	

>-
	

>-
c

CD
LU
	

>-
	

LU
	

>-
	

LU
	

>-
cct

elf
	

of
	

Of
CD
	

CD
U-
	

U-
	

LL
CD

U)
	

U)
LU
	

LU
	

LU
ZD
	

I-
	 = 	F-

CD
	

CD = 	 =
cx:
	

cx:
LU
	

LU
	

LU
	

LU
	

LU
	

LU
I-
	

I-
	

I-
	

I-

LU
	

LU
	

LU
	

LU
	

LU
	

LU

D-11

Printer Output

Iz

w
(-)

>-

LiJ

uJ
uJ

CD
>-

-J

LU

cD 00 CD 00
L() O N..

cY) (\j U)
(V) o .O

A14 4

-J

I—

I—

>-
-J

1

-J 	z
LU L)

=
(_) 	(c)
I-. W

D-12

APPENDIX E. ADVANCED FORMS OF
CONDITIONS

Evaluation Rules for Compound Conditions

1. Individual simple conditions (relation, class,
condition name, and sign test) are evaluated first.

2. AND-connected simple conditions are evaluated
next as a single result.

3. OR and its adjacent conditions (or previously
evaluated results) are evaluated last.

Examples:

1. A<B OR C=D OR E NOT >F

The evaluation is equivalent to (A<B) OR (C=D)
OR (E<F) and is true if any of the three individual
parenthesized simple conditions is true.

2. WEEKLY AND HOURS NOT = 0

After expanding level 88 condition name WEEKLY,
the evaluation is equivalent to (PAY-CODE = 'W')
AND (HOURS <> 0) and is true only if both the
simple conditions are true.

3. A=1 AND B=2 AND G >.3
OR P NOT EQUAL TO "SPAIN'

is evaluated as

[(A=1) AND (B=2) AND (G>-3)]
OR (P < > "SPAIN")

If P = "SPAIN", the compound condition can only
be true if all three of the following are true:

. A=1

. B=2

I G>-3

However, if P is not equal to "SPAIN", the
compound condition is true regardless of the
values of A, B, and G.

Parenthesized Conditions

Parentheses may be written within a compound
condition or parts thereof in order to take precedence
in the evaluation order.

Example:

IF A=B AND (A=5 OR A=1)
PERFORM PROCEDURE-44.

In this case, PROCEDURE-44 is processed if A = 5 OR
A = 1, while at the same time A = B. In this manner,
compound conditions may be formed that contain, via
the use of parentheses, other compound conditions (not
just simple conditions).

Abbreviated Conditions

For the sake of brevity, you may omit the subject when
it is common to several successive relational tests. For
example, the condition A = 5 OR A = 1 may be written
A = 5 OR = 1. This may also be written A = 5 OR 1,
where both subject and relation being implied are the
same.

E-2

Another example:

IF A = B OR< C OR Y

is a shortened form of

IF A=B OR A<CORA<Y

The interpretation applied to the use of the word NOT
in an abbreviated condition is that if the item
immediately following NOT is a relational operator,
then the NOT participates as part of the relational
operator. Otherwise, the beginning of a new,
completely separate condition must follow NOT, and
not to be considered part of the abbreviated condition.

CAUTION
Abbreviations in which the subject and relation are
implied are permissible only in relation tests; the
subject of a sign test or class test cannot be omitted.

NOT, the Logical Negation Operator

In addition to its use as a part of a relation (for
example, IF A IS NOT = B), NOT may precede a

condition. For example, the condition
NOT (A = B OR C) is true when (A = B OR A = C) is
false. The word NOT may also precede a level 88
condition name.

E-3

APPENDIX F. NESTING OF IF
STATEMENTS

A "nested IF" exists when the verb IF appears more
than once in a single sentence.

Example:

IF X = V
IF A = B

MOVE '*" TO SWITCH
ELSE

MOVE "A" TO SWITCH
ELSE

MOVE SPACE TO SWITCH

A useful way of viewing nested IF structures is based
on numbering IF and ELSE verbs to show their priority.

	

IFl 	X = Y

	

True Actioni : 1F2 	A = B
True Action2: MOVE "*" TO SWITCH

ELSE2
False Action2: MOVE "A" TO SWITCH

ELSE1
False Actionl:MOVE SPACE TO SWITCH.

The above illustration shows clearly the fact that 1F2
is wholly nested within the "true-action" side of IF I.

The number of ELSE clauses in a sentence need not be
the same as the number of IF c!auses; there may be fewer
ELSE branches.

F-I

Examples:

IF M = 1
IF K = 0

GO TO M1-KO
ELSE

GO TO M1-KNOTO

IF AMOUNT IS NUMERIC
IF AMOUNT IS ZERO

GO TO CLOSE-OUT.

In the latter case, 1F2 could have been written as AND.

IF (AMOUNT IS NUMERIC)
AND (AMOUNT IS ZERO)

GO TO CLOSE-OUT.

F-2

APPENDIX G. ASCII CHARACTER CODES

The following table lists all the ASCII codes (in decimal)
and their associated characters. The column headed
"Control Character" lists the standard interpretations of
ASCII codes 0 to 31 (usually used for control functions
or communications).

c-i

ASCII Control ASCII

value Character character value Character

000 (null) NUL 032 (space)

001 © SOH 033

002 0 STX 034

003 ETX 035

004 EOT 036 $
005 + ENO 037

006 4 ACK 038 &

007 • 	(beep) BEL 039

008 (backspace) BS 040

009 0 (tab) HT 041

010 (line feed) LF 042 *

011 3 	(home) VT 043 +

012 (form feed) FF 044

013 .' 	(carriage return) CR 045 -

014 SO 046

015 SI 047 /
016 IDLE 048 0

017 DC1 049 1

018 DC2 050 2

019 !! DC3 051 3

020 cr DC4 052 4

021 NAK 053 5

022 - SYN 054 6

023 ETB 055 7

024 + CAN 056 8

025 EM 057 9

026 SUB 058

027 ESC 059

028 t 	(cursor right) FS 060 <
029 -- (cursor left) GS 061 =
030 A 	(cursor up) RS 062 >
031 v 	(cursor down) US 063 ?

G-2

ASCII ASCII

value Character value Character

064 @ 095 -

065 A 096

066 B 097 a

067 C 098 b

068 D 099 c

069 E 100 d

070 F 101 e

071 G 102 f

072 H 103 g

073 I 104 h

074 J 105

075 K 106

076 L 107 k

077 M 108 I

078 N 109 m

079 0 110 n

080 P 111 o

081 Q 112 p

082 R 113 q

083 S 114 r

084 T 115 s

085 U 116 t

086 V 117 u

087 W 118 v

088 X 119 w

089 Y 120 x

090 Z 121 y

091 [122 z

092 123

093 1 124

094 A 125

G-3

ASCII ASCII
value Character value Character

126 159 1
127 160
128 ç 161
129 U 162 6
130 163
131 164
132 165 N
133 166 a
134 167 o
135 c 168
136 e 169
137 e 170
138 6 171
139 1 172 14

140 1 173
141 174
142 A 175
143 A 176
144 E 177
145 CE 178
146 AE 179
147 6 180 —I
148 ö 181
149 6 182 -II
150 6 183 -
151 11 184
152 185 -iI

153 b 186 II
154 ü 187
155 188
156 £ 189
157 190
158 Pt 191 -

G-4

ASCII ASCII

value Character value Character

192 L 225 13
193 -'- 226 P
194 -r- 227

195 I- 228

196 - 229 a-

197 -I- 230 ii

198 1= 231 T

199 232

200 LL 233 -6-

201 F 234

202 =L6 235 5

203 236

204 1- 237 0
205 = 238 (

206 239 fl
207 - 240

208 -- 241 ±

209 242

210 -ii-- 243

211 c'- 244

212 6= 245 J

213 F 246 ~

214 rr 247

215 41- 248

216 + 249

217 250

218 p 251

219 U 252

220 - 253 2

221 U 254

222 I 255 (blank 'FF)

223

224

G-5

APPENDIX H. TABLE OF PERMISSIBLE
MOVE OPERANDS

The table on the following page shows the permissible
operands for the MOVE statement.

H-I

-

L 0 0 0 0 00

C)

-

00

C.)

I

0 0 0 00

C) ''
0

Z 0 0 00

0

jj 0

V

0

Z 0 0 00

E
' C.) o) C.)

1)I) 1).) C.

0
CO Z 4 ZZ zw

4-

cc

C)

LZ

MN

a)

a)
0

0

0

U)

o
o
U) .

m

o

a)
a) c

4-

0
-

cl

o .c •9
00 4-.

— co

a)
0 0.

CO
2 CO

a) 0
U) a)

o
a)

to 00

.2
cl

.

—

Lull
-

"a)

a)
I..

0

I
1.L

H-3

APPENDIX I. PERFORM WITH VARYING
AND AFTER CLAUSES

PERFORM range

VARYING identifier-1 FROM amount-1 BY amount-2

UNTIL condition-1

AFTER identifier-2 FROM amount-3 BY amount-4

UNTIL condition-2

AFTER identifier-3 FROM amount-5 BY amount-6

UNTIL condition-3

Identifier here means a data name or index name.
Amount-], -3, and -5 may be a data name, index name,
or literal. Amount-2, -4, and -6 may be a data name or
literal only.

The operation of this complex PERFORM statement is
equivalent to the following COBOL statements. The
example varies three items:

I-i

START-PERFORM.
MOVE amount-1 TO identifier-1
MOVE amount-3 TO identifier-2
MOVE amount-5 TO identifier-3.

TEST-CONDITION-1.
IF condition-1 GO TO END-PERFORM.

TEST-CONDITION-2.
IF condition-2

MOVE amount-3 TO identifier-2
ADD amount-2 TO identifier-i
GO TO TEST-CONDITION-1.

TEST-CONDITION-3.
IF condition-3.

MOVE amount-5 TO identifier-3
ADD amount-4 TO identifier-2
GO TO TEST-CONDITION-2.

PERFORM range
ADD amount.-6 TO identifier-3
GO TO TEST-CONDITION-3.

END-PERFORM. Next statement

Note: If any identifier above were an index name,
the associated MOVE would be a SET (TO form)
instead, and the associated ADD would be a SET
(UP form).

1-2

APPENDIX J. EXAMPLE PROGRAMS
WITH VIDEO MODE

The following video modes exist on your IBM Personal
Computer:

Mode
Number Meaning

0 BW 40X25 Alphanumeric
COLOR 40X25 Alphanumeric

2 BW 80X25 Alphanumeric
3 COLOR 80X25 Alphanumeric
4 BW 320X200 Graphic
5 COLOR 320X200 Graphic
6 BW 640X200 Graphic
7 BW 80X25 Alphanumeric

Figure 22. Video Modes

The following example programs show how to check
the current video mode on your computer.

Example COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. VMODE.

* 	DISPLAY VIDEO MODE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 VIDEO-MODE PlC 9.
PROCEDURE DIVISION.
MAIN.

CALL "GVMODE" USING VIDEO-MODE.
DISPLAY 'VIDEO-MODE IS 	VIDEO-MODE.
STOP RUN.

J-1

Example ASSEMBLER Program

a)

3< 	C)) 9 E

3< 	(9< G)
3< 	s...
3< 9<

3< 	Q - 4-)
3< 4<

K 	LI) 9< C.) 	0
3< 9< to
K 9<4-'04-)
K 	(1)s-

0) 4-)
3< 9<0>4-

3< 	(1)0 9< ES-4-'
c0Q- LJ1

K 9 S-4- (J)
(C) 	— LI)

K 	.'O -K t-
K

	
Q) (Z -K (3)

K 	-I-' -K 4-+-'4-' (I)
K 	ov •K 00-c Cl)
K 	E -K •-
K 	(3) -K4--)S-

WS-0
(1)o)a) =)

K -K 4---' CD
4-r- Of

K 	>. -K 0r-> C!)
K -K CD
K 	#'O -K
K= 4-) -3<
K 	a)

K 	SCi) 9

K 	•r- 9<
K 	WO -K
K= CL -K V) ccr
K 	4-' -K U_JV)><
K (A -K CD 	.'LLJ

C)C C)
K 	WU) 9< z xi— ..
K 	U S.- -K C) i-C) > <c Cr, I—
K 9< CC) — r- CC) CD C) (I)

K 9< C) 	Li1
K 	Li_I 	a) -K i—i Li_I Li_I
K 	CD .. -K —I (.1) (.1)
K 	C) -1--) -K =)=D co C) U) C_I) CD (C) CD
K -K C) Cr Cr =) = Cl) Li_I Lii
K 	4-) -K Li_I Li_I Lii CL CC) ccr i-f) Lii U) Li_I
K 	CC)lC) 1<
K 9<
K -K -I---C) CL
K -K 2= =)
K -K <c i—i CD C) CC) (C)
K -K Of CD i—i Of 3— 3— Lii Lii
K -K)-4 > C_I) < <c (ID LI)
K 9< Cl- 	(C) CD CD CD U) LI)

J-2

-
- 	U
U 	(0

4)
a)
a)

E
U (OE 	0
/) E0

4-

a) 00)W -
E (0VC0 	E
(0 (I) (U 	(0

i-ia)
4- E>-- (0

S.- (0 S.
-V)

U - 	- 0 0.. cC (0-
(0E = Q(/) a)

CS.- S.4-',---
(D (I) (U 	a)

r4-> 4->4a) U 	4->
-c00 >)

CO Qr-- (oa)0a)o
04-) -ES.-

a) 00(0S.- 0 	('.1
> 	a)o- +E(V
S.- S-a)

U) 	>111111> S-4->Q
0J4-)4-) C4-) 0u)E
S.- 	a 	(I) 	0-1 0a.)4-> 	a) 	(1)
CL 	(I) 0 <c ct co 	U) U) S.- 	S.--

-
Lu
in
CD

- >F-
cz

__J><_
rcLJc1c'4

I-

LU

(M 	I— > 	. CL F- 	tD

v c. o w W UI

.J LU LU 	J

>(>
ui CD WLU

J_3

APPENDIX K. INDEXED FILE RECOVERY
UTILITY (REBUILD)

Introduction

You can use the Indexed File Recovery Utility
(REBUILD) to recover or restore information contained
in indexed files created by a program compiled under
IBM Personal Computer COBOL (Version 1.00).

K-i

How the Utility Works

REBUILD reads the data file portion of an indexed file
and generates new key and data files for that indexed
file. The new file has the same structure as the old one.
You must use an existing indexed data file of non-zero
length in order to run this utility.

K-2

When to Use REBUILD

Diskette Full

Sometimes the WRITE operation requires more space
than is available on the diskette containing the indexed
file. The WRITE operation produces a boundary error
(file status "24" in indexed files), indicating that the
diskette is full. Using REBUILD restores the damaged
file structure that occurs (in an indexed file) during
the diskette-full condition.

As soon as this happens, close the file to write as much
information as possible to the diskette. The CLOSE
operation may return with a boundary error. If this
happens, as in the case of a system failure during record
addition, the last 256 bytes of information do not
appear on the data file and are, therefore, not
recoverable by the Indexed File Recovery Utility.

Abnormal Termination

Use REBUILD to recover indexed files that are
damaged when a power failure interrupts computer
processing or if the operating system is restarted with
a system reset while an indexed file is open in I/O or
output mode.

Because the system uses diskette file buffering in
memory, a system failure can leave the data file with
partially written data records. Sometimes REBUILD
fails to completely recover an indexed file because:

If a system failure occurs during a file update
process, the file can contain records with both
original and new information because some of
the new information may not have been written
to the file. REBUILD cannot determine which
part of the record the system wrote during the
aborted task, and cannot exclude the new,
incomplete data from the rebuilt file. If you
add a current date field to data records, you can
discriminate between original and new data.

K-3

If a system failure occurs when the system adds
records to the indexed file, the system cannot
write the last 256 bytes of data to the diskette.
REBUILD detects that information is missing
from the end of the file but cannot add it to the
new file being built.

Unusable Space

You can periodically use REBUILD to recover unusable
space in the data file portion of an indexed file when
you need more space. The unusable space occurs as a
result of numerous record DELETE and REWRITE
operations, especially when records in the file have
varying lengths.

K-4

Using REBUILD

REBUILD asks a series of questions about the file to be
recovered. Your answers provide the information
necessary to rebuild a new indexed file from the original
data file. In response to the operating system (DOS)
prompt, insert your COBOL diskette in drive B and
enter:

B: REBUILD

The system responds as follows:

IBM Personal Computer Indexed File

Recovery Utility

Version 1.00 (C) Copyright IBM Corp 1982

(C) Copyright Microsoft Corporation 1982

Insert your diskette containing the indexed data file to
be rebuilt in drive A. If you need extra space, remove
the COBOL diskette from drive B, insert a scratch
diskette, and send the target file to drive B (by using
a drive specifier on your target filename). Answer
each prompt and press the Enter key. You can return
to the first prompt (Input Key Length) at any time by
pressing the Enter key without typing the requested
information. To terminate REBUILD, answer "Input
Key Length" by pressing the Enter key without
typing a response.

Input Key Length

Enter the length of the key (in bytes) or press the Enter
key to terminate the session. Enter the key length as a
positive integer that is the number of bytes contained
in the item specified by the RECORD KEY clause of the
IBM Personal Computer COBOL program. If you enter
an incorrect key length, REBUILD continues, but
programs cannot access the newly generated indexed
file (see "Sample REBUILD Session" on page K-8).
After you enter the key length, REBUILD continues
with the next prompt:

Input Key Position

K-S

Enter the byte position of the key field, starting at 1,
as a positive integer representing the position within
the record of the data item specified by the RECORD
KEY clause of the IBM Personal Computer COBOL
program. REBUILD does not check the response.
Therefore, if you enter an incorrect key position,
programs cannot access the newly generated indexed file
(see "Sample REBUILD Session" on page K-8). After
you enter the key position, REBUILD continues with
the next prompt:

Input Source Filename

Enter the filename of the source file. The filename
should be the name used in the VALUE OF FILE-ID
clause in the IBM Personal Computer COBOL programs
that refer to the indexed file. Use the name of the data
file and not the name of the key file (which has the same
name followed by .KEY). The source filename can
contain a drive specifier (see "Sample REBUILD Session"
on page K-8).

After you enter the filename, REBUILD checks for the
presence of the file. If it is not present, REBUILD
displays the following message:

***Source file not found

Input Source Filename

When you enter a correct name, REBUILD continues
with the next prompt:

Input Target Filename

The target filename should be unique within a directory.
If you want to enter a target filename identical to the
source filename, send the target file to a different
diskette by including a drive specifier in the filename.
REBUILD can generate the target file on the same
diskette as the source file, but you must use a different
name. When the recovery operation is complete, you
can rename the target filename to the source filename
(see "Sample REBUILD Session" on page K-8).

K-6

If REBUILD cannot successfully create a new indexed
file because the diskette directory is full or because of
insufficient space on the diskette, the program displays
the following message:

***No space for target file

Input Target Filename

If this happens, use another diskette with more space.

After you correctly enter the target filename, REBUILD
displays:

Now reading source-file

and creating target-file

Note: The names you supplied for the source and
target files appear for source-file and target-file.

REBUILD begins building the new indexed file from
the old data file. When finished, REBUILD displays the
following message:

Conversion successfully completed.

Source records read: 	xxx ,xxx

Target records written: xxx,xxx

The record counts should match. If they do not, an
input/output error occurred during the recovery
operation.

Regardless of whether the record counts match,
REBUILD displays the first prompt:

Input Key Length

You can begin another file recovery operation, redo the
one with an input/output error, or terminate the
program.

Note: Remember that you can terminate the
program at any time by pressing the Enter key
without responding to a prompt. This brings you
back to the first prompt. You can then change the
information you gave to the previous session, or
you can terminate the program by pressing the
Enter key again.

K-7

Sample REBUILD Session

The following sample proglain fragment accesses the
IXFILE.DAT indexed file.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL

SELECT IX-FILE

ASSIGN TO DISK

ORGANIZATION INDEXED

ACCESS DYNAMIC

RECORD KEY IX-KEY

FILE STATUS IX-STAT.

DATA DIVISION.

FILE SECTION.

FD IX-FILE

LABEL RECORD STANDARD

VALUE OF FILE-ID "IXFILE.DAT"

RECORD CONTAINS 75 CHARACTERS

DATA RECORD IX-REC.

01 IX-REC.

05 IX-DATE 	PlC X(6).

05 IX-TIME 	PlC X(6)

05 IX-KEY.

10 IX-STATE 	PlC XX.

10 IX-CITY 	PlC X(20).

10 IX-STREET 	PlC X(30).

05 IX-ZIP 	PlC x(5).

05 IX-ZONE 	PlC x(6).

The responses for this program fragment are:

Prompt Response

Input Key Length 52

Input Key Position 13

Input Source Filename A:IXFILE.DAT

Input Target Filename B:NEWIX.DAT

These responses generate a new indexed file with the
key filename NE WIX. KEY and the data filename

K-8 	
NEWIX.DAT.

INDEX

Special Characters 	/T parameter 3-22
in PICTURE 6-37

A in PICTURE 6-33 ()in syntax 	2-9
B in PICTURE 6-33, 6-39 [] in syntax 	2-9
blank in PICTURE 6-36
CR in PICTURE 6-37
DB in PICTURE 6-37 A
P in PICTURE 6-34
S in PICTURE 6-34, 6-47 A device 	3-9
V in PICTURE 6-34 abbreviated conditions 	E-2
X in PICTURE 6-33 absolute segment address C-24
Z in PICTURE 6-36 ACCEPT statement
• in PICTURE 6-36 Format 1 	7-12
• 	• in syntax 	2-9 Format 2 	7-14
+ (addition) 	2-31 Format 3 	7-17
+ in PICTURE 6-39 Format 4 	7-35
I in syntax 	2-9 ACCESS clause 	5-7
* (multiplication) 	2-3 1 access mode 	8-9
* in column 7 	2-7, 4-4 accessing a file 	8-8, 8-13
* in PICTURE 6-36 ADD statement 	7-38
** (exponentiation) 	2-31 advancing lines 	8-37
- (hyphen) in column 7 	2-28 ADVANCING PAGE
- (subtraction) 	2-31 phrase 	6-28
- in PICTURE 6-39 ALL literal 	2-29
/ (division) 	2-31 alphabetic class test 	7-54
/ in PICTURE 	6-33, 6-39 alphabetic item 	6-34
I parameter 	3-22 alphanumeric item 	2-18
IC parameter 	3-22 alphanumeric-edited item 	6-33
/D parameter 3-22 ALTER statement 7-39
/DSALLOCATION American National Standard

parameter 	C-i 1 X3.23-1974 	1-3
/Fn parameter 3-23 an-form 	2-18
tHIGH parameter C-12 an-form of PICTURE 6-33
/LINE parameter C-i 2 AND 7-51
/MAP parameter C-13 Area A 2-7
/P parameter 	3-22 Area B 	2-7
/PAUSE parameter C-13 ARFILE 3-26
/STACK parameter C- 13 arithmetic expression 	2-31, 7-40

x-1

arithmetic operators 2-31
arithmetic statements

conditional 2-33
imperative 2-33
rules 2-34

ASCII character set G-1
ASCII code 6-23
ASCII representation

NATIVE 5-15
STANDARD-i 5-15

Assembler C-2
assembler subroutines 10-3
assumed decimal point 6-34,

6-35
asterisk (*) in column 7 2-7,

4-4
asynchronous communications

adapter 8-5
AUTHOR paragraph 4-5
AUTO 6-18
AUTO-SKIP 7-29
automatic response file 3-26,

C-17
AUX 8-5
AUX device 3-9, 8-5

B device 3-9
background color 6-15
backspace key 7-27
backtab key 7-35
base-2 number system 2-20
batch file 3-28
BEEP 7-29
BELL 6-15
binary item 2-20, 2-25
blank character 6-33
BLANK LINE 6-14
BLANK SCREEN clause 6-13
BLANK WHEN ZERO 6-18
BLANK WHEN ZERO

clause 6-21
BLINK 6-15
BLOCK clause 6-22

blocked input and output 8-28
BOTTOM margin 6-28
boundary, paragraph C-4
braces (use of in syntax) 2-9
brackets (use of in syntax) 2-9
Break key 3-32
buffer 5-8

C

CALL statement 10-9
carriage control 8-6, 8-37
chain parameters 10-7
CHAIN statement 10-10
chained program 10-13
chaining errors A-25
character comparisons 7-53
character set

ASCII 5-15
conditional 2-10
list of 2-10
NATIVE 5-15
punctuation 2-10, 2-11
relational 2-10
simple conditions 2-10
STANDARD-1 5-15
words 2-10

character string 7-55
class C-4
class test 7-54
CLOSE statement 8-18
closing a file 8-18
COB extension 3-9
COBIBF.TMP 3-5
COBOL

American National Standard
X3.23-1974 1-3

definition and use 1-3
features 1-3
modules 1-3

COBOL commands 3-20
COBOL diskette

COBOL file 3-3
COBOL1.OVR 3-3
COBOL2.OVR 3-3

X-2

COBOL diskette (continued)
COBOL3.OVR 3-3
COBOL4.OVR 3-3
RUNEC.BAT 3-3
RUNED.BAT 3-3

COBOL file 3-3, 3-5
COBOL package 3-3
COBOL1.LIB 3-3, 3-15, 3-18
COBOL1.OVR 3-3, 3-5
COBOL2.LIB 3-3, 3-15, 3-18
COBOL2.OVR 3-3, 3-5
COBOL3.OVR 3-3, 3-5
COBOL4.OVR 3-3, 3-5
COBRUN.EXE 3-3, 3-14, 3-18
CODE-SET clause 6-23
coding form 2-6
coding rules 2-5, 2-7
COL 7-19,7-42
Color Graphics Monitor
Adapter 6-16

COLUMN specification 6-14
comma/decimal-point 5-15
command error 3-32
command input and DOS-
dependent I/O errors A-4

command line syntax 3-18
command prompts, LINK C-6
command string

examples 3-20, 3-23
format 3-20
syntax 3-20

COMMAND .COM 3-8
comments 4-4
common runtime library 3-15
communicating with another

computer 8-5
Communication 1-6, 6-9, 10-3,

10-12
communication files 8-5
communications adapter 8-5
comparisons

character 7-53
numeric 7-53

compilation 3-5
compilation errors A-4, A-6

compiler
files produced C-2
main program 3-5
overlays 3-5
overview 3-5

compiling a program 3-8
compiling files 3-30
compound conditions E-1
compound relation 7-51
COMPUTATIONAL

(COMP) 6-50
COMPUTATIONAL-0

(COMP-0) 2-20, 6-50
COMPUTATIONAL-3

(COMP-3) 6-50
COMPUTE statement 7-40
computer

characteristics 5-5, 5-13.
5-15

printer 5-15
type 5-5, 5-13, 5-14

COM1 device 3-10, 8-5
CON device 3-10, 8-6
concatenation 7-68
condition 7-50
condition name 2-22, 6-53
condition-name test 7-54
conditional statement 2-13,

2-33
conditions (character set) 2-10
CONFIGURATION SECTION

paragraphs 5-5
CONFIGURATION SECTION

header 5-5
constant, figurative 2-29
continuation line 2-8, 2-28
control index 8-13
COPY statement 3-34
COUNT IN phrase 7-74
creating a source file 3-7
credit symbol 6-37
CRT handling

keyboard input 8-6
terminal output 8-6

CRT screen formats 6-1 1

X-3

Ctrl-Break key C-7, C-14
Ctrl-END 7-27
Ctrl-PrtSc key C-10
Ctrl-Z characters 5-8, 8-8
CURRENCY SIGN clause 5-15
cursor position 6-13

1]

Din column 7 5-14
data characters 7-21
data description
characters 6-33

data description entry 6-7, 6-9,
10-12
elementary item format

alphanumeric item 2-24
binary item 2-25
character-string item 2-24
decimal item 2-25
numeric-edited item 2-25
repor.t item 2-25

group item format 2-24
Data Division

example 6-4
file section 6-5
format 6-3
function 2-3
limitations 6-20
Linkage Section 6-9, 10-12
purpose 6-3
Screen Section 6-11
sections 6-3
Working-Storage Section 6-7

data input 7-21, 8-21
data input and data
transfer 7-21

alphanumeric receiving
field 7-22

editing characters 7-22, 7-27
numeric receiving field 7-24

data input field 7-19
data input position 7-27
data item

elementary item 2-16

alphanumeric 2-18
numeric

binary item 2-20
external decimal 2-19
index data-item 2-20
internal decimal item 2-19
packed decimal
format 2-19

report (edited) 2-18
data management facility 5-8
data movement 7-59
data name

condition name 2-22
definition 2-20
FILLER 2-20
mnemonic name 2-22
qualification of 2-21
rules 2-20

data names 2-12
data output 8-21
DATA RECORD(S)
clause 6-24

data transfer 7-21
DATE 7-12
DATE-COMPILED

paragraph 4-6
DATE-WRITTEN

paragraph 4-7
DAY 7-12
debit symbol 6-37
debugging 5-14, 7-45, 7-72
decimal item 2-25
decimal point 6-35, 6-36
decimal scaling position 6-34
DECIMAL-POINT IS

COMMA clause 5-15
decimal-point/comma 5-15
declaratives 7-4, 7-6
default drive 3-9,3-10
default extensions 3-15
default filename extension 3-11
default prompts C-6
defaults

compiler 3-11
drive 3-11
linker 3-15

X-4

DELETE statement 8-19, 8-20
deleting a record 8-19, 8-20
DELIMITED BY phrase 7-73
delimiters 2-27
developing a program

coding form 2-6
coding rules 2-5, 2-7
compiling a program 3-8
creating a COBOL source
file 3-7

device 3-9
device names

A 3-10
AUX 3-10
B 3-10
COMI 3-10
CON 3-10
LPT1 3-10
NUL 3-10
PRN 3-10

DGROUP C-i I
diagnostic messages A-3
digit position 7-26
digit positions (number in an
item) 6-37

diskette drive device 3-9
diskette file handling 8-7
diskettes 3-4
display 3-4, 6-50
display device 3-10
DISPLAY statement

ERASE 7-43
identifier 7-43
literal 7-43
position-spec 7-41
screen-name 7-43

disposition of a file 8-18
DIVIDE statement 7-45
division by zero 7-45
divisions

Data 2-3
Environment 2-3
Identification 2-3
Procedure 2-3

divisions of a program 2-3

DOS filename 6-55
dynamic access 8-9, 8-13

E

edited data 6-42
edited receiving field 6-55
editing characters 6-33, 6-35,

7-22, 7-27
editor 3-6
EDLIN 3-7
elementary item 2-16, 2-24
elementary screen item 6-11,

6-12
ellipsis (use of in syntax) 2-9
EMPTY-CHECK 7-30
END DECLARATIVES 7-6
end-of-file 8-23, 8-27
end-of-page 8-38
end-point 7-47
ending an ACCEPT 7-22, 7-35
Environment Division

Configuration Section 5-5
FILE-CONTROL

paragraph 5-7
format 5-3
function 2-3
header 5-3
1-0-CONTROL
paragraph 5-12

Input-Output Section 5-1 1
purpose 5-3
sections 5-3

ENVIRONMENT DIVISION
header 5-6

EOP 8-36
ERASE 7-43
error checking 7-6
error handling (I/O) 5-9
error messages 3-32

command input and DOS-
dependent A-4

compile time A-4
ERROR procedure 7-7

X-5

ESCAPE KEY value 7-12, 7-36
example

Data Division 6-4
Environment Division 5-4
Identification Division 4-4
Procedure Division 7-5

EXCEPTION procedure 7-7
EXE filename extension C-9
executable code 3-15
EXHIBIT statement 7-46
EXIT PROGRAM
statement 10-11

EXIT statement 7-47
expression, arithmetic 2-3 1,

7-40
extension 3-10
external decimal item 2-19,

6-46

F

FD entry 6-5, 6-25
figurative constant

All literal 2-29
definition 2-29
HIGH-VALUE 2-29
LOW-VALUE 2-29
plural form 2-30
QUOTE 2-29
SPACE 2-29
ZERO 2-29

file
automatic response C-2
definition 2-26
input C-2
library C-2
listing C-2
name 2-26
object C-2
output C-2
run C-2

file assignment parameters 5-11
file definition 6-25
file description entry 6-5

file handling
communication 8-5
diskette 8-7
display 8-6
indexed files 8-12
printer 8-4

file input 8-23
file labels 6-27
file organization

indexed 8-12
line sequential 5-8, 8-8
relative 8-9
sequential 5-7, 8-8
types 8-7

file output 8-34-8-38
file position 8-32, 8-33
File Section 6-5, 6-25
file status 8-10, 8-14
FILE STATUS clause 5-8
FILE-CONTROL
paragraph 5-7

filename 2-26, 3-10, 6-55
filename extension 3-10
filename extensions

COB 3-10
LST 3-10
OBJ 3-10

files used by COBOL 3-30
filespec 3-9
FILLER 2-20
FIPS flagging 3-23
first line of a program 4-8
fixed segment 7-9
fixed sign control
character 6-39

flags 7-52
floating insertion symbol 7-20
floating string 6-37
FOOTING 6-28
footing area 6-28
foreground color 6-15
format notation 2-9
Format 2 ACCEPT 8-6
Format 3 ACCEPT 8-6
Format 3 ACCEPT statement

X-6

Format 3 ACCEPT statement
(continued)
data input and data transfer

alphanumeric receiving
field 7-22

editing characters 7-27
numeric receiving
field 7-24

data input field
characteristics of 7-19
location of 7-18

example 7-32
WITH phrase 7-28

Format 4 ACCEPT 8-6
FULL 6-18

[j

gate 7-39
gate, shutting 7-39
GIVING option 2-36, 7-38

ADD statement 7-38
DIVIDE statement 7-45
MULTIPLY statement 7-63
SUBTRACT statement 7-71

GO TO statement 7-48
granules 8-12
group C-4
group item 2-17, 2-24
group screen item 6-11

ri
header 4-3
high intensity 6-16
high storage C-i 1
HIGH-VALUE 2-29
HIGHLIGHT 6-15
home position 6-13
hyphen in column 7 2-28

I
1-0-CONTROL paragraph 5-12
I/O error handling 5-9
IBM COBOL (meaning) 1-8
Identification Division

example 4-4
format

header 4-3
paragraphs 4-3

function 2-3
header 4-3
paragraphs 4-3
purpose 4-3

IDENTIFICATION DIVISION
header 4-8

identifier 7-43, 9-9
IF statement 7-49
imperative statement 2-13,

2-33
independent segment 7-9
INDEX 6-50
index data item 2-20
index item 9-3
index name 9-3
index, control 8-13
Indexed File Recovery
Utility K-1

indexed organization 8-12
initial state of a segment 7-9
initializing a data item 6-5 1
input 8-24
input files 3-30, C-2
Input-Output Section

header 5-11
paragraphs

FILE-CONTROL 5-7
1-0-CONTROL 5-12

INPUT-OUTPUT SECTION
header 5-11

inserting a file 3-34
INSPECT statement 7-55
INSTALLATION paragraph 4-9
inter-program

communication 6-9, 10-3, 10-12
internal data 6-7

X-7

internal decimal item 2-19
internal record descriptions 6-7
invalid key condition 8-29-

8-35
INVALID KEY phrase 8-20,
8-29-8-35

J

JUST 6-18
JUSTIFIED 6-18
JUSTIFIED clause 6-26

K

key file 8-1 2
key length 8-14
keyboard input 8-6

LABEL clause 6-27
LEFT-JUSTIFY 7-17, 7-28
LENGTH-CHECK 7-29
level number

01 (logical record) 2-15
0249 (specific entry) 2-15
77 (stand alone item) 2-16
88 (condition-name) 2-16

level 01 record 2-15
level 88 condition names 6-53
libraries 3-15
Libraries prompt C-7, C-1 0

default C-7
library (common runtime) 3-17
LIBRARY diskette

COBOL 1 .LIB 3-3
COBOL2.LIB 3-3
COBRUN.EXE 3-3
LINK.EXE 3-3

LIN 7-19,741
LINAGE clause 6-28
LINAGE-COUNTER 6-29

line sequential
organization 5-8, 8-8

LINE specification 6-14
linear search 9-5
lines on a page 6-28
LINK 3-24, C-I

example session C-19
how to start C-14

LINK command prompts C-6
LINK.EXE 3-3
Linkage Section 6-9, 10-12
Linker 3-14,C-1
linker files C-2
Linker program C-I
Linker, example session C-19
Linking a COBOL
program 3-14

linking a subprogram 3-26,
10-13

linking files 3-30
linking with segmentation 3-27
list file 3-12
List File prompt C-7, C-9
listing file 3-32
literal

delimiters 2-27
display-item 7-44
figurative constant 2-29
nonnumeric

continuation line 2-28
definition 2-27
examples 2-27

numeric
definition 2-28
examples 2-29
sign 2-28

Load Low parameter C-4
load module memory map C-23
LOCK 8-18
locking a file 8-18
logical pointer 7-68, 7-74
logical record 2-15
logical record area 5-8
logical records 6-22, 6-43
low memory C-l2
LOW-VALUE 2-29

LPTI device 	3-10, 8-4 nonoverlayable code 	3-5
LST extension 	3-10 NOT E-3

Nucleus 	1-4
NUL device 	3-10

M NUL.LST 	3-12
NUL.MAP 3-15

machine language numeric class test 	7-54
. 	 subroutines 	3-17 numeric comparisons 	7-54

machine-resident memory 	3-3 numeric data
main program 	3-5, 10-5, 10-13 (representation) 	6-50
map file 	3-15 numeric item 	2-18, 6-34
MAP filename extension 	C-9 numeric literal 	2-28
margins 	6-28 numeric-form 	2-18
master diskettes numeric-form of

COBOL 3-3 PICTURE 6-34
LIBRARY 3-3

memory 	5-12, 6-9, 6-49
high 	C-I I 0
low 	C-12

memory layout 	10-8 OBJ extension 	3-10
memory requirements 	3-3, OBJ filename extension 	C-8

3-16,6-20 object file
messages 	A-I compiler 	3-10
messages, LINK 	C-25 linker 	3-14
minimum requirements 	3-3,3-4 Object Modules prompt 	C-7,
minus sign 	6-39 C-8
mnemonic name 	2-22 OBJECT-COMPUTER
module 	1-4 paragraph 	5-13
Monochrome display 	6-16 OCCURS clause 6-30
MOVE operands H-2 OPEN statement 	8-21
MOVE statement 7-59 operational sign 	2-19, 6-34,
moving data 	7-14, 7-59 6-46
multiple subscripts 	6-3 1 operators, arithmetic 	2-3 1,
MULTIPLY statement 	7-63 7-40

OR 	7-51

N
organization

file 	8-7
indexed 	8-12

name of program 	4-10 line sequential 	5-8, 6-25, 8-8
name of program author 4-5 relative 	8-9
names 	2-12 sequential 	5-7, 8-7
NATIVE character set 	5-15 ORGANIZATION clause 5-7
nesting IF 	F-I output (screen) 	7-41
NO-ECHO 7-29,7-31 output files 	3-30, C-2
nondisplayable characters 	7-23 output listings 	3-32
nonnumeric literal 	2-27 overflow 	7-75

X-9

overlayable code 3-5
overlays

COBOL! .OVR 3-3
COBOL2.OVR 3-3
COBOL3.OVR 3-3
COBOL4.OVR 3-3

overriding a drive 3-22

riII
packed decimal format 2-19
page body 6-28
page overflow 8-37
page size 6-28
paragraph boundary C-3
paragraphs 2-14, 4-3
parameter addresses 10-3
parenthesized conditions E-2
PERFORM statement 7-64

AFTER clause I-i
VARYING clause I-i

physical buffer 5-8
physical records 6-22
PICTURE clause 6-17, 6-3 3-

6-42
pictures

types
An-form 6-33
numeric-form 6-34
Report-form 6-35

plus sign 6-39
plus sign - LINK command
character C-I 7

POINTER phrase 7-74
position-spec 7-18, 7-41
printer adapter 6-16
printer device 3-9
printer file handling 8-4
PRINTER IS phrase 5-15
PRN device 3-10, 8-4
PROC FAR 10-5
Procedure Division 2-3, 7-3
PROCEDURE DIVISION

header with CALL and
CHAIN 10-13

program development steps
coding form 2-6
coding rules 2-5, 2-7
creating a COBOL source
file 3-7

program flow 5-9, 7-39, 7-49,
7-67, 7-72

program structure
data names 2-15
divisions 2-3
example 2-4
level numbers 2-1 5
punctuation 2-1 I
skeletal coding 2-4
word formation 2-12

PROGRAM-ID paragraph 4-10
program-name 4-10
PROMPT 7-29
public symbols C-22
punctuation

character set 2-10
general rules 2-11

Ell
qualifiers 2-2 1
QUOTE 2-29

ft

random access 8-9, 8-13
range 7-64
READ statement 8-23, 8-25,

8-27
REBUILD.EXE K-i
receiving field 7-14, 7-59
RECORD clause 6-43
record levels

01 level 2-15
02-49 level 2-15
77 level 2-16
88 level 2-16

records 2-15
REDEFINES clause 6-44
reference count 8-12

x-10

relational character set 2-10
relational condition 7-50
relative files 8-9
relative indexing 9-4
relative organization 8-9
relative zero C-21
relocatable loader C-2
relocatable object code 3-16
remarks 2-7, 4-4
repeated data 6-30
replacement character 6-36
replacement of characters 7-56
replacing a record 8-29, 8-30,

8-31
REPLACING clause 7-56
report item 2-18, 2-25
report writer 1-6
report-form 2-18
report-form of PICTURE 6-35
representation of numeric
data 6-50

REQUIRED 6-18
RESERVE clause 5-8
reserved words 2-12, B-1
REVERSE-VIDEO 6-15
REWRITE statement 8-29,
8-30,8-31

right justify 6-18
RIGHT-JUSTIFY 7-17, 7-29
ROUNDED

ADD statement 7-38
COMPUTE statement 7-40
DIVIDE statement 7-45
MULTIPLY statement 7-63
SUBTRACT statement 7-71

ROUNDED option 2-35
rounding 2-35
RS232 device 3-10
RS232 port 8-4
run file 3-14,3-16
Run File prompt C-7, C-9
RUN.BAT 3-28
RUNEC.BAT 3-3,3-28
RUNED.BAT 3-3,3-28
running a COBOL Program 3-17
runtime system 3-17

S

SAME RECORD AREA
clause 5-12

sample listing 3-36
sample session D-1
scaling position 6-34
scaling position character 6-34
scratch diskette 3-4
screen data description
entry 6-11

screen formats
elementary screen item 6-11,

6-12
group screen item 6-11, 6-12

screen item
elementary 6-11, 6-12
group 6-11,6-12

screen output 7-41
Screen Section 6-11
screen-name 7-41
SEARCH statement

Format 1 9-5
Format 2 9-8

section header 2-14
section name 2-14
sections 2-14
SECURE 6-18
SECURITY paragraph 4-11
segment

fixed 7-9
independent 7-9
memory C-4

SEGMENT command C-13
segmentation 3-27, 7-9
segmentation restrictions on

ALTER and PERFORM 7-10
select entry 5-7
sentences 2-14
separating strings 7-73
separating subfields 7-73
sequential access 8-8, 8-13
sequential organization 5-7, 8-8
SET statement 9-11
sharing memory space 5-12
shutting a gate 7-39

x-11

sign character 6-34, 6-35, 6-39
sign characters 7-25
SIGN clause 6-46
sign test 7-54
simple relation 7-5 1
SIZE ERROR

ADD statement 7-38
COMPUTE statement 7-40
DIVIDE statement 7-45
MULTIPLY statement 7-63
SUBTRACT statement 7-71

SIZE ERROR condition 7-45
SIZE ERROR option 2-34
size of a page 6-28
slash 2-7, 6-33
slash (I) parameter 3-22
sort/merge 1-6
source field 7-59
source field scanning 7-74
source file 3-6, 3-10
source listing 3-12
source program 3-6
SOURCE-COMPUTER
paragraph 5-14

SPACE 2-29
space fill 6-26
SPACE-FILL 7-17, 7-23, 7-28,
7-30

speaker 6-15, 7-29, 7-31
SPECIAL-NAMES

paragraph 5-15
stack allocation

statement C-i 3
stack pointer 10-5
stack space 10-4
stand alone item 2-16
Standard (American National
X3.23-1974) 1-3

STANDARD-1 character
set 5-15

START statement 8-32, 8-33
starting LINK C-14
statements

arithmetic 2-33
conditional 2-13
imperative 2-13

STOP statement 7-67
STRING statement 7-68
structure of a program (see

program structure)
subfields 7-73
subprogram 3-25, 6-9, 10-5,

10-13
subscripting 6-31
subscripts 6-31, 9-4
SUBTRACT statement 7-71
suppression of zeros 6-36
SWITCH-n clause 5-16
switches 5-16, 7-52
symbolic device names 3-10
SYNCHRONIZED clause 6-49
syntax diagrams 2-9
syntax errors A-7
syntax notation 2-9
system files 3-30
system software 3-9

T

table handling 9-3, 9-1 1
tabs 2-5,2-8
TALLYING clause 7-56
temporary file, VM.TMP C-3
terminal output 8-6
TIME 7-12
TOP margin 6-28
trace mode 7-72
TRACE statement 7-72
TRAILING-SIGN 7-17
truncating 2-35
truncation 2-35, 6-26, 7-58

U

unary operation 2-31
UNDERLINE 6-15
underlined words (use of in
syntax) 2-9

UNSTRING statement 7-73
UPDATE 7-29

X-12

uppercase and lowercase in
syntax 	2-9

USAGE clause 6-50
USE sentence 7-6
USER device 8-6
user software 3-9

V

VALUE clause 6-7, 6-5 1-6-54
VALUE OF FILE-ID

clause 6-55
variation 9-5
vertical bar (use of in

syntax) 2-9
video modes J-1
VM.TMP temporary file C-3,

C-7, C-8
public C-7

w
WITH DEBUGGING MODE

clause 5-14
WITH phrase

alphanumeric receiving
field 7-28

numeric receiving
field 7-29

word alignment 6-49
word formation 2-12
words

characters 2-10
names 2-12
reserved words 2-12
rules 2-12
user-defined 2-12

working storage item 6-51
Working-Storage Section 6-7
WRITE statement 8-34, 8-3 5,

8-36

X

X3.23-1974 1-3

Z

ZERO 2-29
zero suppression 6-36, 7-58
ZERO-FILL 7-17, 7-23,7-27,

7-28

0

0 in PICTURE 6-33, 6-39
01 level record 2-15
02-49 level record 2-15

7

77 level record 2-16

8

88 level condition names 6-53
88 level record 2-16

9

9 in PICTURE 6-33

X-13

= 	 The Personal Computer
Computer Language Series

Product Comment Form

COBOL Compiler
by Microsoft
	

6172258

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

Comments:

If you wish a reply, provide your name and address in this
space.

Name_

Address -

City_ State

Zip Code

Tape 	 Please do not staple 	 Tape

Fold here

7,Ct7CC VolbiOld NO±V8 V008
:D - L X08 Od
OIAS S1VS

±fldVJOO 1VN0SHd LAJ8I

JSSiOOv A8 GIVd RS hiM JJV±SOd

t5tE VOItO1d NO1VJ V308 M ON iIWH.d SSV13 LS1

1IVVI A1d3H SS3NISn9I

S3IVIS 031INfl

H1 NI

O1IVV J1

AIVSS33]N

IOVISOd ON

= 	 The Personal Computer
Computer Language Series

Product Comment Form

COBOL Compiler
by Microsoft
	

6172258

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

Comments:

If you wish a reply, provide your name and address in this
space.

Name-

Address_

City_

Zip Code

	 State

Tape 	 Please do not staple 	 Tape

Fold here

€€2 VQIHO1 NOIV V008

3 -9L X09 , 0 , d

331AUDSI?S1VS

i..fld(NOG 1VNOSH2d LAJ8I

3SSiGGV A9 OlVd 39 hiM 39V±SOd

EVCC VaIO]d 'NOIVH V308 M ON lIWHSd SSV13 LSHId

iwv A1d3H SS3NISfl9

S3IVIS 0311F'Jfl

H1 NI

O31IVV Al

AHVSS33N

]V1SOd ON

Continued from inside front cover

IBM does not warrant that the functions
contained in the program will meet your

requirements or that the operation of the
program will be uninterrupted or error

free.

However, IBM warrants the diskette(s) or
cassette(s) on which the program is fur-
nished, to l- free from defects in materials
and workmanship under normal use For a

period of ninety (90) days from the date of
delivery to you as evidenced by a copy of

your receipt.

LIMITATIONS OF REMEDIES

IBM's entire liability and your exclusive

remedy shall be:

I. the replacement of any diskette(s) or
cassette(s) not meeting IBM's "Limited
Warranty' and which is returned to

IBM or an authorized IBM PERSONAL
(;()MP(JI'ER dealer with a copy of your

receipt, or

2. if IBM or the dealer is unable to deliver a
replacement diskette(s) or cassette(s)
which is free of defects in materials or
workmanship, you may terminate this
Agreement by returning the program
and your money will be refunded.

IN NO EVENT WILL IBM BE LIABLE
TO YOU FOR ANY DAMAGES,

INCLUDING ANY LOST PROFITS,

LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF

SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE

LIMITATION OR EXCLUSION OF

LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO
YOU,

GENERAL

You may not sublicense, assign or

transfer the license or the program
except as expressly provided in this

Agreement. Any attempt otherwise to
sublicense, assign or transfer any of the

rights, duties or obligations hereunder is

void.

This Agreement will be governed by the

laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may

contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box

1328—W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HAVE READ THIS AGREEMENT,

UNDERSTAND IT AND AGREE TO

BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE

AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,

ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE

SUBJECT MATTER OF THIS
AGREEMENT,

SOME STATES DO NOT ALLOW THE
EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE

EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU

SPECIFIC LEGAL RIGHTS AND YOU
MAY ALSO HAVE OTHER RIGHTS

\-' WHICH VARY FROM STATE TO

STATE.

MM
International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6172258

Printed in United States of America

