
Microsoft. COBOL

Reference Manual

Microsoft Corporation

Information in this document is subject to change
without notice and does not represent a commitment on
the part of Microsoft Corporation. The software
described in this document is furnished under a license
agreement or nondisclosure agreement. The software may “
be used or copied only in accordance with the terms of
the agreement. It is against the law to copy Microsoft
COBOL on magnetic tape, disk, or any other medium for
any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1980, 1983

If you have comments about the software or these

Manuals, please complete the Software Problem Report at
the back of this manual and return it to Microsoft
Corporation.

Microsoft and the Microsoft logo are registered
trademarks of Microsoft Corporation.

MS is a trademark of Microsoft Corporation. “a

Document Number: 8301b-100-00

ACKNOWLEDGEMENT

"Any Organization interested in reproducing the COBOL
report and specifications in whole or in part, using
ideas taken from this report as the basis for an
instruction manual or for any other purpose, is free to
do so. However, all such organizations are requested
to reproduce this section as part of the introduction
to the document. Those usSing a short passage, as in a
book review, are requested to mention 'COBOL' in
acknowledgment of the source, but need not quote this
entire section.

"COBOL is an industry language and is not the property
of any company or group of companies, or of any
Organization or group of organizations.

"No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the
accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by
any contributor, or by the committee, in connection
therewith.

"Procedures have been established for the maintenance

of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive
Committee of the Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted
material used herein “A

FLOW-MATIC (Trademark of Sperry Rand Corporation),

Programming for the UNIVAC (R) I and II, Data
Automation Systems, copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator,
Form No. F28-8013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-—Honeywell

have specifically authorized the use of this material
in whole or in part in the COBOL specification, in
programming manuals or similar publications."

from the ANSI COBOL STANDARD
(X3.23-1974)

CONTENTS

Figures ix

Tables x

Introduction xi

How to Use This Manual xi

General Format

and Syntax Notation A i
/ Learning More About COBOL XV

Microsoft COBOL and
ANSI 74 Standard COBOL XV1
Microsoft COBOL Extensions xix

1 Language Elements 1

Source Coding Rules 3
Character Set 4

Punctuation 5
Reserved Words 5
Names 6

Literals 9
Statements 12

Arithmetic Statements 13
Arithmetic Expressions 14 a

e

WODIDNUERWNHH

2 Structure of a COBOL Program 17

eo Yow | Level Numbers and Data-Items “eS

oe 3 Compiler Directing Statements 22

Contents

3 IDENTIFICATION DIVISION ZS

K Pe AUTHOR Paragraph 28
Sem DATE-COMPILED Paragraph 29
x, Bea DATE-WRITTEN Paragraph 30
3u8 IDENTIFICATION DIVISION Header a2

cP INSTALLATION Paragraph 32
36 PROGRAM-ID Paragraph 33
sed SECURITY Paragraph 34

4 ENVIRONMENT DIVISION 35

ASSIGN Clause 40
CONFIGURATION SECTION Header 41

ENVIRONMENT DIVISION Header 42

FILE-CONTROL Paragraph 43
INPUT-OUTPUT SECTION Header 45

I-O-CONTROL Paragraph 46
OBJECT-COMPUTER Paragraph 47
SAME AREA Clause 48
SELECT Clause 49

mh hhh Hh he Ph

e

RKPrROAN HAUS WN FE

-10 SOURCE-COMPUTER Paragraph $3
-ll SPECIAL-NAMES Paragraph 54

5 DATA DIVISION 57

ie oat 2 Data-Items and Data Descriptions
Sua DATA DIVISION Limitations 73
I Sections 74
5.4 Clauses 85

6 PROCEDURE DIVISION 133

Gos Arithmetic Statements 140
6.2 I-O Error Handling 143
$i3 Dynamic Debugging Statements 144
6.4 PROCEDURE DIVISION Statements 145

i Inter-Program Communication ana

pe! CALL Statement 223

Pie EXIT PROGRAM Statement 224

Leas CHAIN Statement 224

7, oe PROCEDURE DIVISION

Header With CALL and CHAIN 225

- vi -

65

10

11

be

5

Contents

Table Handling by the Indexing Method za?

Bax Index-Names and Index-Items 229
2 SET Statement 229

3 Relative Indexing 230
4 Format 1 SEARCH Statement 23%
5 Format 2 SEARCH Statement 234

SEQUENTIAL Files 237

Pe Definition of

Sequential File Organization 239
Syntax Considerations 240
File Status Reporting 241
PROCEDURE DIVISION

Statements for Sequential Files 242

& WN

INDEXED Files Peep |

10.1 Definition of
INDEXED File Organization 253

10.2 Syntax Considerations 254
10.3 PROCEDURE DIVISION

Statements for INDEXED Files 257

RELATIVE Files 265

Lick. BDetinition of

RELATIVE File Organization 267
11.2 Syntax Considerations 268
11.3 File Status Reporting 269
11.4 PROCEDURE DIVISION

Statement for RELATIVE Files 270

Declaratives and the USE Sentence Oe BE |

Segmentation 279

- vii -

Contents

Appendices 281

A Advanced Forms of Conditions 283

A.l Evaluation Rules “A

for Compound Conditions 285
A.2 Parenthesized Conditions 286

AS Abbreviated Conditions 286
A.4 NOT, the Logical Negation Operator 287

B Table of Permissible MOVE Operands 289

os Nested IF Statements 291

D ASCII Character Set

for ANSI 74 COBOL 295

E Reserved Words 297

F PERFORM With VARYING and AFTER Clauses 301

Index 303

—- viii -

FIGURES

Figure 8.1. Logic Diagram for

Format 1 SEARCH Statement 233

Figure C.l. Tree Structure of
Nested IF Statements 292

at ix -

Table

Table

Table

Table

Table

Table

TABLES

SEQUENTIAL File Status Settings 241

INDEXED File Status Settings 256

I-O Permitted

With INDEXED Files 257

RELATIVE File Status Settings 269

I-O Permitted

With RELATIVE Files 270

Permissible MOVE Operands 289 “

INTRODUCTION

Microsoft® COBOL (MSm-COBOL) provides the most

extensive implementation of COBOL for microcomputers.
With all of Level 1 and most Level 2 ANSI 74 Standard
COBOL features, MS-COBOL has been validated by GSA as a
low-intermediate implementation of COBOL. Special
features such as advanced verbs, trace-style debugging,
and formatted screen ACCEPT/DISPLAY assure you that
MS-COBOL will not only perform to specification, but
will also provide you with the tools you need to create
better business programs.

How to Use This Manual

This manual is a reference for all implementations of
Microsoft COBOL. The manual is divided into an
introduction, the main technical portion of the manual,
and appendices.

This introduction explains how to use the manual: it
Outlines the organization, describes the syntax
notation used throughout the manual, and provides a
list of sources for learning more about COBOL
programming. This introduction also compares Microsoft
COBOL with ANSI 74 Standard COBOL.

The main body of the Reference Manual covers the
following topics:

Chapters 1 and 2 discuss elements of the MS-—-COBOL
language and explain the structure of a COBOL program.
These chapters include definitions of terms, an outline

of the MS-COBOL general format, and a brief description
of the COPY and USE commands.

—- xi-

Microsoft COBOL Reference Manual

Chapters 3 through 6 discuss the four divisions of an
MS-COBOL program, including any statements or clauses
normally placed in those divisions. The first page of
each chapter gives the general format for the
appropriate division, with the arrangement that would
normally appear in an MS-COBOL source program.
Individual portions of the general format are then
discussed in alphabetical order.

Chapters 7 through 13 present advanced MS-COBOL topics,

including interprogram communication, table handling,
file organizations, declaratives, and segmentation.

The appendices provide a table of permissible MOVE

operands, a list of ASCII characters, and a list of
COBOL reserved words.

- xii -

Introduction

General Format and Syntax Notation

Whenever the general format for a statement is shown,

the following conventions apply:

wy CAPS All words shown in CAPS are MS—COBOL

reserved words.

Reserved words that are not underlined
are optional. If included, they are
used solely for improving the
readability of the program.

CAPS All underlined reserved words are key

words, and are required unless the
portion of the format containing them
is itself optional. A missing key
word or incorrect spelling of a key
word results in an error.

lower-case Words printed in lower-case letters in
formats represent terms for which the
user must substitute a valid entry.

<> = The characters less than (<), greater

than (>), and equals (=), although not
wy underlined, are required when they

appear in a general format.

Special Punctuation and special characters are
Characters required where shown in a general

format. Additional punctuation can be
inserted, according to the rules for
punctuation specified in Section 1.3.

In general, terminal periods are shown
in formats, because they are required;
semicolons and commas are not usually
shown in the formats, because they are

optional. To be considered
separators, all commas, semicolons,
and periods must be followed by a
space or blank.

Rs Any part of a statement or data
description entry that is enclosed in
brackets is optional.

oy () Optional elements may be indicated by
parentheses instead of brackets, if no
ambiguity results.

- xiii -

Microsoft COBOL Reference Manual

a When braces enclose parts of a
statement, one--and only one--of the
options must be used. Braces also
delimit the portion of a statement
that applies to a subsequent ellipsis. ny

Alternate options may also be
separated by a vertical line (e.g.,
AREA | AREAS is equivalent to
enclosure within braces).

lower-case When more than one occurrence of a

with suffix term is included in a format, a digit
or letter may be used as a suffix.
The suffix is for clarification only,
and does not change the meaning of the
term (e.g., data-name-l, data-name-2).

bate The ellipsis (...) indicates that the
immediately preceding unit may occur
once or any number of times in
succession. A unit is either a single
lower-case word, or a group of
lower-case words and one or more
reserved words enclosed in brackets or
braces. If repetition occurs, the
entire unit must be repeated. “A

If necessary, the text accompanying the general format
will contain comments, restrictions, or clarification
on use of the format.

Any clauses (e.g., BLOCK clause) or statements (e.g.,
PERFORM statement) mentioned in a format will be

described elsewhere in the text.

- xiv -

Introduction

Learning More About COBOL

If you are new to COBOL programming, you will probably
want to learn more about the language before using this
manual. The following texts are all COBOL tutorials,
written for the novice programmer:

Abel, Peter. COBOL Programming: A Structured
Approach. Reston, Virginia: Reston Publishing
CO., 1960.

McCracken, Daniel D. A Simplified Guide to
Structured COBOL Programming. New York: John
Wiley and Sons, Inc., 1976.

Parkin, Andrew. COBOL for Students. Edward
Arnold, LtG., -i37e.

Microsoft COBOL Reference Manual

Microsoft COBOL and ANSI 74 Standard COBOL

Guidelines established by the American National
Standards Institute (ANSI) are used to compare COBOL
compilers. The latest standards, adopted in 1974,
contain twelve modules, each with two levels of “a
implementation. The standard states that the first
three modules (Nucleus, Table Handling, and Sequential
I-O) must be implemented at least to Level l. The
other nine modules are optional. Microsoft COBOL, with
all Level 1 features and many features from Level 2, is
validated as low-intermediate.

Nucleus

MS-COBOL includes all Level 1 features. It includes

all features of Level 2 except that:

1. A figurative constant used as a literal in
ALL "literal" cannot be longer than one
character (e.g., PIC A(9) VALUE IS ALL "ABC"
is not valid; PIC A(9) VALUE IS ALL "Q" is
valid).

2x In the ENVIRONMENT DIVISION, names cannot be

qualified. -)

3. In the SPECIAL-NAMES paragraph, the
alphabet-name must be ASCII, and the literal
phrase cannot be used.

4. In the DATA DIVISION:

a. The OCCURS DEPENDING ON clause is not

supported.

b. Level 88 statements may have either a list
of items or a range, but not both.

c. COMP-0O data items always require 2 bytes.
Therefore:

i. PIC 9(5) only allows a range of -32768
to 32767

ii. PIC 9, 99, 999, and 9999 are

equivalent to PIC 9(5) for COMP-0O “

items

iii. An error message is given when more
than 5 digits are specified.

- xvi -

Introduction

dad. Unsigned COMP-0 data items are not
supported (e.g., PIC 9 is equivalent to
ric SF).

(Note that in MS-COBOL for the 2Z280/8080
microprocessor, COMP data items are

ey treated the same as COMP-0O data items
unless the /V switch is used at compile
time. In this case, COMP data items are
treated as display data items. In
non-Z80/8080 versions of MS-COBOL, COMP

data items are treated as if they were
defined with USAGE IS DISPLAY. See the

Microsoft COBOL Compiler User's Guide for
more information on the /V compiler
Switch.)

e. The RENAMES phrase is not supported.

5. In the PROCEDURE DIVISION:

a. The CORRESPONDING option is not supported
for MOVE, ADD, and SUBTRACT statements.

b. Arithmetic statements may not have
ew multiple destinations.

c. Division remainders are not supported.

dad. INSPECT (Level 2) is not supported.

e. An ALTER statement can contain only one
procedure-name.

Table Handling

Same level of implementation as Nucleus.

Sequential I-O

The Level 1 Rerun facility is not included, because
most microcomputer operating systems do not support it.

All Level 2 features are supported.

- xvii -

Microsoft COBOL Reference Manual

Microsoft COBOL uses special language for tape
handling:

1. An optional tape file may be specified with
SELECT OPTIONAL filename.

2. A fully functional RESERVE INTEGER AREA(S)

Clause allows input/output buffering.

3. Multi-file tapes may be specified with the
MULTIPLE FILE TAPE CONTAINS clause.

4. Fully functional BLOCK CONTAINS and RECORD
CONTAINS clauses are allowed in the FD entry
for tape files, thereby giving the programmer
control over blocking fixed-length and
variable-length records.

5. Fully implemented OPEN and CLOSE statements

allow multi-reel files, tape reversal, and

tape positioning.

Relative I-O

Same level of implementation as Sequential I-O.

Indexed I-O

Same level of implementation as Sequential I-O.

Inter-program Communication

All features of Level 1 are implemented.

Library

All features of Level 1 are implemented.

Debug

Not implemented. However, Microsoft COBOL does include
the trace-style debug extensions to ANSI 74 Standard
COBOL and an interactive debug facility.

- xviii -

Introduction

Report-Writer

Not implemented.

Segmentation

All features of Level 1 are implemented.

Sort/Merge

Full Level 2 implementations for all versions for which

the MS-SORT package is available.

Microsoft COBOL Extensions

Microsoft COBOL includes the following extensions to
ANSI 74 Standard COBOL.

1. Special options are available with the ACCEPT
and DISPLAY statements (see Chapter 6,
"Procedure Division," for discussion of these

statements).

2. The COMP-3 data format is available. This

format allows numeric data to be packed two
digits to the byte, so that mass storage
requirements are reduced.

3. Lower-case characters are treated as if they
were upper-case, unless made part of a
non-numeric (quoted) literal.

4. The dynamic debugging statements, READY TRACE,
RESET TRACE, and EXHIBIT allow the display of
procedure names or data items during program
execution.

- xix -

CHAPTER 1

LANGUAGE ELEMENTS

ha & Source Coding Rules 3

pe Character Set 4

se Punctuation 5

1.4 Reserved Words 5

» See Names 6

wy Te Naming Conventions 6

5 Ea. ous ee Data-Names 6

eSvise File-Names ¥

eS ak Condition-Names :

Ee ae ee Mnemonic—Names 8

vows Procedure-Names 8

0 eS ae GPS Index-Names and Index-Data-Items 8

4 SP ar 4 Qualification of Names 8

Literals 9

Numeric Literals 9

Non-Numeric Literals 10

Figurative Constants Le |

Statements 12

Imperative Statements 12

Conditional Statements Lo

Compiler Directing Statements 13

Arithmetic Statements LS

Arithmetic Expressions 14

Language Elements

This chapter defines the terms that are used throughout
this manual to refer to parts of an MS-COBOL program.
It also gives the rules for coding an MS-COBOL source
program and outlines the naming conventions recognized
by MS-COBOL.

1.1 Source Coding Rules

Source programs may be written on standard coding

sheets or on a terminal. The rules given below apply
to both methods; though the actual column numbers may
differ slightly for a particular terminal, the relative
positions remain the same.

The following rules apply to coding an MS-COBOL
program:

1. Each line of code may have a six-digit line
number in columns 1 through 6. These line
numbers must be in ascending order. Blanks
are also permitted in columns 1 through 6.

2. If an asterisk (*) is placed in column 7 of
the line, the line will be treated as an
explanatory comment. It will be shown on the
source listing but will otherwise be ignored.
If a slash (/) appears in column 7, the line
will be treated as a comment and the printer
will space to the top of a new page before
printing the line in the source listing.

3. If the character "D" is placed in column 7 of
the line, the line will be treated as a
comment unless the WITH DEBUGGING MODE clause
of the SOURCE-COMPUTER paragraph is used. See
Section 4.10, "SOURCE-COMPUTER Paragraph," for
information concerning the SOURCE-COMPUTER
paragraph.

4. If a hyphen (-) is placed in column 7, the
line is treated as a continuation of the
previous line. Except when non-numeric
literals are continued, all trailing spaces on
the preceding line and all leading spaces on
the continuation line are ignored. (See
Section 1.6.2, "Non-Numeric Literals," for
special rules on continuing non-numeric
literals.) Area A (columns 8 through 11) of
the continuation line must be blank.

Microsoft COBOL Reference Manual

5. Reserved words for division, section, and

paragraph headers must begin in Area A.
Definitions of procedure-names must also begin
in Area A, as must level numbers O01 and 77 and
level indicator FD. Other level numbers must

begin in Area B (columns 12 through 72). “a

6. All other program elements should be confined
to Area B. Rules of statement punctuation
must be observed.

7. Columns 73 through 80 are ignored by the
compiler.

8. Tab characters in a line are expanded as
specified in the Microsoft COBOL Compiler
User's Guide. Care should be taken that tab
characters do not cause illegal placement of
program elements.

1.2 Character Set

The MS-COBOL language character set consists of the
following characters: “a

Letters A through Z, a through z

Blank or space
Digits O through 9
Special characters:

+ Plus sign

- Minus sign
* Asterisk
= Equal sign
> Relational sign (greater than)
< Relational sign (less than)
$ Dollar sign
, Comma
: Semicolon
- Period or decimal point
" Quotation mark
(Left parenthesis
) Right parenthesis
' Apostrophe (alternate of quotation mark)
/ Slash “

For non-numeric (quoted) literals and comments, the
MS-COBOL character set is expanded to include the

computer's entire character set.

Language Elements

1.3 Punctuation

The following characters are used for punctuation:

Left parenthesis
Right parenthesis
Comma

Period
Semicolon =e 66 = —

The following general rules of punctuation apply in
writing source programs:

1. When used as punctuation, a period, semicolon,

Or comma should not be preceded by a space,
but must be followed by a space.

2. At least one space must appear between two
successive words and/or literals. Two or more
successive spaces are treated as a single
space, except in non-numeric literals.

3. Relational characters should always be
preceded by a space and followed by another
space.

4. When the plus or minus characters, period, or
comma are used in the PICTURE clause, they are

governed solely by rules for report (numeric
edited) items (see Section 5.4.19, "PICTURE
Clause," for discussion of report items).

5. A comma may be used as a separator between
succesSive operands of a statement, or between
two subscripts. It must be followed by a
space (e.g., 10, 20).

6. A semicolon or comma may be used to separate a
series of statements or clauses. The
punctuation must be followed by a space (e.g.,
SUBTRACT A FROM X; MOVE X TO Y).

1.4 Reserved Words

Reserved words are words with specific meanings within
the COBOL language or within Microsoft COBOL. They
appear in upper-case letters in general formats. They
May contain the letters A through Z, a through Zz,
digits 0 through 9, or the hyphen (-). The maximum
length is 30 characters. Many are verbs (e.g., ADD,

oe. a

Microsoft COBOL Reference Manual

SUBTRACT, MOVE) or descriptive phrases (e.g., PICTURE,
VALUE IS). Reserved words may not be used for
programmer-assigned names.

See Appendix E, "Reserved Words," for a complete list
of reserved words.

1.5 Names

Any word that is not an MS-COBOL reserved word can be

used aS a programmer-assigned name, as long as it meets
the naming conventions listed in the following section.

1.5.1 Naming Conventions

Names may be up to 30 characters long and must contain

only letters A through Z, a through z, digits 0 through
9, or the hyphen (-). In addition:

1. All names except procedure-names must contain

at least one letter or hyphen.
Procedure-names may consist entirely of
digits.

2. A name may not begin or end with a hyphen.
However, a name may contain more than one
hyphen, and consecutive hyphens are permitted.

3. A name is ended by a space or by appropriate
punctuation.

4. If a programmer-supplied name is not unique,
it must be used with qualifiers. Qualifiers
are described in Section 1.5.2, "Qualification
of Names."

1.5.1.1 Data-Names

A data-name is a word assigned by the user to identify
a data item referenced in a program. Data-names are
defined in the DATA DIVISION of the program. A
data-name always refers to a region that contains data,
rather than to a particular value, because an item
often assumes a number of different values during the
course of a program.

Language Elements

If some of the characters in a record are not

referenced in the processing steps of a program, a
data-name need not be assigned. Instead, the word
FILLER is used to set aside the appropriate amount of
space.

A data-name must begin with an alphabetic character. A
data-name or the key word FILLER must be the first word
following the level number in each data-name entry, as
shown in the following general format:

{ data-name-1 }
level-number | FILLER

See Chapter 2, "Structure of a COBOL Program," for
discussion of level numbers. See aiso Chapter 5, "DATA
DIVISION," for more information on assigning
data-names.

1.5.1.2 File-Names

A file is a collection of data records, such as a
printed listing or a region of floppy disk, containing
individual records of a similar class or application.
A file-name is defined by an FD entry in the FILE
SECTION of the DATA DIVISION. The format is:

ED file-name

Rules for composition of the file-name are identical to
those for data-names. References to file-names appear
in the ENVIRONMENT DIVISION and in CLOSE, OPEN, and
READ statements.

1.5.1.3 Condition-—Names

A condition-name is a name assigned to a specific
value, set, or range of values within the complete set
of values that a data-item may assume. Condition-names
are defined in level 88 entries within the DATA
DIVISION. For example, a level 03 item "CLASS-NO"
might be followed by the following subordinate level 88
entries:

88 VALID-NO VALUE IS ‘'l'.

88 INVALID-NO VALUE IS ‘'2'.

Microsoft COBOL Reference Manual

An IF statement could then reference either the literal

value '1l' or '2', or the condition-names VALID-NO or

INVALID-NO.

Rules for forming condition-names are the same as those
for data-names (see Section 1.5.1.1, "Data-Names").
Condition-names and their uses are explained more fully
in Chapter 5, "DATA DIVISION," and Chapter 6,
"PROCEDURE DIVISION."

1.5.1.4 Mnemonic—Names

A mnemonic-name assigns a user-defined word to an
implementation-specific name, such as PRINTER. The
rules for naming are the same as those for data-names
(see Section 1.5.1.1, "Data-Names"). Mnemonic-names
are assigned in the ENVIRONMENT DIVISION and are
referenced by ACCEPT and DISPLAY statements.

1.5.1.5 Procedure-Names

Procedure-names are asSigned to paragraphs or sections

that are executed with the PERFORM or GO TO statements
or by falling through from another part of the program.
Procedure-names are declared in the PROCEDURE DIVISION.
They must conform to the rules for data-names (see
Section 1.5.1.1, "Data-Names"), except that a
procedure-name may consist entirely of digits.

1.5.1.6 Index-Names and Index-Data-Items

Index-names and index-data-items are used for table
handling by indexing. An index-name is declared
implicitly by its appearance in the "INDEXED BY
index-name" appendage to an OCCURS clause.
Index-data-items are defined by the USAGE IS INDEX
phrase. See Chapter 8, "Table Handling by the Indexing
Method," for further discussion.

1.5.2 Qualification of Names

When a data-name, condition-name or paragraph-name (see
Chapter 2, "Structure of a COBOL Program," for a
description of paragraphs) is not unique, a specific
instance of the name may be referenced by using
qualifiers.

Language Elements

For example, if there were two or more items named
YEAR, the qualified reference

YEAR OF HIRE

might differentiate between YEAR fields in HIRE and
TERMINATION.

Qualifiers are data-names or condition-names preceded
by "OF" or "IN". The qualifiers must designate
broader-level groups that contain all the names in the
reference. For example, HIRE must be a group item (or
file-name) containing an item called YEAR.
Paragraph-names may be qualified by a section-name.
(See Chapter 2, "Structure of a COBOL Program," for
discussion of hierarchy.)

The maximum number of qualifiers allowed is: one for a
paragraph-name; five for a data-name or

condition-name. File-names and mnemonic-names must be
unique.

A qualified name may only be written in the SCREEN
SECTION or PROCEDURE DIVISION. A reference to a
multiply defined paragraph-name need not be qualified
when the reference is made within the same section.

1.6 Literals

A literal is a constant. It is not assigned a

data-name in a program, but is referred to only by its
value, which does not change. Literals can be numeric,

non-numeric (quoted), or figurative.

1.6.1 Numeric Literals

A numeric literal must contain at least one and not
more than 18 digits. A numeric literal may consist of
the characters 0 through 9, optionally preceded by a
sign, and the decimal point. It may contain only one
Sign character and only one decimal point. The sign,
if present, must appear as the left-most character in
the numeric literal. If a numeric literal is unsigned,
it is assumed to be positive.

A decimal point may appear anywhere within the numeric
literal except as the right-most character. If a
numeric literal does not contain a decimal point, it is

a ae

Microsoft COBOL Reference Manual

considered to be an integer.

The following are examples of numeric literals:

72 +1011 3.14159 -6 ~~ sae 0.5

European notation (period and comma interchanged) can
be specified by including the DECIMAL-POINT IS COMMA
entry in the Special Names portion of the ENVIRONMENT
DIVISION. In European notation, for example, the

numeric literal pi would be written as 3,14159.

1.6.2 WNon-Numeric Literals

A non-numeric literal is also called a "quoted"
literal. It is delimited by quotation marks or
apostrophes, and may consist of any combination of
characters in the ASCII set. Generally, if the literal
is delimited by apostrophes, quotation marks may be
used within the literal, and vice versa. However, the
delimiter character can be used as a character within
the literal if two such characters are consecutive. In
such a case, the two characters are considered as one
representation of the delimiter within the literal.
For instance,

"THE DATA-NAME ""VALID-NO"" IS ACCEPTED HERE"

would be interpreted as

THE DATA-NAME "VALID-NO" IS ACCEPTED HERE

All spaces enclosed by the delimiters are included as
part of the literal and are counted when the length is
checked. Delimiters are not included in the length,
which must be in the range 1 through 120.

The following are examples of non-numeric literals:

"ILLEGAL CONTROL CARD"

‘CHARACTER-STRING'

"DO'S & DON'TS"

Non-numeric literals may be continued from one line to
the next. The following rules apply to the
continuation line:

Language Elements

1. Column 7 of the continuation line must contain

a hyphen.

2. Area A of the continuation line must be blank.

3. A delimiter must be entered in Area B,

followed by the continuation of the literal.

4. All spaces at the end of the previous line and
any spaces from the delimiter to the end of
the continuation line are considered to be
part of the literal.

1.6.3 Figurative Constants

A figurative constant is a special type of literal. It
represents a value or character to which a reserved
data-name has been assigned by MS-COBOL. When the
program is compiled, that value or character will be
provided as needed. For example, the figurative
constant SPACE clears its entire field to blanks;

LOW-VALUE enters the computer's lowest value. A
figurative constant is not bounded by quotation marks.

In MS-COBOL, the reserved words listed below are
figurative constants. The plural forms of the words
are accepted by the compiler but are equivalent to the
Singular forms.

ZERO may be used in many places in a
program as a numeric literal. It may
also be used in alphanumeric fields.

SPACE represents the blank character.

LOW-VALUE represents the computer's lowest
value.

HIGH-VALUE represents the computer's highest
value.

QUOTE represents the quotation mark.

ALL indicates one or more instances of the
literal literal, which must be a one-character

non-numeric literal or a figurative
constant. If the literal is a
figurative constant, ALL is not
necessary but is usually included for
readability.

wee | eee

Microsoft COBOL Reference Manual

A figurative constant may be used anywhere a literal is

called for in a general format, except where the
literal is numeric only. In this case, the only
figurative constant that can be used is ZERO.

1.7 Statements

Statements specify actions to be taken by the compiler.
They usually consist of a verb, such as ACCEPT or MOVE,
followed by operands that are data-names or literals.
The compiler recognizes three kinds of statements:
imperative, conditional, and compiler directing.

1.7.1 Imperative Statements

An imperative statement specifies an unconditional
action to be taken by the program. Imperative
statements appear only in the PROCEDURE DIVISION of the
program. The verbs that can be used in imperative
statements are:

ACCEPT MOVE
ADDt MULTIPLY tft
CALL OPEN
CLOSE PERFORM
COMPUTEt READt

DELETE?t REWRITE t
DISPLAY SET
DIVIDETt START t

EXIT STOP
GO SUBTRACT t
INSPECT WRITET

tSIZE ERROR, INVALID KEY, or AT END clauses cannot be

included in imperative statements.

See Chapter 6, "PROCEDURE DIVISION," for discussion of
individual statements.

Language Elements

1.7.2 Conditional Statements

Conditional statements test for conditions and provide
alternate paths of program execution. Conditional
statements occur only in the PROCEDURE DIVISION of a
program. The following verbs can be used for
conditional statements:

ADD t READ t

COMPUTET REWRITEt

DELETE t START Tt
DIVIDE?T SUBTRACT tf
iF WRITE?T

MULTIPLY fT

+These verbs form conditional statements when used with

SIZE ERROR, INVALID KEY, or AT END clauses.

1.7.3 Compiler Directing Statements

A compiler directing statement is a command to the
compiler itself, rather than a functional part of the
program. Compiler directing statements can be used
anywhere in the ENVIRONMENT, DATA, Or PROCEDURE

DIVISIONS. The two verbs used as compiler directing
statements are COPY and USE. COPY reads source lines

from another file and inserts them in the original
program. USE specifies procedures to be executed when
input-output errors occur. See Chapter 2, "Structure
of a COBOL Program," for discussion of these two verbs.

1.8 Arithmetic Statements

There are five arithmetic statements: ADD, SUBTRACT,
MULTIPLY, DIVIDE and COMPUTE. Any arithmetic statement
may be either imperative or conditional. Three

optional clauses are available with arithmetic
Statements. They are: ON SIZE ERROR, ROUNDED, and

GIVING. See Chapter 6, "PROCEDURE DIVISION," for
detailed discussion of individual arithmetic statements
and optional clauses.

When an arithmetic statement includes an ON SIZE ERROR
specification, the entire statement is termed
conditional, because the size-error condition is

data-dependent. For example, the following arithmetic
statement is conditional:

Microsoft COBOL Reference Manual

ADD 1 TO RECORD-COUNT

ON SIZE ERROR
MOVE ZERO TO RECORD-COUNT
DISPLAY "LIMIT 99 EXCEEDED".

If a size error occurs (in this case, it is apparent
that RECORD-COUNT has PICTURE 99, and cannot hold a

value of 100), subsequent statements (i.e., MOVE and
DISPLAY) are executed.

All data-names used in arithmetic statements must be
elementary numeric data items that are defined in the
DATA DIVISION of the program, except that operands of
the GIVING option may be report (numeric edited) items.
Index-names and index-items are not allowed in these
arithmetic statements. (See Chapter 5, "DATA
DIVISION,” for definition of elementary items.)

Decimal point alignment is supplied automatically
throughout arithmetic computations. Intermediate
result fields are generated for the evaluation of
arithmetic expressions. These intermediate fields
assure the accuracy of the result, except where
high-order truncation is necessary.

1.9 Arithmetic Expressions

An arithmetic expression is a combination of numeric
literals, data-names, arithmetic operators, and
parentheses. In general, the data-names in an
arithmetic expression must designate numeric data.
Consecutive data-names (or literals) must be separated
by an arithmetic operator, and there must be one or
more blanks on either side of the operator. The
Operators are:

for addition
for subtraction
for multiplication
for division

* for exponentiation to an integral power OF 1 +

Language Elements

When more than one operation is to be executed using a

given variable or term, the order in which the
operations are performed is:

1. the unary operators plus and minus (involving
one variable oniy)

2. exponentiation

3. multiplication and division

4. addition and subtraction

Parentheses may be used to change the standard order of

evaluation. Expressions within parentheses are
evaluated first, and parentheses may be nested to any

level. When parentheses are used in an expression, the
following punctuation rules should be observed:

1. A left parenthesis is preceded by one or more
spaces.

2. A right parenthesis is followed by one or more
spaces.

The following examples illustrate the evaluation

process:

Example 1: The expression

A +8 Y/Y (tC =P * oy

is evaluated in the following sequence:

1. compute the product D times E, considered as
intermediate result Rl

2. compute intermediate result R2 as the
difference C - Rl

3. divide B by R2, providing intermediate result

R3

4. the final result is computed by addition of A
to R3

Microsoft COBOL Reference Manual

Example 2: The same expression, without parentheses,

A+B/C-D#E

is evaluated as follows:

jee ee: a ae

ae Re OFFS

3. RS: =: Ac+ Ri

4. the final result is R3 - R2

Example 3: The expression

A- B-C

is evaluated as:

(A = 8) =e

me LG ee

CHAPTER 2

STRUCTURE OF A COBOL PROGRAM

Level Numbers and Data-Items ve

Compiler Directing Statements a3

COPY Statement a3

USE Statement 24

Penge Ge

Structure of a COBOL Program

Every COBOL source program is divided into four
divisions.

The four divisions are:

1. IDENTIFICATION DIVISION, which names and
documents the program.

2. ENVIRONMENT DIVISION, which indicates the

computer equipment and features to be used in
the program.

3. DATA DIVISION, which defines the names and
characteristics of data to be processed.

4. PROCEDURE DIVISION, which consists of
statements that direct the processing of data
at execution time.

Each division must begin with a division header, and
divisions must appear in the program in the preceding
L3S8t.

Each program division consists of a particular
arrangement of "grammatical" parts. In hierarchical
order, these parts fit together as follows, with

"division" as the highest level part:

Division
Region
Section
Paragraph
Sentence |Entry
Statement |Clause
Phrase|Option

When one of the levels shown in the preceding list

contains multiple terms separated by a vertical bar
(e.g., Sentence|Entry), the term that is used depends

on which part of the program it occurs in. For
example, the progression in the ENVIRONMENT DIVISION
is: Division, Section, Paragraph; while the
progression in the DATA DIVISION is: Division,
Section, Entry, Clause. See Chapters 3 through 6 for
general formats for each division.

The following list defines these terms and other
MS-COBOL terms associated with them. The list starts
with the lowest level in the hierarchy. For a more
comprehensive glossary of COBOL terms, see the 1974
ANSI Standards document, American National Standard
Programming Language COBOL, ANSI X3.23-1974, ISO
1989-1978, corrected edition July 1978.

or

Microsoft COBOL Reference Manual

pe Phrase

A group of words that performs part of a
procedural statement or clause. For example,
the WRITE statement contains an optional
INVALID KEY phrase which specifies a procedure
that will be performed if an INVALID KEY
condition exists.

Option

Because most phrases are optional (as denoted
by brackets in the general format), they are

often referred to as options.

Statement

A statement iS an action that is to be
performed. It includes a verb, one or more

operands (data-names or literals) that are to

be acted on, and any necessary phrases. The
three kinds of statements--imperative,
conditional, and compiler directing--are
defined in Chapter 1, "Language Elements."

All statements except COPY appear in the
PROCEDURE DIVISION. The COPY statement may
appear anywhere except the IDENTIFICATION

DIVISION.

Clause

A group of words that specify an attribute, or
characteristic, of an entry in the DATA
DIVISION. An entry may have multiple clauses.

Sentence

A group of one or more statements. The last
statement in the sentence is followed by a
period (.) and a space. Like statements,
sentences appear only in the PROCEDURE
DIVISION.

Entry

Entry is often used as a general term for
anything that is "entered" in a particular
place in a program. However, it does have a
specific meaning in COBOL: an entry is a
descriptive set of clauses, ending with a
period. Unless stated otherwise, the specific
meaning will be used in this manual. Entries

oo 2D) iim

Structure of a COBOL Program

May occur in the IDENTIFICATION, ENVIRONMENT,

and DATA DIVISIONS.

7. Paragraph

A paragraph is a group of related sentences
(in the PROCEDURE DIVISION) or entries (in the
IDENTIFICATION, ENVIRONMENT, or DATA

DIVISIONS). A paragraph always starts with a
paragraph-name or paragraph header.

In some cases, a group of entries will
constitute a section, rather than a paragraph.

This happens, for example, in the FILE SECTION
of the DATA DIVISION.

8. Section

A set of related paragraphs or entries. A

section always starts with a section header.

9. Region

A set of PROCEDURE DIVISION sections. The
only region in MS-COBOL is the DECLARATIVES
REGION in the PROCEDURE DIVISION. It starts

with the DECLARATIVES header and ends with END

DECLARATIVES.

10. Division

One of the four major functional parts of a

COBOL program. A division always starts with
a division header.

2.1 Level Numbers and Data-Items

In the DATA DIVISION of an MS-COBOL program, all
entries except the FD (file description) entry are
names and descriptions of data-items used in the

program. These data-items can be group items,
elementary items, or conditions. A group item has
subordinate items within it; an elementary item does
not.

Level numbers are a form of outline that shows how the
data-items are related to each other. Group items can
be at any level from 01 to 49. An item's status as a
group or elementary item is determined solely by
whether another item is subordinate to it. An item is

BeBe ee

Microsoft COBOL Reference Manual

a group item if a higher numbered level exists within
the program before a lower or equal level is found.
Subordinate items may themselves be either group items
or elementary items.

Subordinate levels need not be consecutive, and numbers “a
can be skipped to allow for later insertions.

The following example shows two levels of
subordination:

O01 TIME-CARD.
O02 NAME.

03 LAST-NAME PICTURE X(18).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.

02 EMPLOYEE-NUM PICTURE 99999.
02 WEEKS-END-DATE.

05 MONTH PIC (1S9:.
05 DAY-NUMBER Pic $9.
05 YEAR PIC 99.

02 HOURS-WORKED PICTURE 99V9.

In this example, all level 03 items are subordinate to
the group item NAME (02), and all level 05 items are
subordinate to group item WEEKS-END-DATE (02). The
level 02 items are, in turn, Subordinate to level Ol. ~
Therefore, level O01 iS a group item, all items in
levels 03 and 05 are elementary items, level O2 items
NAME and WEEKS-END-DATE are group items, and level 02
items EMPLOYEE-NUM and HOURS-WORKED are elementary

items.

The level numbers assigned to various types of

data-items are:

01-49 group and elementary items

re items that are noncontiguous, are not

subordinates of other items, and do

not have subordinates

88 condition-names and conditions

The following rules apply to level numbers and
data-items:

a group item, the reference applies to the
area reserved for the entire group, including
all subordinate items.

1. When a PROCEDURE DIVISION statement refers to “

Structure of a COBOL Program

2. In the FILE SECTION, consecutive 01 level
numbers subordinate to any given file
represent implicit redefinitions of the same
area. In the WORKING-STORAGE SECTION,

however, each 01 level number defines its own
wy memory area, unless the REDEFINES clause is

used.

3. When data-items are coded, level numbers Ol,
77, and 88 are placed in Area A. The
data-names for these items, and the level
numbers and data-names for all subordinate
items, begin in Area B.

4. All elementary items must be described with a
PICTURE or USAGE IS INDEX clause.

See Chapter 5, "DATA DIVISION," for description of the
various types of data-items.

2.2 Compiler Directing Statements

Two statements, COPY and USE, are included in this
wy section of the manual because they are not confined to

One division of a COBOL program. These statements are
not really part of the source program; rather, they
are direct instructions to the compiler.

2.2.1 COPY Statement

The COPY statement is used to logically embed the text
of a disk file (other than the source file) in the
source program. The COPY statement may be used
anywhere in the ENVIRONMENT, DATA, or PROCEDURE
DIVISIONS.

The format of the COPY statement is:

COPY file-name.

aah. eee

Microsoft COBOL Reference Manual

where file-name is a disk file name in the format

required by the operating system. For example, suppose
BDEF.COB is a text file containing the following source
code:

05 B. “
10 Bl PIC x.
10:32. Pic x,

Then a source file containing:

05 A.
L00AL BIC 9,

COPY BDEF.COB.
OS) Cs

LOCC LIBR Bs

will compile exactly as if the following had been

coded:

05 A.
10 Al PIC 9.

05 3B.
10 Bl PIC xX.
10-32 PIC X.

L001 PIC: 3. “

The COPY statement should be the last or only statement
on the line. Note that the entire statement containing
the COPY verb, including the terminal period (.), is

replaced by the contents of file-name, so that any
periods desired must be present in the copied file.

63°C

2.2.2 USE Statement

The USE statement specifies procedures for input-output
error handling that are in addition to the standard
procedures provided by the system. The USE statement
itself is never executed; it merely defines the
procedures that are to be executed under certain

conditions.

See Chapter 12, "Declaratives and the USE Sentence,"

for details on the USE statement.

CHAPTER 3

IDENTIFICATION DIVISION

AUTHOR Paragraph 28

DATE-COMPILED Paragraph 29

DATE-WRITTEN Paragraph 30

IDENTIFICATION DIVISION Header

INSTALLATION Paragraph 32

PROGRAM-ID Paragraph 33

SECURITY Paragraph 34

34.

IDENTIFICATION DIVISION

Every MS-COBOL program begins with the IDENTIFICATION

DIVISION, which names the program and its author and
describes other characteristics of the program.

wy Purpose To state the program name, author, and

other characteristics.

Format The IDENTIFICATION DIVISION is divided into

a header and accompanying paragraphs. The
general format is:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

[SECURITY. [comment-entry] ...].

wy Remarks Only the division header and the PROGRAM-ID
paragraph are required. The other
paragraphs are included only for
documentation.

A period (.) is required at the end of the
division header and at the end of each
paragraph header.

Example The following example shows a typical
IDENTIFICATION DIVISION, with the
paragraphs in the order in which they are
usually entered.

IDENTIFICATION DIVISION.
PROGRAM-ID. INVENTORY.
AUTHOR. M A HOWELL.
INSTALLATION. SHIPPING AND RECEIVING DIV.
DATE-WRITTEN. 1-15-83.
DATE-COMPILED. 1-20-83.

oy SECURITY. DEPT USE ONLY.

Microsoft COBOL Reference Manual

The paragraphs in the IDENTIFICATION DIVISION are

discussed, in alphabetical order, in the remainder of
this chapter.

3.1 AUTHOR Paragraph

Purpose The AUTHOR paragraph tells who wrote the
program.

Format The general format is:

[AUTHOR. [comment-entry] ...]

Remarks This paragraph is optional, and is used for
documentation only.

The name may not contain embedded periods

(.).

Example AUTHOR. M A HOWELL.

an. vere

IDENTIFICATION DIVISION

3.2 DATE-COMPILED Paragraph

Purpose Tells when the program was first compiled.

Format The general format is:

[DATE-COMPILED. [comment-entry] ...]

Remarks This paragraph is optional, and is used for
documentation only.

Example DATE-COMPILED. 1-20-83.

st GE an

Microsoft COBOL Reference Manual

3.3 DATE-WRITTEN Paragraph

Purpose Tells when the program was written.

Format The general format is: ‘~)

[DATE-WRITTEN. [comment-entry] ...]

Remarks This paragraph is optional, and is used for
documentation only.

Example DATE-WRITTEN. 1-15-80.

oY)

IDENTIFICATION DIVISION

3.4 IDENTIFICATION DIVISION Header

Purpose Indicates the beginning of the program.

Format The general format is:

IDENTIFICATION DIVISION.

Remarks The IDENTIFICATION DIVISION header must be

the first line of any MS-COBOL program.

The period (.) is required.

Example IDENTIFICATION DIVISION.

Microsoft COBOL Reference Manual

3.5 INSTALLATION Paragraph

Purpose Tells how the program is used.

Format The general format is: “a

[INSTALLATION. [comment-entry] ...]

Remarks This paragraph is optional, and is used for
documentation only.

Example INSTALLATION. SHIPPING AND RECEIVING DIV.

a toe

IDENTIFICATION DIVISION

3.6 PROGRAM-ID Paragraph

Purpose

Format

Remarks

ow Example

Tells the name of the object program
created by the compiler.

The general format is:

PROGRAM-ID. program-name.

where program-name can be any alphanumeric

string of characters, except that the first
character must be a letter. Embedded
periods (.) are not allowed. If the name
contains more than one word, they must be
separated by hyphens, rather than by
spaces. Only the first six characters of
the program-name are retained by the
compiler.

This paragraph is required. It must be the

first paragraph in the IDENTIFICATION
DIVISION.

PROGRAM-ID. INVENTORY.

Microsoft COBOL Reference Manual

3.7 SECURITY Paragraph

Purpose Tells the security level of the program.

Format The general format is: o

[SECURITY. [comment-entry] ...].

Remarks This paragraph is optional, and is used for
documentation only.

Example SECURITY. DEPT USE ONLY.

ae eee

CHAPTER 4

ENVIRONMENT DIVISION

ASSIGN Clause 40

CONFIGURATION SECTION Header 4l

ENVIRONMENT DIVISION Header 42

FILE-CONTROL Paragraph 43

INPUT-OUTPUT SECTION Header 45

I-O-CONTROL Paragraph 46

OBJECT-COMPUTER Paragraph 47

SAME AREA Clause 48

SELECT Clause 49

SOURCE-COMPUTER Paragraph 53

SPECIAL-NAMES Paragraph 54

ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION specifies the aspects of an
MS-COBOL program that depend on the physical
Characteristics of the computer. This division is
required in every program.

Purpose

Format

To specify aspects of the program that

depend on the physical characteristics of
the computer.

The ENVIRONMENT DIVISION always begins with
a division header. The division may
contain two sections: an optional
CONFIGURATION SECTION, and an INPUT-OUTPUT
SECTION that is required unless the program
has no data files. Each of these sections
is further divided into paragraphs, which
may, in turn, be divided into clauses.

ba: I

Microsoft COBOL Reference Manual

Remarks

The general format is:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE]. “A

OBJECT-COMPUTER. computer-name

WORDS

MODULES
, MEMORY SIZE integer {ciatacrens

[, PROGRAM COLLATING SEQUENCE IS alphabet-name].

[SPECIAL-NAMES.

[, PRINTER IS mnemonic-name]

STANDARD-1
[, alphabet-name IS 4) NATIVE

implementor-name

[, CURRENCY SIGN IS literal]

[, DECIMAL-POINT IS COMMA]

SWITCH-n IS comment-ID

ON
OFF { |S condition-name }.]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{ file-control-entry } 3

[1-O-CONTROL.

RECORD
SAME | SORT AREA FOR file-name-3 , file-name-4 ae ar

SORT-MERGE

The remainder of this chapter presents, in
alphabetical order, the division and
section headers, each of the paragraphs in
the ENVIRONMENT DIVISION, and the SELECT,

ASSIGN, and SAME AREA clauses.

Example

ENVIRONMENT DIVISION

The following example shows a typical
ENVIRONMENT DIVISION, with sections and
paragraphs given in their order of
appearance in the program.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-PC.

OBJECT-COMPUTER. IBM-PC.
SPECIAL-NAMES. PRINTER IS LPRINTER.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INVENTORY-MASTER-FILE
ASSIGN TO DISK
FILE STATUS IS MASTER-STATUS.

SELECT INVENTORY-REPORT-FILE

ASSIGN TO PRINTER.
I-O-CONTROL.

SAME RECORD AREA FOR

INVENTORY-MASTER-FILE,
INVENTORY-REPORT-FILE.

Microsoft COBOL Reference Manual

4.1 ASSIGN Clause

Purpose

Format

Specifies that a file is to be used with a
particular input or output device.

The ASSIGN clause always appears as part of

the SELECT clause. It may be entered on
the same line as the SELECT clause, but is
generally entered on the following line and
indented for readability.

The general format for SEQUENTIAL or LINE

SEQUENTIAL file organization is:

DISK
ASSIGNTO | PRINTER

The period (.) appears at the end of the
sentence that comprises the entire SELECT
clause. This means that if the ASSIGN
clause is followed by optional clauses, the
period will appear at the end of the entire
sequence, rather than after ASSIGN.

The general format for RELATIVE and INDEXED
files and for use with the Microsoft SORT

Sorting Facility (MS-SORT) is:

ASSIGN TO DISK

See Section 4.9, "SELECT Clause," for

discussion of other clauses that appear in
the SELECT clause.

=) ee

ENVIRONMENT DIVISION

4.2 CONFIGURATION SECTION Header

Purpose

Format

Remarks

Example

Indicates the beginning of the
CONFIGURATION SECTION. The type of
computer being used and any special
characteristics or names are specified in
the CONFIGURATION SECTION.

CONFIGURATION SECTION.

The CONFIGURATION SECTION is optional.

The header must be entered as shown above,
including the period (.). The header must
begin in Area A.

The CONFIGURATION SECTION may contain three
paragraphs:

SOURCE-COMPUTER

OBJECT-COMPUTER

SPECIAL—-NAMES

The contents of the SOURCE-COMPUTER and
OBJECT-COMPUTER paragraphs are treated as

comments, except for the WITH DEBUGGING
MODE clause of the SOURCE-COMPUTER
paragraph. The SPECIAL-NAMES paragraph
assigns user-defined names to system names
such as PRINTER, and changes default
editing characters. If any of these
paragraphs are included in the program, the
CONFIGURATION SECTION header must be
entered.

For more information on these paragraphs,

see the individual descriptions which
follow in this chapter.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

oP

Microsoft COBOL Reference Manual

4.3 ENVIRONMENT DIVISION Header

Purpose

Format

Remarks

Example

To indicate the beginning of the

ENVIRONMENT DIVISION.

ENVIRONMENT DIVISION.

The ENVIRONMENT DIVISION is required, and
always follows the IDENTIFICATION DIVISION.
The ENVIRONMENT DIVISION header is also
required. It must be entered exactly as
shown above, including the period (.). It
must begin in Area A.

See the introduction to this chapter for
the general format of the ENVIRONMENT
DIVISION.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

ee wer

ENVIRONMENT DIVISION

4.4 FILE-CONTROL Paragraph

Purpose

Format

Names the files to be processed in the
program and associates them with specific
input or output devices.

Each file whose records are described in

the FILE SECTION of the DATA DIVISION must

also be described in the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION.

The general format for a FILE-CONTROL

paragraph with SEQUENTIAL or LINE
SEQUENTIAL file organization is:

FILE-CONTROL.

SELECT file-name

DISK

ASSIGNTO | PRINTER

AREA
; RESERVE integer | AREAS

[; ORGANIZATION IS [LINE] SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1].

If MS-SORT is part of the user's MS-COBOL
package, the following general format can
be used:

FILE-CONTROL.

SELECT file-name

ASSIGN TO DISK

[SORT STATUS |S data-name-1]}.

Two other formats are available for INDEXED
and RELATIVE file organizations. See
Chapters 10 and 11 for these formats.

ate Se

Microsoft COBOL Reference Manual

Remarks For the two formats given here, the SELECT
and ASSIGN clauses are required; all other
Clauses are optional. See Section 4.1,
"ASSIGN Clause," and Section 4.9, "SELECT
Clause," for discussion of all clauses in
the FILE-CONTROL paragraph. “A

Example FILE-CONTROL.

SELECT INVENTORY-RECORDS

ASSIGN TO DISK.
SELECT INVENTORY-REPORT

ASSIGN TO PRINTER.

aT oe

ENVIRONMENT DIVISION

4.5 INPUT-OUTPUT SECTION Header

Purpose

Format

Remarks

oy Example

Indicates the beginning of the INPUT-OUTPUT
SECTION.

[INPUT-OUTPUT SECTION.

This section header must be the first entry
in the INPUT-OUTPUT SECTION, and must be
entered exactly as shown above, including
the period (.). The header must start in
Area A.

The INPUT-OUTPUT SECTION is required unless

the program has no data files. The section
begins with the section header and contains
two paragraphs, the FILE-CONTROL paragraph
and the I-O-CONTROL paragraph. These two
paragraphs define the file assignment
parameters, including buffering. For more
information on these paragraphs, see the
individual listings in this chapter.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

I-O-CONTROL.

Microsoft COBOL Reference Manual

4.6 I-O—-CONTROL Paragraph

Purpose

Format

Remarks

Example

Specifies that physical buffer space is to
be shared between two or more files.

[1-O-CONTROL.

RECORD
SAME | SORT AREA FOR file-name-3 4, file-name-4 of -

SORT-MERGE

The I-O-CONTROL paragraph is optional. It
contains only the SAME AREA clause, which
specifies the names of files that are to
share the same logical record area so that
memory space can be conserved.

The I-O-CONTROL paragraph header must be
entered exactly as shown above, including
the period (.). The header must begin in
Area A. The SAME AREA clause usually
begins in Area B for readability.

Further details about the SAME AREA clause
are given in Section 4.8.

I-O-CONTROL.

SAME RECORD AREA FOR
INVENTORY-MASTER-FILE,
INVENTORY-REPORT-FILE.

ENVIRONMENT DIVISION

4.7 OBJECT-—COMPUTER Paragraph

Purpose

Format

Remarks

wy Example

Identifies the computer on which the
program is to be executed.

OBJECT-COMPUTER. computer-name

WORDS
, MEMORY SIZE integer 4 CHARACTERS

MODULES

[, PROGRAM COLLATING SEQUENCE IS alphabet-name].

This paragraph is used for documentation

only. The header must be entered exactly
as shown above, including the period (.).
The period must be followed by at least one
space.

The MEMORY SIZE and PROGRAM COLLATING

SEQUENCE clauses are optional. The memory
Size depends on the implementation of the
specific computer. If the PROGRAM
COLLATING SEQUENCE clause is used, the
collating sequence associated with
"alphabet-name" is used to determine the
truth of non-numeric comparisons that are:

1. explicitly specified in relation
conditions

2. explicitly specified in condition-name
conditions

3. implicitly specified by the presence of
a CONTROL clause in a report
description

If the PROGRAM COLLATING SEQUENCE is not
specified, the native collating sequence is
used (the native sequence for MS-COBOL is
ASCII}.

OBJECT-COMPUTER. IBM-PC,
MEMORY SIZE 65535 CHARACTERS,
PROGRAM COLLATING SEQUENCE IS ASCII.

Microsoft COBOL Reference Manual

4.8 SAME AREA Clause

Purpose

Format

Remarks

Example

Specifies that two or more files are to-use
the same memory area during processing.
This clause is generally used to save
memory space.

SORT-MERGE

RECORD
SAME | SORT AREA FOR file-name-3 {, file-name-4 fe rane.

The SAME AREA clause comprises the entire
I-O-CONTROL paragraph. This clause, and

therefore the entire I-O-CONTROL paragraph,
is optional.

The files named in a SAME AREA clause need
not have the same organization or access.
However, no file may be listed in more than
one SAME AREA clause. More than one SAME
AREA clause may be included in an
I-O-CONTROL paragraph.

The SORT and SORT-MERGE options are
available only with the MS-SORT facility.

I-O-CONTROL.

SAME RECORD AREA FOR

INVENTORY-MASTER-FILE,
INVENTORY-REPORT-FILE.

— 2

ENVIRONMENT DIVISION

4.9 SELECT Clause

Purpose

Format

Specifies each file that will be accessed
and that is described in the FILE SECTION
of the DATA DIVISION.

Four general formats are available with the

SELECT clause. The formats for
SEQUENTIAL/LINE SEQUENTIAL organization and
for the MS-SORT facility are given here.
See Chapter 10 and 11 for the general
formats for INDEXED and RELATIVE file
organization.

The general format for SEQUENTIAL and LINE

SEQUENTIAL files is:

SELECT file-name

DISK
ASSIGNTO | PRINTER

AREA
; RESERVE integer | AREAS

[; ORGANIZATION IS [LINE] SEQUENTIAL}

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1].

The general format for use with the MS-SORT
facility ig:

SELECT file-name

ASSIGN TO DISK

{SORT STATUS IS data-name-1].

The SELECT clause must begin in Area B.
After the SELECT clause is entered, the
other clauses may be entered in any order.
The preceding format shows them in the
usual arrangement; they are described
alphabetically below.

The following discussion applies to
SEQUENTIAL and LINE SEQUENTIAL files. For
discussion of the SELECT clause in INDEXED
or RELATIVE files, see Chapters 10 and ll,
respectively.

<4 ea

Microsoft COBOL Reference Manual

ACCESS MODE

The ACCESS MODE clause is optional for
SEQUENTIAL files. This clause must begin
in Area B, and is generally indented from
the SELECT clause for readability. -)

ASSIGN

The ASSIGN clause is required. It
specifies which device is to receive the
file. The possibilities are DISK or
PRINTER. This clause may appear on the
same line with the SELECT clause, but is
generally indented on a separate line for
readability.

FILE STATUS

In the FILE STATUS clause, data-name refers
to a two-character, alphanumeric item in
the WORKING-STORAGE or LINKAGE SECTIONS of

the DATA DIVISION. File status information
will be placed in this item after an I-O
Statement. The left-hand character of ~
data-name assumes the following values:

0 for successful completion
1 for end-of-file condition
2 for INVALID KEY (only

for INDEXED and RELATIVE files)

3 for a nonrecoverable (I-00) error
9 for special cases

The right-hand character of data-name is
set to zero if no further status
information exists for the previous I-O
operation.

ENVIRONMENT DIVISION

The following combinations of values are
possible:

Left Right Meaning
Character Character

0 0 OK

1 0 EOF

J 0 Permanent Error
3 4 Disk Space Full

For values of status-right when status-left
has a value of 2 or 9, see Chapters 10 and
: =

In an OPEN INPUT or OPEN I-O statement, a

File Status of 30 means "File Not Found."

ORGANI ZATION

The ORGANIZATION clause specifies whether
the file organization is SEQUENTIAL or LINE
SEQUENTIAL. Both forms assume the records
in the file are variable-length. With
SEQUENTIAL organization, a two-byte count
of the record length is followed by the
actual record, for as many records as exist
in the file. With LINE SEQUENTIAL

Organization, the record is followed by a
Carriage return/line feed delimiter, for as
many records as exist in the file.

No COMP, COMP-0, or COMP-3 information
should be written into a LINE SEQUENTIAL
file because these data items may contain
the same binary codes used for carriage
return and line feed. This duplication
would cause problems when the file was
subsequently read.

Microsoft COBOL Reference Manual

RESERVE

The RESERVE clause is not functional in
MS-COBOL, but is scanned for correct
syntax. One physical block buffer is
always allocated to the logical record area “Aa
assigned to the RESERVE clause. This

allows logical records to be spanned over
physical block boundaries. For files
assigned to PRINTER, the logical record
area is used as the physical buffer as
well.

Example SELECT INVENTORY-MASTER-FILE
ASSIGN TO DISK
ORGANIZATION IS LINE SEQUENTIAL
FILE STATUS IS MASTER-STATUS.

re eee

ENVIRONMENT DIVISION

4.10 SOURCE-COMPUTER Paragraph

Purpose

Format

Remarks

Example

Specifies the computer on which the program
is to be compiled.

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE].

Except for the WITH DEBUGGING MODE clause,

the contents of this paragraph are used for
documentation only.

If the WITH DEBUGGING MODE clause is

included, source program lines with "D" in
column 7 (indicating a debug statement) are
compiled. If the WITH DEBUGGING MODE

clause is not included, these lines are
ignored. See Section 6.3, "Dynamic
Debugging Statements," for more information
on debug statements.

SOURCE-COMPUTER. IBM-PC

WITH DEBUGGING MODE.

Microsoft COBOL Reference Manual

4.11 SPECIAL-NAMES Paragraph

Purpose

Format

Remarks

Assigns user-defined names to standard
implementor names, such aS PRINTER. This
paragraph can also be used to change “a
editing characters.

[SPECIAL-NAMES.

[, PRINTER IS mnemonic-name]

STANDARD-1
[, alphabet-name!IS 4 NATIVE

implementor-name

[, CURRENCY SIGN IS literal]

[, DECIMAL-POINT IS COMMA]

SWITCH-n IS comment-!D

ON
OFF { IS condition-name | .]

The SPECIAL-NAMES paragraph is optional, as
is each individual clause within it.

The clauses in this paragraph are:

ALPHABET—-NAME

The ALPHABET-NAME clause specifies the

language conventions that are used. In
MS-COBOL, the default is ASCII IS NATIVE.

In MS-COBOL, STANDARD-1 and NATIVE are

equivalent. Implementor-name refers to a
name specified by the manufacturer of the
computer.

The ASCII character set is given in
Appendix D.

— ae

Example

ENVIRONMENT DIVISION

CURRENCY SIGN

In MS-COBOL, the default currency sign is
the dollar sign ($). The user may change
this sign by specifying a single-character,
non-numeric literal in the CURRENCY SIGN
clause. The designated character may not
be a quotation mark, a digit (0-9), or any
of the characters defined for PICTURE
representations.

DECIMAL-POINT

The DECIMAL-POINT IS COMMA clause may be
included to specify European notation. In
European notation, the decimal point and
comma are interchanged, so that the
representation for pi, for example, is

3, 14239.

PRINTER

The PRINTER IS clause allows a user-defined

name to be used in the DISPLAY statement

with the UPON phrase.

SWITCH-n

The SWITCH-n clause allows switches to be

set at runtime. The maximum number of
Switches that can be set is 8. The user is

prompted at runtime to enter the switch
settings; the condition-name may then be
used in a condition statement in the

PROCEDURE DIVISION. The default setting is
OFF.

SPECIAL NAMES.
PRINTER IS LPRINTER
ASCII IS NATIVE
CURRENCY SIGN IS "L"
DECIMAL-POINT IS COMMA
SWITCH-2 is TEST2
ON IS ON2
OFF IS OFF2.

CHAPTER 5

DATA DIVISION

ee Data-Items and Data Descriptions 65

Sele Group Items 65

eae Elementary Items 66

2g BS Oe | Alphanumeric Items 66

Dad eee Report (Numeric Edited) Items 66

a ae Numeric Items 67

w <a Rea | Level 77 (Noncontiguous) Items ops

S324 Level 88 (Condition) Items rai

ee DATA DIVISION Limitations ee

ee Sections 74

Fe. PB FILE SECTION 75

a WORKING-STORAGE SECTION Oe i

ee Pe LINKAGE SECTION 78

5.3.4 SCREEN SECTION 80

5.4 Clauses 85

5.4.1 AUTO Clause 86

oy 5.4.2 BELL Clause 87

5.4.3 BLANK LINE Clause 88

5.4.4 BLANK SCREEN Clause 89

rie: ee

5.4.5

5.4.6

5.4.7

5.4.8

5.4.9

5.4.10

5.4.11

5.4.12

5.4.13

5.4.14

5.4.15

5.4.16

5.4.17

5.4.18

5.4.19

5.4.20

5.4.21

5.4.22

5.4.23

5.4.24

5.4.25

5.4.26

5.4.27

5.4.28

5.4.29

5.4.30

BLANK WHEN ZERO Clause

BLINK Clause 91

BLOCK Clause 92

CODE-SET Clause 93

COLUMN Clause 94

DATA RECORD(S) Clause

FROM/TO/USING Clause

FULL Clause 98

HIGHLIGHT Clause 99

JUSTIFIED Clause 100

LABEL RECORD(S) Clause

LINAGE Clause 102

LINE Clause 104

OCCURS Clause 106

PICTURE Clause 109

RECORD Clause ES &

REDEFINES Clause 118

REQUIRED Clause 120

SECURE Clause 121

SIGN Clause 122

SYNCHRONIZED Clause

TO Clause ZS

USAGE Clause 126

USING Clause 128

VALUE IS Clause 129

VALUE OF Clause be |

oe

90

96

97

101

124

DATA DIVISION

The DATA DIVISION describes the data that the object

program uses, creates, and produces as output.

Purpose Describes the data that will be used or
oy produced by the object program.

Format The DATA DIVISION contains four sections:

FILE SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION

SCREEN SECTION

The individual sections are discussed

individually in Section 5.3 of this
chapter.

The general format for the DATA DIVISION
is:

DATA DIVISION.

[FILE SECTION.

wy ED file-name

[BLOCK CONTAINS [integer-1 TO] integer-2 | RECORDS |
CHARACTERS

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]J

RECORD IS STANDARD
; LABEL | RECORDS ARE OMITTED

data-name-1 }
; VALUE OF FILE-ID IS | literal-1

RECORD IS data-name-2 [, data-name-3] ...

; DATA | RECORDS ARE

{ Coe atl ol |
; LINAGE!S | integer-5 LINES , WITH FOOTING AT | integer-6

{ eet { oo
, LINES ATTOP | integer- 7 , LINES AT BOTTOM \integer-8

[; CODE-SET IS alphabet-name }.

oy [record-description-entry] ...] ...

Microsoft COBOL Reference Manual

[SD file-name

[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

{ RECORD IS
: DATA | RECORDS AREJ data-name-1[, data-name-2] ... “a

data-name-1 }
; VALUE OF FILE-IDIS \literal-1

[record-description-entry] ...] ...]

[WORKING-STORAGE SECTION.

77-level-description-entry
record-description-entry J

[LINKAGE SECTION.

77-level-description-entry
record-description-entry]

[SCREEN SECTION.

level-number [screen-name]

[BLANK SCREEN]

[LINE NUMBER IS [PLUS] integer-1]

[COLUMN NUMBER IS [PLUS] integer] ~

[BLANK LINE]

[BELL]

UNDERLINE
REVERSE VIDEO
HIGHLIGHT
BLINK

[[(VALUE} IS literal-1]

literal-2

i a aa IS character-string | tenoM {ier J{TO denier |

PIC [USING identifier-3]

[BLANK WHEN ZERO]

ee RIGHT
JUST

[AUTO]

[REQUIRED]

[FULL]

Remarks

DATA DIVISION

where the general format for a record or

data description entry, including level-77
entries, is:

{ data-name-1 }
level-number {FILLER

[; REDEFINES data-name-2]

k {PicTURE} IS ee ee
PIC

COMPUTATIONAL-O
COMP-O
COMPUTATIONAL

, COMP
» (USAGE 1S] GOmMPUTATIONAL-3

COMP-3
DISPLAY
INDEX

k [SIGN IS] { LEADING } [SEPARATE CHARACTER
TRAILING

[; OCCURS integer-1 TIMES

{Ae eeeN } KEY IS data-name-4[, data-name-5]... | ...

DESCENDING

[INDEXED BY index-name-1 [, index-name-2] ...]]

: { SYNCHRONIZED } LEFT
SYNC RIGHT

a iv eae RIGHT
JUST

[; BLANK WHEN ZERO}

[; VALUE IS literal] .

or, in the case of a level 88 entry:

& VALUE IS literal-1 [literal-2 ...]

88 condition-name, | va_UES ARE itera-t | { THROUGH | iteat2) |
THRU

The DATA DIVISION is a required part of an

MS-COBOL program. It describes the data
that were listed in the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION. It
also describes data used in the program
that are not part of the input/output
sections of the program (i.e., that are in

the WORKING-STORAGE, LINKAGE, and SCREEN

2 Le

Microsoft COBOL Reference Manual

SECTIONS). These data are arranged in
logical records. A logical record can be
further divided into fields, or data-items.
For example, an " Inventory-Master-File"
declared in a FILE-CONTROL paragraph could
contain one record for each piece of “a
equipment inventoried. Each record could
be further divided into data-items
representing part-number, date-acquired,
etc.

Within the DATA DIVISION, records are given
level numbers of O01, and are declared in
"record-description entries." Data-items
are given level numbers 02 through 49 and
are declared in "data-description entries."
Note that a record-description entry
includes all the data-description entries
for that record.

For naming purposes, records are considered
as data-items and follow the rules given in
Chapter 1, “Language Elements," for
data-names.

Level 77 and 88 entries may also be used in
the DATA DIVISION. Level 77 entries “a
describe "noncontiguous" data-items that do
not fit into the group-elementary
hierarchy. Level 88 entries describe
conditions.

DATA DIVISION

MS-COBOL meets all ANSI 74 Level l

requirements and most of those from Level 2
for the FILE, WORKING-STORAGE, and LINKAGE
SECTIONS. The COMMUNICATION and REPORT

SECTIONS are not implemented. However,

MS-COBOL provides, as an extension to the
ANSI 74 Standard, the SCREEN SECTION, which

describes the data used to set up an entire
terminal screen.

This chapter, "DATA DIVISION," is arranged
as follows:

Section 5.1 defines the various types of
data-items that may be used in a program.
These definitions are presented at the
beginning of the chapter because they apply
to all sections of the DATA DIVISION.

The physical limitations that apply to the
DATA DIVISION in general are given in
Section 5.2. The last two parts of this
chapter discuss the individual sections and
clauses that are used in the DATA DIVISION.

Section 5.3 presents the sections, in the
order in which they appear in a program.

The clauses that make up these sections are
described alphabetically in Section 5.4.

Microsoft COBOL Reference Manual

Example DATA DIVISION.

FILE SECTION.

FD INVENTORY-MASTER-FILE
LABEL RECORDS ARE STANDARD “A
VALUE OF FILE-ID IS "MASTER.DAT".

01 MASTER-RECORD.

05 MSTR-KEY PIG. X20}.
05 MSTR-DESCRIPTION PIC -X425}-.
05 MSTR-AMT-ON-HAND PIC 69(5).
05 MSTR-WARNING-LEVEL PIC S9(5).

FD INVENTORY-WARNING-FILE

LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS "WARNING.DAT".

01 WARNING-—RECORD PIC X(45).

FD INVENTORY-REPORT-FILE
LABEL RECORDS ARE OMITTED
LINAGE IS 56 LINES.

01 REPORT-RECORD PIC. X80)...

WORKING-STORAGE SECTION. “

01 WORK-FIELDS.
05 MASTER-STATUS PIC xXx

VALUE SPACES.
05 WARNING-STATUS PIC XX

VALUE SPACES.
05 REC-COUNT PIC S9(5)

VALUE ZERO.
05 WARNING-COUNT PIC S9(5)

VALUE ZERO.
05 END-OF-FILE-SW PIC: x

VALUE "N".
88 END-OF-FILE

VALUE "Y".

a 7

DATA DIVISION

5.1 Data-Items and Data Descriptions

Chapter 1, “Language Elements," explains that
data-items can be either group items having subordinate
data elements, or elementary items, which do not have
subordinates. Elementary items can be further
Classified and defined by their content as

alphanumeric, numeric, report, or noncontiguous (level
77) items. Level 88 entries, which describe
conditions, are also considered elementary items.

In the DATA DIVISION, each record-item or data-item in
the program must be described in a separate
record-description or data-description entry.
Data-items must be entered in the order in which the
items appear in the record.

For convenience, we will generally use the term
"data-description entry" to mean both
record-description entry and data-description entry.
Note, however, that a record-description entry is a
specific type of data-description entry. It always
refers to data that begins with level number Ol. We
will use the term "record-description entry" when the
data to be described must begin with level number Ol.

The general format for a data-description entry is
given in the introduction to this chapter. Every entry
must contain a level number, data-name or the word

"FILLER", and a series of clauses, followed by a period
(.).- All the clauses used in this division are given
in the general format at the beginning of this chapter.
Specific types of data-items, however, require certain
clauses and cannot contain others. The following
descriptions define the various types of group and
elementary items and list the clauses that are
mandatory and optional in the general format for each.

5.1.1 Group Items

A group item is any item that is further subdivided
into elementary items or subordinate group items. The
maximum size of a group item, including its subordinate
items, is 4095 characters.

Microsoft COBOL Reference Manual

Optional clauses that may be used in the general format
of a group item are:

REDEFINES USAGE OCCURS SIGN

Example: 01 GROUP-NAME.

02 FIELD-A PICTURE X.
02 FIELD-B PICTURE X.

In this example, the level 02 elementary items are
subordinate to the level 01 group item. The 01 level
number also indicates the beginning of a new record;

all items will be part of that record until another 01
level number is encountered.

5.1.2 Elementary Items

An elementary item is one that contains no subordinate
items. Elementary items may be alphanumeric, numeric,
report, noncontiguous, Or conditions items.

5.1.2.1 Alphanumeric Items

An alphanumeric item consists of any combination of
characters making a "character string" data field. If
the associated PICTURE clause contains any of the
editing characters discussed below, the item is an
alphanumeric edited item.

An alphanumeric item must contain the PICTURE clause.
The following clauses are optional:

OCCURS REDEFINES VALUE
USAGE JUSTIFIED SYNCHRONIZED

Example: 02 MISC-1 PICTURE X(53).

02 MISC-2 PICTURE BXXXBXXB.

In this example, MISC-1 may contain any combination of
characters, with a maximum of 53 characters. The "B"

in MISC-2 is an edit character representing a space.

5.1.2.2 Report (Numeric Edited) Items

A report item is a receiving field for numeric data.
It cannot be used as a numeric item itself in numeric
calculations. For example, it might be a field named
SALES-TOTAL where the calculated figure representing
total sales is stored.

m+ GE ve

DATA DIVISION

A report item contains only digits and/or special

editing characters such as commas, dollar signs, etc.
For this reason, it iS sometimes called a numeric

edited item. The maximum number of characters is 30.

Optional clauses for use with report items are:

REDEFINES USAGE OCCURS
VALUES PICTURES SYNCHRONIZED
BLANK WHEN ZERO

Example: 02 SALES-TOTAL PICTURE S$$$$,$$9.99-.

The minus (-) in the PICTURE clause represents the
location of the operational sign of the calculated
result. The dollar sign ($) will "float," i.e., only

one dollar sign will appear in the result, one position
to the left of the leftmost non-zero digit in
SALES-TOTAL.

5.1.2.3 Numeric Items

A numeric item is an elementary item that contains
numeric data only. There are four kinds of numeric
items:

external decimal items

internal decimal items

binary items
index-data-items

These classifications are based on how the items are

stored in memory.

1. External decimal item

An external decimal item is one in which one

character (byte) represents one digit. The
maximum number of characters is 18.

The exact number of digits in an item is
defined by the PICTURE clause in the item.
For example, PICTURE 999 defines a three-digit
item whose maximum value is nine hundred
ninety-nine.

If the value of PICTURE begins with the letter
"Ss", the item will also contain an algebraic
operational sign. This means that any data
stored in the field as the result of a MOVE
statement or an arithmetic statement will
contain the algebraic sign of the result.

at ao

Microsoft COBOL Reference Manual

The sign does not occupy a separate byte

unless the SEPARATE form of the SIGN clause is
used in the general format.

The USAGE of an external decimal item is

DISPLAY. ‘>

The PICTURE clause is required with external
decimal items. The following clauses are
optional:

REDEF INES
OCCURS
SIGN
USAGE
VALUE
SYNCHRONIZED

Examples: 02 HOURS-WORKED PICTURE 99V9

USAGE IS DISPLAY.

02 HOURS-SCHED PICTURE S99V9

SIGN IS SEPARATE TRAILING.

The "v" in the PICTURE clause represents an
implied decimal point, and "S" represents an
operational sign. “

Internal decimal item

An internal decimal item is one that is stored

in packed decimal format. The USAGE IS
COMPUTATIONAL-3 form of the USAGE clause

specifies this format.

An internal decimal item defined by n 9's in
its PICTURE clause occupies 1/2 of (n + 2)

(rounded down) bytes in memory. All bytes
except the right-most contain a pair of
digits, and each digit is represented by the
binary equivalent of a valid digit value from
0 to 9. The item's low order digit and the
operational sign are stored in the right-most
byte of a packed item. For this reason, the
compiler considers a packed item to have an
arithmetic sign, even if the original PICTURE
clause lacked an S-character.

DATA DIVISION

The USAGE IS COMPUTATIONAL-3 clause is

required for an internal decimal item. The
optional clauses are:

REDEFINES

ey OCCURS
SIGN

VALUE
SYNCHRONIZED

Example: 05 TAX-RATE PICTURE S99V999
VALUE 1.375
USAGE IS COMPUTATIONAL-3.

3. Binary item

A binary item uses the base 2 system to
represent an integer in the range -32768 to
32767. A binary item occupies one 16-bit
word. The left-most bit of the reserved area
is the operational sign.

A binary item is specified by the USAGE IS
COMPUTATIONAL-O form of the USAGE clause.

The PICTURE and USAGE IS COMPUTATIONAL-0

wy clauses are required for binary items. The
following clauses are optional:

REDEFINES
OCCURS
VALUE
SYNCHRONIZED

Note

In MS-COBOL for the 2Z80/8080

microprocessor, items with USAGE IS
COMPUTATIONAL are also treated as binary
items, unless the /V (Validation)
compiler switch is used. In that case,
and in the case of all other versions of
MS-COBOL, items with USAGE IS

COMPUTATIONAL are treated as external

decimal (display) items.

Example: 03 YEAR-TO-DATE PICTURE S9(5)
USAGE IS COMPUTATIONAL-O.

=e

Microsoft COBOL Reference Manual

4. Index-data-items and index-names

Index-data-names and index-names are used in
table handling. An index-name is defined in
the INDEXED BY phrase of the OCCURS clause.
It is not declared in a separate
WORKING-STORAGE SECTION entry. An index-name
is associated with the table whose definition
contains the OCCURS clause, and it cannot be

used with any other table.

An index-data-item is defined in a
data-description entry with the USAGE IS INDEX
Clause. The PICTURE and VALUE IS clauses are
not used in the index-data-item definition.
An index-data-item is not associated with a
particular table.

Index-data-items and index-names have an

implicit USAGE IS COMPUTATIONAL-0 (binary
item) clause.

See Chapter 8, "Table Handling by the Indexing
Method," for more information about using
index-data-items and index-names.

In the general format of an index-data-item,
the following clauses are optional:

REDEFINES
SIGN

SYNCHRONIZED
JUSTIFIED
BLANK

Examples: 05 TABLE-ENTRY OCCURS 10 TIMES
PIC 9

INDEXED BY SUB-VAL.

05 SUB-VAL

USAGE IS INDEX.

In the first example, SUB-VAL is implicitly
declared as an index-name associated with
TABLE-ENTRY. In the second example, SUB-VAL
is declared explicitly, as an index-data-item,
but is not associated with a particular table.

in iss

DATA DIVISION

5.1.3 Level 77 (Noncontiguous) Items

Some data-items and constants may not be part of a
hierarchical relationship in the program. These items
are not grouped into logical records, and they are not
subdivided. Instead, they are given level number 77
and are classed as "noncontiguous elementary items."

They are sometimes called "stand-alone items."

Level 77 entries follow the naming conventions and
general format for standard data-description entries.
The PICTURE clause is required.

Level 77 entries may be used only in the
WORKING-STORAGE and LINKAGE SECTIONS.

5.1.4 Level 88 (Condition) Items

A level 88 condition-name entry specifies a value, list
of values, or a range of values that an elementary item
May assume. If the specified value matches the value
of its associated elementary item, the condition is
true; otherwise it is false. For example, the
elementary item

02 PAYROLL-PERIOD PICTURE IS 9.

may be followed by the level 88 entries

88 WEEKLY VALUE IS l.

88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

In this case, either of the following conditions may be
applied:

IF MONTHLY
PERFORM P100—-DO-MONTHLY.

IF PAYROLL-PERIOD = 3
PERFORM P100—DO-MONTHLY.

The elementary item associated with a level 88 entry is
called the "conditional variable."

el: ae

Microsoft COBOL Reference Manual

A level 88 entry must be preceded either by another

level 88 entry (in the case of several condition-names
pertaining to an elementary item) or by an elementary
item (which may be FILLER). Index data-items should
not be followed by level 88 items.

The general format for a level 88 entry is

- VALUE IS literal-1 [literal-2 ...]

88 condition-name: | VALUES ARE | literal-1 [THROUGH neue |
THRU

For an edited elementary item, the values in a

condition-name entry must be expressed as non-numeric
(quoted) literals.

A VALUE clause may not contain both a series of
literals and a range of literals.

The following rules apply to level 88 condition-names:

1. Every condition-name may be qualified by the
name of its associated elementary item and
that elementary item's qualifiers.

2. A condition-name may be used in the PROCEDURE

DIVISION in place of a simple relational
condition.

3. A condition-name may pertain to an elementary

item that requires subscripts. In this case,
the condition-name, when written in the
PROCEDURE DIVISION, must be subscripted
according to the same requirements as the
associated elementary item.

4. The type of literal in a condition-name entry
must be consistent with the data type of its
conditional variable.

er i ae

DATA DIVISION

5.2 DATA DIVISION Limitations

There is a limitation on the number of items in the

WORKING-STORAGE, LINKAGE, and FILE SECTIONS of the DATA

DIVISION. The sum:

(W/4096) + F + L

must be less than or equal to 14, where W is the size
Of WORKING-STORAGE in bytes (W/4096 is rounded up), F
is the number of files described in the FILE SECTION,
and L is the number of level O01 or 77 entries in the
LINKAGE SECTION.

In a run unit consisting of a main program linked
together with an arbitrary number of sSubprograms, up to
14 files may be defined in each program or subprogram,
subject to the limitations on WORKING-STORAGE and
LINKAGE SECTION items described above. However,

MS-COBOL attempts to close all opened files at program
termination. In the case of certain severe errors,
MS-COBOL can keep track of, at the most, 40 files.
Therefore, to ensure that files will be closed if
possible, a run unit should not define more than 40
files.

a Le

Microsoft COBOL Reference Manual

5.3 Sections

The DATA DIVISION of an MS-COBOL program contains four
sections:

FILE SECTION “a
WORKING-STORAGE SECTION
LINKAGE SECTION
SCREEN SECTION

These sections are described in Sections 5.3.1 through
$.3.4.

oY eee

DATA DIVISION

5.3.1 FILE SECTION

In the FILE SECTION of the DATA DIVISION, an FD (file

definition) entry is included for every file that was
declared with a SELECT entry in the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION.

Purpose Supplies logical and physical descriptions
of the files used in the program.

Format The general format for the FILE SECTION

includes the FD entries (and SD entries, if
MS-SORT is used):

DATA DIVISION.

[FILE SECTION.

FD file-name

- BLOCK CONTAINS [integer-1 TO] integer-2 { RECORDS | i]
CHARACTERS

[; RECORD CONTAINS [integer-3 TO J integer-4 CHARACTERS]

RECORD IS } STANDARD
; LABEL { RECORDS ARE OMITTED

data-name-1 }
> VALUE OF FILE-IDIS | literal-1

{ RECORD IS } data-name-2 [, data-name-3] ...
; DATA \ RECORDS ARE

{ et { data-name-5 }
; LINAGE!S | integer-5 LINES , WITH FOOTING AT | integer4

{ sie ih { data-name-7 \
, LINES AT TOP | integer- 7 , LINES AT BOTTOM \integer-8

[; CODE-SET |S alphabet-name]}.

[record-description-entry] ...] ...

[SD file-name

[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

{ RECORD IS }
- DATA | RECORDS AREJ data-name-1 [, data-name-2] ...

{ data-name-1 }
; VALUE OF FILE-IDIS |literal-1

[record-description-entry] ...] ...]

Microsoft COBOL Reference Manual

Remarks

Example

The FILE SECTION header begins the FILE

SECTION. It is followed by a period (.).
Following the header, FD (file definition)
entries are included for each file that was
described in the FILE-CONTROL paragraph of
the ENVIRONMENT DIVISION. FD entries

specify the size of the logical and
physical records, the presence or absence
of label records, the value of
implementor-defined label items, names of
the data records which make up the file,
and the number of lines to be included on a
logical printer page. The FD entry is
terminated by a period (.).

In the general format of the FILE SECTION,

FD entries may be followed by SD (SORT
definition) entries. SD entries are
applicable only for implementations of
MS-COBOL that have the MS-SORT facility.
For information on SD entries, see the
Microsoft SORT Sorting Facility Reference
Manual.

The following rules must be observed in the
FILE SECTION:

1. The level indicator FD identifies the
beginning of a file description. It
must be followed by the file-name.

2. The clauses included in the FD entry
may be in any order.

3. One or more record-description entries
must follow the file description entry.
Record-description entries are
discussed in Section 5.1 of this
chapter.

FILE SECTION.

FD INVENTORY-MASTER-FILE

LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS “MASTER.DAT".

01 MASTER-RECORD.
05 MSTR-KEY PIC X(10).
05 MSTR-DESCRIPTION PIC 2{(25)
05 MSTR-AMT-ON-HAND Pi S35} «
05 MSTR-WARNING-LEVEL PIC: 59 (5).

“a, ae

DATA DIVISION

5.3.2 WORKING-—STORAGE SECTION

The WORKING-STORAGE SECTION describes the data that are
developed and processed internally.
not be part of the external data files.

Purpose

Format

Remarks

Example

Describes internally developed and
internally processed data.

The WORKING-STORAGE SECTION includes the
WORKING-STORAGE header and
record-description and level 77 entries.
The general format is:

[WORKING-STORAGE SECTION.

77-level-description-entry
record-description-entry]

Record-description entries are described

Section 5.1 of this chapter.

Record-description and data-description

entries included in this section may use

These data will

in

level numbers 01 through 49, and 77. Level

77 entries are discussed in Section 5.1.3
of this chapter.

VALUE clauses, which are prohibited in the
FILE SECTION, are allowed in the
WORKING-STORAGE SECTION.

WORKING-STORAGE SECTION.

O1 WORK-FIELDS.

05 MASTER-STATUS gf Lee 4
VALUE SPACES.

05 WARNING-STATUS PIC XxX
VALUE SPACES.

05 REC-COUNT PIC 39'(5)
VALUE ZERO.

05 WARNING-COUNT PIC S89 (5)
VALUE ZERO.

05 END-OF-FILE SW ric 2
VALUE "N".
88 END-OF-FILE

VALUE. *Y".

iti, EE Ve

Microsoft COBOL Reference Manual

5.3.3 LINKAGE SECTION

The LINKAGE SECTION in a program is needed only if the
program has been called from another program, and the
CALL statement in the calling program contains a USING
phrase. The LINKAGE SECTION describes data that are ‘.)
defined in the calling program and are referenced by

both the calling and the called programs.

Purpose To describe data that are referenced by a

calling and called program. This section
may contain record-description entries,
level 77, and level 88 entries.

Format The LINKAGE SECTION begins with a header,

followed by record-description entries,
level 77, and level 88 entries. The

general format is:

[LINKAGE SECTION.

77-level-description-entry
record-description-entry 4

See individual listings in this chapter for “
details on individual parts of the LINKAGE
SECTION.

In the LINKAGE SECTION, the VALUE IS clause

may only be used in level 88 entries.

Remarks No space is allocated in the program for

data-items described in the LINKAGE
SECTION. Instead, PROCEDURE DIVISION

references to these data are resolved by
equating the descriptions with data whose
addresses are passed to the called program
by the CALL statement. Note that for
index-items, no such correspondence is
established; index-names in the calling
and called programs always refer to
separate indices.

sles ae

Example

DATA DIVISION

Data-items that are defined in the LINKAGE

SECTION can only be referenced in the
PROCEDURE DIVISION of the program if they
are specified in the USING phrase of the
PROCEDURE DIVISION header or are
subordinate to operands in that header.

Because names in the LINKAGE SECTION cannot
be qualified, they must be unique within
the called program.

See Chapter 7, "Inter-Program
Communication," for more information on the
LINKAGE SECTION.

LINKAGE SECTION.

01 SHARED-LIST.

05 MSTR-DESCRIPTION Paw Ate) is
05 MSTR-AMT-ON-HAND PIC S93 (5) «

+ ee

Microsoft COBOL Reference Manual

5.3.4 SCREEN SECTION

The SCREEN SECTION defines terminal screen formats and

the associated data-items. Data-items are entered as

group or elementary items, with level numbers 01
through 49. -

Purpose To define terminal format and to describe
the data-items entered in the fields on the
screen.

Format The SCREEN SECTION header begins the
section, followed by a period (.). Items
are entered as group or elementary items,
numbered 01 through 49. Elementary screen
items define individual display and/or data
entry fields on the screen. Group items
name any group of elementary screen items

that are accepted or displayed with a
single ACCEPT or DISPLAY statement.

ney:

DATA DIVISION

The general format for an elementary screen

item is:

[SCREEN SECTION.

ley level-number [screen-name]

[BLANK SCREEN]

[LINE NUMBER IS [PLUS] integer-1]

[COLUMN NUMBER IS [PLUS] integer]

[BLANK LINE]

[BELL]

UNDERLINE
REVERSE VIDEO
HIGHLIGHT
BLINK

[[VALUE] IS literal-1]

literal-2
 percrure} IS character-string | \enoM pee 3} }{TO senior}

PIC [USING identifier-3]

[BLANK WHEN ZERO}

wy tie} RIGHT
JUST

[AUTO]

[SECURE]

{REQUIRED}

[FULL]

Microsoft COBOL Reference Manual

Remarks

The general format for a group screen item

is:

level-number [screen-name]

[AUTO]

[SECURE] “a

[REQUIRED]

[FULL]

The clauses used in these formats are

discussed in Section 5.4 of this chapter.
Clauses may be entered in any order. If
the PICTURE clause is included, either
USING or at least one of FROM and TO must

be present. The AUTO and SECURE clauses
may be used only if the PICTURE clause is
also present.

The clauses that are specified with
elementary data-items affect data input and
display operations when ACCEPT and DISPLAY
Statements are executed at runtime. These
effects are discussed in Sections 5.4.1

through 5.4.30, which describe the
individual clauses. “A

With screen items, the following actions
are always executed in the order shown
below, regardless of the order in which
they are specified:

BLANK SCREEN

LINE/COLUMN positioning
BLANK LINE
DISPLAY or ACCEPT data

Example

DATA DIVISION

IDENTIFICATION DIVISION.

PROGRAM-ID. DOCTST.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 WORK-FIELDS.

05

05

05

05

05

WS-PASSWORD PIC X(10)
VALUE "ABCDEFGHIJ".
WS-PART-NO PIC S9(7)
VALUE 1234567.
WS-DESCRIPTION PIC X(25)
VALUE "ASDSDKSDDDASABCDEHIJ".
WS-UNIT-COST PIC S99V99
VALUE 12.34.

WS-QTY-ON-HAND PIC S999
VALUE 987.

SCREEN SECTION.

01 BLANK-SCREEN.

02 BLANK SCREEN.

01 INVENTORY-SCREEN.

05

05

05

05

05

05

LINE 1 COLUMN 1

VALUE "ENTER PASSWORD ".
COLUMN PLUS 1 PIC X(10) SECURE
USING WS-PASSWORD.
LINE 2 COLUMN 1
VALUE "PART NUMBER "
HIGHLIGHT.
SCR-PART-NO
LINE 2 COLUMN 13 PIC S9(7)
USING WS-PART-NO.
LINE 3 COLUMN 1
VALUE "DESCRIPTION ".
COLUMN PLUS 1 PIC xX(25)
USING WS-DESCRIPTION.

~

Microsoft COBOL Reference Manual

05 FOURTH-LINE AUTO.
10 LINE 4 BLANK LINE.
10 COLUMN 1 VALUE "UNIT-COST".
10 COLUMN PLUS 1 PIC S999V99

BLANK WHEN ZERO
USING WS-UNIT-COST. “y

10 COLUMN PLUS 4

VALUE "QTY ON HAND".
10 COLUMN PLUS 1 PIC S999

BLINK

USING WS-QTY-ON-HAND.

PROCEDURE DIVISION.

010-MAINLINE.
DISPLAY BLANK-SCREEN.
DISPLAY INVENTORY-SCREEN.
ACCEPT INVENTORY-SCREEN.
STOP RUN.

—) oe

DATA DIVISION

5.4 Clauses

The remainder of this chapter describes the clauses
that may be used within the DATA DIVISION. The clauses
are arranged here in alphabetical order. For
information about how the clauses are used in the
general format, see descriptions of the DATA DIVISON

sections in Section 5.3 of this chapter.

The following rules apply to the use of clauses:

1. Clauses may appear in any order except that a
REDEFINES clause, if used, must come first.

2. A clause included in a group item applies to
all items within that group.

3. If a clause is entered at the group level, it
may not be contradicted by a clause in an item
that is subordinate to that group.

hii. | SG a

Microsoft COBOL Reference Manual

5.4.1 AUTO Clause

Purpose Specifies that when a field on a screen has
been filled by user input, the cursor
automatically skips to the next input “A
field, rather than waiting for a
terminating character. The ACCEPT
statement is terminated when the last input
field is accepted.

Format The AUTO clause appears as part of the
SCREEN SECTION of the DATA DIVISION.

The general format is:

[AUTO]

Remarks AUTO is effective only when an ACCEPT
statement is active during execution of the
program.

Example 05 LINE 2 COLUMN 13 PIC S9(7)

TO WS-OQTY-ON-HAND -
AUTO.

DATA DIVISION

5.4.2 BELL Clause

Purpose Sounds the terminal's audio alarm.

Format The BELL clause appears as part of the

SCREEN SECTION of the DATA DIVISION.

The general format is:

[BELL }

Example 05 LINE 1 COLUMN 1

VALUE "SOUND THE ALARM"
BELL.

Microsoft COBOL Reference Manual

5.4.3 BLANK LINE Clause

Purpose

Format

Remarks

Example

Frases the screen from the current cursor

position to the end of the current physical
line.

The BLANK LINE clause appears in the SCREEN

SECTION of the DATA DIVISION.

The general format is:

[BLANK LINE]

The area of the screen in which the
specified line appears is cleared. No data

are affected.

05 LINE 10 BLANK LINE.

DATA DIVISION

5.4.4 BLANK SCREEN Clause

Purpose Erases the entire screen and places the
we cursor at home position (line 1, column 1).

Format The BLANK SCREEN clause appears in the
SCREEN SECTION of the DATA DIVISION.

The general format is:

[BLANK SCREEN]

Remarks Anything appearing on the screen is erased,

but no data are affected.

Example 05 BLANK SCREEN.

Microsoft COBOL Reference Manual

5.4.5 BLANK WHEN ZERO Clause

Purpose Specifies that an item is displayed as
spaces (i.e., is left blank) when its value
is zero. “AY

Format The BLANK WHEN ZERO clause may appear in

any section with the DATA DIVISION.

The general format is:

[BLANK WHEN ZERO]

Example 05 UNIT-COST PIC S999V99

BLANK WHEN ZERO.

——

DATA DIVISION

5.4.6 BLINK Clause

Purpose

Format

Example

Specifies that an item is flashing and is
shown in high-intensity (highlight) when
displayed on the screen.

The BLINK clause appears as one of a choice
of items in the SCREEN SECTION of the DATA

DIVISION. The other choices are:
UNDERLINE, REVERSE-VIDEO, and HIGHLIGHT.

The general format is:

UNDERLINE
REVERSE VIDEO
HIGHLIGHT
BLINK

10 COLUMN PLUS 1 PIC S999

BLINK
USING WS-QTY-ON-HAND.

eh Ss

Microsoft COBOL Reference Manual

5.4.7 BLOCK Clause

Purpose

Format

Remarks

Example

Specifies the size of the physical records
in the file. Because this clause is
normally used only for tape files, it is “ws
not functional in MS-COBOL. If it is
present, however (e.g., if included for
transferability), the syntax is checked.

The BLOCK clause appears in an FD entry in
the FILE SECTION.

The general format is:

- BLOCK CONTAINS [integer-1 TO J integer-2 {ae i
CHARACTERS

If the BLOCK clause is specified, the
following rules apply:

1. Files assigned to PRINTER must not have

a BLOCK clause in the associated FD
entry. -

2. The size of a physical block should be
stated in RECORDS, except when the
records are variable in size or exceed
the size of a physical block; in these
cases the size should be expressed in
CHARACTERS.

FD MASTER-INV-FILE

BLOCK CONTATNS 5 RECORDS.

— re

DATA DIVISION

5.4.8 CODE-SET Clause

Purpose

Format

Remarks

Example

Specifies the character code set used to

represent the data on the external media.
In MS-COBOL, this clause is used for
documentation only.

The CODE-SET clause appears in the FD entry
of the FILE SECTION. The specified code
set for MS-COBOL is always ASCII.

The format is:

[; CODE-SET IS alphabet-name].

The CODE-SET clause should be specified

only for non-mass-Sstorage files.

When the CODE-SET clause is used, USAGE IS

DISPLAY must also be specified. If the
file contains signed numeric data, the SIGN
IS SEPARATE clause must also be specified.

FD INV-RECORD-FILE

CODE-SET IS ASCII

Microsoft COBOL Reference Manual

5.4.9 COLUMN Clause

Purpose

Format

Remarks

Sets the cursor's column position on the

screen. “a

The COLUMN clause appears in the SCREEN

SECTION of the DATA DIVISION.

The general format is:

[COLUMN NUMBER IS [PLUS] integer]

The COLUMN and LINE clauses determine the

screen location associated with an
elementary screen item. As the SCREEN
SECTION is processed at compile time, a
current cursor position is maintained so
that each elementary screen item can be
identified with a particular region of the
screen. When a level Ol screen item is
encountered, the current screen position is
reset to line 1, column 1. Then, as each
item is processed, the current position is
adjusted for the size of each definition -
encountered. By default, therefore,
successively defined fields appear end to
end on the screen.

The current column or line at the start of

any elementary screen data-description may
be changed with the COLUMN and LINE
clauses. If neither clause is specified,
the current screen position is not changed.
If only COLUMN is specified, the line is
not changed. If only LINE is specified,
column 1 is assumed.

eon

Example

DATA DIVISION

The COLUMN or LINE clause without PLUS

causes the specified integer to be taken as
the line or column at which the current
screen item should start. When the PLUS

phrase is specified, the specified integer
is added to the current column or line, and
the result is the column or line at which

the current screen item starts. If the

integer is not specified, COLUMN/LINE PLUS
l1 is assumed.

See also Section 5.4.17, "LINE Clause."

05 COLUMN PLUS 4
VALUE "QUANTITY ON HAND".

ons |

Microsoft COBOL Reference Manual

5.4.10 DATA RECORD(S) Clause

Purpose

Format

Remarks

Example

Names the records ina file. This clause

is documentary only.

The DATA RECORD(S) clause appears in FD and
SD entries in the FILE SECTION. Note that
SD entries are used only with the MS-SORT
facility,

The general format is:

{ RECORD |S }
- DATA | RECORDS ARE J data-name-1 [, data-name-2] ...

Each record in the file is assigned a

data-name (e.g., data-name-l, data-name-2,
etc.). The records may be of different
sizes, formats, etc. The data-names may be

listed in any order.

Each data-name must have a corresponding Ol

level number record-description entry, with
the same data-name. >

FD RECORD-NAME
DATA RECORDS ARE TOOLS-1, TOOLS-2

01 TOOLS-1.
05 PART-NO PIC 9(8).
05 DESCRIPTION PIC X(25).
OS. Ot Fic 999.

05 PART-NO PIC 9(8).

05 COST PIC 9(9)V99.

ea

DATA DIVISION

5.4.11 FROM/TO/USING Clause

Purpose

Format

Remarks

Examples

When a data-item is displayed on a screen,

FROM or USING moves the contents of the
data-item or a literal from storage to a
temporary item that is defined by the
PICTURE clause. This value is then

displayed on the screen.

When an item is accepted, TO or USING
implicitly moves the contents of the item
to the data-item named in the TO or USING

clause.

The FROM/TO/USING clause appears in the
SCREEN SECTION of the DATA DIVISION, and is
part of the PICTURE clause for a data-item
associated with a screen.

The general format is:

literal-2 }
| ercrurey 1S character-string {eno he eae 110 serie}

PIC [USING identifier-3]

Identifiers may be qualified but not
subscripted.

Note that the FROM and TO clauses are used

together; USING, in effect, combines the
two.

05 LINE 1 PIC S9(5)

USING WS-PART-NO.

05 SCR-DESC PIC X(25)

FROM LS-DESCRIPTION.

05 COLUMN PLUS 1 PIC X(10)

TO FILE-IDENT.

The first example references data in the
WORKING-STORAGE SECTION; the second
example references data in the LINKAGE
SECTION; and the third example references
data in the FILE SECTION.

Microsoft COBOL Reference Manual

5.4.12 FULL Clause

Purpose When a data-item is accepted from a screen,
FULL causes any terminator characters to be
ignored. ‘yy

Format The FULL clause is used in the SCREEN

SECTION of the DATA DIVISION.

The general format is:

[FULL]

Example 05 LINE 3 PIC X(5)

TO WS-IDENT-NO

FULL.

—

DATA DIVISION

5.4.13 HIGHLIGHT Clause

Purpose Specifies that an item is shown in
high-intensity when displayed on the

oy screen.

Format The HIGHLIGHT clause appears as one of a
choice of items in the SCREEN SECTION of
the DATA DIVISION. The other choices are:

BLINK, UNDERLINE, and REVERSE-VIDEO.

The general format is:

UNDERLINE
REVERSE VIDEO
HIGHLIGHT
BLINK

Example 05 LINE 2 VALUE "ENTER UNIT COST"

HIGHLIGHT.

Microsoft COBOL Reference Manual

5.4.14 JUSTIFIED Clause

Purpose

Format

Remarks

Example

Specifies right-to-left alignment when the
field is the receiving field for a MOVE
statement.

The JUSTIFIED clause may appear in any

section of the DATA DIVISION. The
abbreviated form JUST is allowed.

The general format is:

{JUSTIFIED | nor
JUST

The JUSTIFIED clause applies only to

unedited alphanumeric items. It can be
used only for elementary items.

When data are moved to a longer receiving
field, the data are aligned right-to-left,
with space fill on the left. When the
receiving field is shorter than the data,
truncation occurs from the left.

05 ALPHA-ITEM PIC X(20)

JUSTIFIED RIGHT.

= 100 =

DATA DIVISION

5.4.15 LABEL RECORD(S) Clause

Purpose

~ Format

Remarks

o Example

Indicates whether a file contains labels.

The LABEL RECORD(S) clause appears in the

FD entry of the FILE SECTION.

The general format is:

RECORD IS STANDARD
; LABEL { RECORDS ARE OMITTED

OMITTED specifies that no labels exist for
the file. OMITTED must be specified for

files assigned to PRINTER.

STANDARD specifies that labels exist for

the file and that they conform to system
specifications. STANDARD must be specified
for files assigned to DISK.

This clause is required in every FD entry.

FD INVENTORY-WARNING-FILE

LABEL RECORDS ARE STANDARD.

- 101 -

Microsoft COBOL Reference Manual

5.4.16 LINAGE Clause

Purpose Specifies the total number of lines
assigned to a printed page, the number of
lines allotted for top and bottom margins,
and the line number at which the footing
(information printed at the bottom of the
page) begins.

Format The LINAGE clause appears in the FD entry
of the FILE SECTION for a file assigned to
the printer.

The general format is:

{ data-name-4 } data-name-5
; LINAGE!S | integer-5 LINES , WITH FOOTING AT | integer-6

{ dh { data-name-7
, LINES AT TOP | integer- 7 , LINES AT BOTTOM \integer-8

Remarks All data-names refer to unsigned numeric

integer data-items. Integer-l must be
greater than zero, and integer-2 must not
be greater than integer-l.

The total page size is the sum of the

values in each phrase except for FOOTING.
If TOP or BOTTOM margins are not specified,
their size is assumed zero. The footing
area is the part of the page between the
line indicated by the FOOTING value and the
last line of the page.

The values in each phrase at the time the
file is opened (by the execution of an OPEN
OUTPUT statement) specify the number of

lines in each of the sections of the first
logical page. Whenever a WRITE statement
with the ADVANCING PAGE phrase is executed
Or a "page overflow" condition occurs (see

Section 6.4.35, "The WRITE Statement"), the
values in the phrases will be used for the
next logical page.

- 102 -

Example

DATA DIVISION

A LINAGE-COUNTER iS automatically created
by the presence of a LINAGE clause. The
value in the LINAGE-COUNTER at any given
time represents the line number at which
the printer is positioned within the
current page. LINAGE-COUNTER may be
referenced but may not be modified by
PROCEDURE DIVISION statements. It is

automatically modified during execution of
a WRITE statement, according to the
following rules:

1. When the "ADVANCING PAGE" phrase of the

WRITE statement is specified or a "page
overflow" condition occurs (see Section
6.4.35, "The WRITE Statement"), the

LINAGE COUNTER is reset to one.

2. When the "ADVANCING identifier or

integer" phrase is specified,
LINAGE-COUNTER is incremented by the
ADVANCING value.

3. When the ADVANCING phrase is not
specified, LINAGE-COUNTER is
incremented by one.

FD INVENTORY-REPORT-FILE
LABEL RECORDS ARE OMITTED
LINAGE IS 56 LINES
LINES AT TOP 3
LINES AT BOTTOM 5.

Microsoft COBOL Reference Manual

5.4.17 LINE Clause

Purpose

Format

Remarks

Sets the cursor's line position on the
screen.

The LINE clause appears in the SCREEN
SECTION of the DATA DIVISION.

The general format is:

[LINE NUMBER IS [PLUS] integer-1]

The COLUMN and LINE clauses determine the

screen location associated with an
elementary screen item. As the SCREEN
SECTION is processed at compile time, a
Current cursor position is maintained so
that each elementary screen item can be
identified with a particular region of the
screen. When a level O01 screen item is
encountered, the current screen position is
reset to line 1, column 1. Then, as each
item is processed, the current position is
adjusted for the size of each definition
encountered. By default, therefore,

successively defined fields appear
end-to-end on the screen.

The current column or line at the start of

any elementary screen data-description may
be changed with the COLUMN and LINE
Clauses. If neither clause is specified,
the current screen position is not changed.
If only COLUMN is specified, the line is
not changed. If only LINE is specified,
column 1 is assumed.

- 104 -

Example

DATA DIVISION

The COLUMN or LINE clause without PLUS

causes the specified integer to be taken as
the line or column at which the current
screen item should start. When the PLUS
phrase is specified, the specified integer
is added to the current column or line, and

the result is the column or line at which

the current screen item starts. If the

integer is not specified, COLUMN/LINE PLUS
1 is assumed.

05 LINE 1 PIC $99

USING WS-QUANTITY.

Microsoft COBOL Reference Manual

5.4.18 OCCURS Clause

Purpose

Format

Remarks

Specifies the number of times that a
data-item is repeated in a record, i.e.,
within the associated level 01 group.

The OCCURS clause may not be used in any
level number 01 or 77 entry. It may be
used in the FILE, WORKING-STORAGE, or
LINKAGE SECTIONS.

The general format is:

[; OCCURS integer-1 TIMES

ASCENDING } KEY IS data-name-4 [, data-name-5]... | ...
DESCENDING

[INDEXED BY index-name-1 [, index-name-2] ...]]

The KEY and INDEXED phrases specify
key-names that can be used in SEARCH
Statements to access the items within a
table. In the KEY phrase,
ASCENDING/DESCENDING specifies how the
items are arranged according to their

values. See Chapter 8, "Table Handling by
the Indexing Method," for more information

about the KEY and INDEXED phrases.

The OCCURS clause defines related sets of

repeated data, such as tables, lists, and
arrays. It specifies the number of times,
up to a maximum of 1023, that a data-item
with the same format is repeated in the
record. The entire data-description entry
applies to each repetition of the entry.

When the OCCURS clause is used in an entry,
the data-name for the entry must be
subscripted or indexed whenever it appears
in the PROCEDURE DIVISION. If this

data-name is the name of a group item, all
data-names belonging to the group must be
subscripted or indexed whenever they are
used.

- 106 -

DATA DIVISION

Subscripting enables the user to refer to a
table or list of data-items that have not
been assigned individual data-names. This
is the case for items that have been
specified by an OCCURS clause; therefore,
any item that contains an OCCURS clause or
belongs to a group containing an OCCURS
clause must be subscripted or indexed
whenever it is used. The one exception is
in a SEARCH statement, where a table-name
must be referenced without subscripts. See
Chapter 8, "Table Handling by the Indexing
Method," for an explanation of indexing.

A subscript is a positive, nonzero integer
whose value indicates which element is
referenced within a table or list. The
subscript may be either a literal or a
data-name whose value iS an integer. A
subscript must be a decimal or binary item
(USAGE IS DISPLAY or COMPUTATIONAL-—0; the

latter is recommended for efficiency).

A subscript is always enclosed by
parentheses. In the general format, it is
given after the terminal space of the name
of the element. Multiple subscripts are
separated by a comma and a space (e.g.,

ITEM (3, 4375

~ 107 -

Microsoft COBOL Reference Manual

A data-name may not be subscripted if it is
being used for:

1. a subscript

2. the defining name of a data-description “a
entry

3. data-name-2 in a REDEFINES clause

4. a qualifier

Example 01 ARRAY.

03 TABLE-VAL OCCURS 3 TIMES PIC 9(4).

In this example, storage would be allocated
as follows:

TABLE-VAL (1)

TABLE-VAL (2)
TABLE-VAL (3)

These three occurrences make up the ARRAY,
which consists of 12 characters (each
TABLE-VAL has 4 digits). ~

- 108 -

DATA DIVISION

5.4.19 PICTURE Clause

Purpose

Format

oy Remarks

Describes the contents of an elementary
data-item. May also describe editing
features of the item.

The abbreviation PIC is allowed.

The general format is:

[: { BIGTURE | IS Baie 2d
PIC

In the SCREEN SECTION, the PICTURE clause

must be followed by the USING clause, or
one or both of the FROM and TO clauses.

Character-strings are discussed in the
remarks which follow.

See Section 5.4.11 for discussion of the
FROM/TO/USING clause.

The character-string specification differs
for alphanumeric, numeric, and

report-edited items. These differences are
described in the following paragraphs.

Alphanumeric Items

The PICTURE clause of an alphanumeric item
may combine characters X, A, and 9. It may
also contain the editing characters B, 0
and /.

An X indicates that the character position
may contain any character from the
computer's ASCII character set. A PICTURE
clause that contains at least one of the
combinations:

A and 9

X and 9

X and A

in any order, is considered as if every 9,
A, or X character were X. The characters

B, 0, and / may be used to insert blanks,
zeros, Or slashes in the item. The item is

- 109 -

Microsoft COBOL Reference Manual

then called an alphanumeric-edited item.

If the string contains only A's and B's, it
is considered alphabetic; if it has only
9's, it is numeric (see below). The
NUMERIC and ALPHABETIC class tests may be “Yo
used to determine whether an alphanumeric

data-item is alphabetic or numeric.

Numeric Items

The PICTURE clause of a numeric item may

combine the following characters:

9 Indicates that the actual or
conceptual digit position contains a
numeric character. The maximum number
of 9's in a PICTURE clause is 18.

V Indicates the position of an assumed
decimal point. This character is

optional. Since a numeric item cannot
contain an actual decimal point, the

assumed decimal point provides the
compiler with information about the
scaling alignment of items involved in ‘=
computations. Storage is never
reserved for the character V. Only
one V iS permitted in any single
PICTURE clause. V is redundant if it
is the rightmost character.

S Indicates that the item has an

operational sign. This character is
optional. It must be the first
character of the PICTURE clause. See

also Section 5.4.24, "SIGN Clause."

P Indicates an assumed decimal scaling
position. This character is optional.
It specifies the location of an
assumed decimal point when the point
is not within the number that appears
in the data item.

The scaling position character P is
not counted in the size of the data an)
item, and memory is not reserved for
it. However, scaling position
characters are counted in determining
the maximum number of digit positions
(18) in numeric edited items or in

- 110 -

DATA DIVISION

items that appear as operands in

arithmetic statements.

If the clause contains more than one
P, the P's must be continuous. The
character P may appear only to the
left or right of the other characters
in the string, except that it may
appear to the left of a leftmost
string of P's. P implies an assumed
decimal point to the left of the P's
if the P's are leftmost, and to the
right of the P's if the P's are
rightmost. Therefore, the assumed
decimal point symbol V is redundant as
either the leftmost or rightmost
character within a PICTURE clause that
contains P's.

Report Items

A report item is a data item that can be
used as an "edited" receiving field for a
numeric value. The editing characters that
may be combined to describe a report item
are:

9. Vo. Zee ees ee * BO + 2 7

The characters 9, P, and V have the same

meaning as for a numeric item. The other
editing characters are used as follows:

The decimal point specifies that an
actual decimal point is to be inserted
in the indicated position and that the
source item is to be aligned
accordingly. Numeric character
positions to the right of an actual
decimal point in a PICTURE clause must
consist of characters of one type.
The decimal point must not be the last
character in the PICTURE
character-string. The decimal point
and P may not be used in the same
PICTURE clause.

Z The characters Z and * are
* replacement characters. Each one

represents a digit position. During
execution, leading zeros to be placed

- lll =

Microsoft COBOL Reference Manual

in positions defined by Z or * are
Suppressed, becoming blank or *
respectively. Zero suppression ends
when a decimal point (. or V) ora
non-zero digit is encountered. All
digit positions to be modified must be “
the same (either Z or *), and must be

contiguous starting from the left. 2
Or * may appear to the right of an
actual decimal point only if all digit
positions are the same.

CR CR and DB are credit and debit symbols

DB respectively. They may appear only as
the rightmost characters in a PICTURE
clause. These symbols occupy two
character positions. They indicate
that the specified symbol is to appear
in the indicated positions if the
value of a source item is negative.
If the value is positive or zero,
Spaces will appear instead. CR and DB
and + and —- are mutually exclusive.

The comma specifies insertion of a
comma between digits. Each comma is
counted in the size of the data-item, “
but does not represent a digit
position. The comma may also appear
in conjunction with a floating string,
as described below. It must not be
the last character in the PICTURE
character-string.

A floating string is a leading, continuous
series of either dollar sign, plus sign or
minus sign; or a string composed of one
such character interrupted by one or more
commas and/or decimal points. For example:

$$,S$$,S8$$
+444

+ (8) +4

$$,$$$.$$
A floating string containing N + 1
occurrences of $ or + or - defines N digit “
positions. When a numeric value is placed
in a report-item, the report-item will have
One actual $ or + or - immediately to the
left of the most significant nonzero digit,
in one of the positions indicated by $ or +

- 112 -

DATA DIVISION

or - in the PICTURE clause. Blanks are

placed in all character positions to the
left of the float character. If the most
significant digit appears in a position to
the right of positions defined by the
floating string, the report-item will
contain $ or + or - in the rightmost
position of the floating string, and
non-significant zeros may follow. When a
floating string contains an actual or
implied decimal point, all digit positions
to the right of the decimal point are
treated as if they contain 9's.

In the following examples, B represents a

blank in the developed items.

PICTURE Numeric Report—
Clause Value Item

$$$999 14 BBS014
--,---,999 -456 BBBBBB-456

SSSSS$ 14 BBBS14

A floating string need not constitute the

entire PICTURE clause of a report-item, as
shown in these examples. The characters
that may follow a floating string are:

When a comma appears to the right of a

floating string, the float character
disregards the comma so that it may be
as close to the leading digit as
possible.

+ - The plus sign (+) or minus sign (-)
May appear in a PICTURE clause either
Singly or ina floating string. AS a
fixed-sign character, the + or —- must
appear as the last symbol in the
PICTURE clause.

The plus sign indicates that the sign
of the item is indicated by either a
plus or minus placed in the character
position, depending on the algebraic
Sign of the numeric value placed in
the report field. The minus sign
indicates that blank or minus is
placed in the character position,
depending on whether the algebraic
sign of the numeric value placed in

~~ i290 =

Microsoft COBOL Reference Manual

the report field is positive or
negative, respectively.

B Each appearance of B in a PICTURE
clause represents a blank in the final
edited value. “a

ff Each slash in a PICTURE clause
represents a slash in the final edited
value.

0 Each appearance of zero in a PICTURE
clause represents a position.in the
final edited value where the digit
zero will appear.

Other rules for the PICTURE clause of a

report-item are:

1. Only one type of floating string may be
used in the item.

2. The item must have at least one digit
position character.

3. The appearance of a floating sign “a
string or fixed plus or minus character
precludes the appearance of any other
of the sign control insertion
characters, namely, +, -, CR, and DB.

4. The characters from the immediate right
of a decimal point to the end of the
PICTURE clause (excluding the fixed
insertion characters +, -, CR, and DB),
are subject to the following
restrictions:

a. Only one type of digit position
character may appear. That is,
only one of Z * 9 and the
floating-string digit position

characters $ + — may be used. '

b. If one of the numeric character

positions to the right of a decimal
point is represented by + or - or $ ~
or Z, then all the numeric
character positions in the PICTURE
clause must be represented by the
Same character.

- 114 -

DATA DIVISION

5. The PICTURE character 9 can never

appear to the left of a floating string
Or replacement character.

Additional notes on the PICTURE Clause:

1. A maximum of 30 character positions is

allowed in a PICTURE character string.
For example, PICTURE X(89) consists of

the five PICTURE characters X, (, 8, 9,
and).

2. A PICTURE must contain at least one of

the characters A Z * X 9 or at least
two consecutive appearances of + or -

oe ae

3. The characters ., S, V, CR, and DB can

appear only once in a PICTURE clause.

4. When the DECIMAL-POINT IS COMMA clause

is specified in the ENVIRONMENT
DIVISION of the program, the
explanations for period and comma apply
to comma and period, respectively.

5. A PICTURE clause is used only with
elementary items, not with group items.

The following examples illustrate how data
are represented by the PICTURE clause.
"Data Value" shows contents in storage;
and "Edited Data" shows the value that is
reported.

~ L125 =

Source Area

PICTURE

9 (5)
9 (5)
9 (5)
9(4)Vv9
V9 (5)
S9 (5)
S9 (5)
S9 (5)
S9 (5)
9:(5)
(3)
$9 (5)
S999V99
S999V99

Data

Value

12345
00123
00000
12345
12345
00123

-00001
00123
00001
00123
00123
12345
02345
00004

- 116 -

Microsoft COBOL Reference Manual

Receiving Area

PICTURE

S$$,$$9.99
$$$,$$9.99
$$$,$$9.99
$$$,$$9.99
$$$,$$9.99

++++4++++.99
oe Sena 99
+4++++++.99

kkkKKKK _ QOCR

Z2ZZZ.22

ZZZ.22

Edited

Data

$12,345.00
$123.00

$0.00
$1,234.50

$0.12
123.00
-1.00

+123.00
1.00

+123.00
123.00

*#1 2345.09
23.45

04

DATA DIVISION

5.4.20 RECORD Clause

Purpose

Format

ow Remarks

Example

Specifies the number of characters each
record in the file contains. It is
documentary only, since the size of each
data record is always defined by the
data-description entries that make up the
record (level 01) declaration.

The RECORD clause appears in the FD (and

SD) entry in the FILE SECTION.

The general format is:

[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

Integer-2 should be the size of the largest
record in the file declaration. If the
records are variable in size, integer-1l
must be specified and equal to the size of
the smallest record. The sizes are given
as character positions required to store
the logical records.

This clause is always optional.

FD INV-MSTR-FILE

RECORD CONTAINS 80 CHARACTERS.

- 117 -

Microsoft COBOL Reference Manual

5.4.21 REDEFINES Clause

Purpose Specifies that a storage area is to contain
different data-items, or provides an
alternative grouping or description of the “Yo
same data.

Format The REDEFINES clause is optional. If
present, it must be the first clause in the
data-description or record-description
entry.

The general format is:

{ data-name-1 |
level-number {FILLER

[; REDEFINES data-name-2]

The level number and data-name are included

here for clarity, but they are not actually
part of the REDEFINES clause.

The data-description entry for data-name-2
should not contain a REDEFINES clause or an ~

OCCURS clause.

Remarks When an area is redefined, all descriptions

of the area remain in effect. Thus, if B
and C are two separate items that share the
Same storage area due to redefinition, the

procedure statements MOVE X TO B or MOVE Y
TO C could be executed at any point in the
program. In the first case, B would assume
the value of X and take the form specified
by the description of B. In the second
case, the same physical area would receive
Y according *o the description of C.

- 118 =

DATA DIVISION

For purposes of discussing redefinition,

data-name-l is termed the subject, and
data-name-2 is called the object. The
levels of the subject and object are
denoted by s and t, respectively. The

oy following rules must be obeyed in order to
establish a proper redefinition:

1. Level s must equal level t, but must

not equal 88.

2. The object must be contained in the

same record (01 group level item),
unless s = t = Ol.

3. The REDEFINES clause may not be used in

level Ol entries in the FILE SECTION,
because multiple 01 level items in the
FILE SECTION are implicitly redefined.

4. Prior to definition of the subject and
subsequent to definition of the object
there can be no level numbers that are
numerically less than s.

5. The length of data-name-l, multiplied
oy by the number of occurrences of

data-name-l, may not exceed the length
of data-name-2, unless the level of
data-name-1l is Ol.

6. Data-name-l and entries subordinate to
data-name-1l must not contain any VALUE

clauses, except in level 88.

= 29 =

Microsoft COBOL Reference Manual

5.4.22 REQUIRED Clause

Purpose When a data-item is accepted from a screen,

REQUIRED causes terminator characters to be
ignored until at least one non-terminator “
character is entered into a field.

The REQUIRED clause appears in the SCREEN
SECTION of the DATA DIVISION.

Format The general format is:

[REQUIRED]

Example 05 LINE Pic. x (5)
TO WS-IDENT-NO

REQUIRED.

- 120 -

DATA DIVISION

5.4.23 SECURE Clause

Purpose

Format

Remarks

Example

Suppresses the echo of characters input at

the terminal. Instead, an asterisk is
displayed for each data character accepted.

The SECURE clause appears in the SCREEN
SECTION of the DATA DIVISION.

The general format is:

[SECURE]

The SECURE clause is always optional.

05 SCREEN-NAME PIC S9(5)

USING WS-NAME
SECURE.

Microsoft COBOL Reference Manual

5.4.24 SIGN Clause

Purpose

Format

Specifies that an operational sign be
included as part of an external decimal
item; also specifies one of four possible
formats for placement of the sign.

The SIGN clause appears in the
data-description entry for an external

decimal item (USAGE IS DISPLAY).

The general format is:

k [SIGN IS] { LEADING } [SEPARATE CHAE EA
TRAILING

where the possible forms of the clause are:

SIGN Clause Sign Representation

TRAILING Embedded in
right-most byte

LEADING Embedded in
left-most byte

TRAILING SEPARATE Stored in separate

right-most byte

LEADING SEPARATE Stored in separate
left-most byte

The SEPARATE CHARACTER phrase increases the
size of the data-item by one character.

- 122 -

DATA DIVISION

Remarks The following rules apply to the SIGN
clause:

1. When an operational sign is specified,

the PICTURE must begin with S. If no §S
is used, the item is not signed (and is

capable of storing only absolute
values), and the SIGN clause is
prohibited. When S appears at the
front of a PICTURE but no SIGN clause
is included in an item's description,
the "default" case SIGN IS TRAILING is
assumed.

The SIGN clause may be written at the
group level. In this case, the clause

specifies the sign's format on any
signed subordinate external decimal
item.

The entries to which the SIGN clause
applies must be implicitly or

explicitly described as USAGE IS
DISPLAY.

When the CODE-SET clause is specified
for a file, all signed numeric data for
that file must be described with the
SIGN IS SEPARATE clause.

Microsoft COBOL Reference Manual

5.4.25 SYNCHRONIZED Clause

Purpose The SYNCHRONIZED clause was designed in
Order to efficiently allocate memory space
for data. It specifies the alignment of an ‘>
item on the computer's natural memory
boundaries. However, in MS-COBOL, the
SYNCHRONIZED clause is documentary only.

Format The SYNCHRONIZED clause is used in the
standard data-description entry.

The general format is:

+ { SYNCHRONIZED | LEFT
SYNC RIGHT

Remarks The SYNCHRONIZED clause may be used only
with elementary data-items.

Although this clause is documentary only,
the compiler checks the syntax.

Example 05 RECORD-ITEM PIC X(10) “a

SYNCHRONIZED RIGHT.

- 124 -

DATA DIVISION

5.4.26 TO Clause

See Section 5.4.11, "FROM/TO/USING Clause."

Microsoft COBOL Reference Manual

5.4.27 USAGE Clause

Purpose

Format

Specifies the form in which numeric data
are represented.

The USAGE clause appears in

data-description or record-description
entries in the FILE, WORKING-STORAGE, or
LINKAGE SECTIONS.

The general format is:

COMPUTATIONAL-O
COMP-O
COMPUTATIONAL
COMP

V IUSAGE 'S1\ COMPUTATIONAL

COMP is an accepted abbreviation for

COMPUTATIONAL.

A COMPUTATIONAL item is capable of
representing a value to be used in
computations. It must be numeric. If a
group item is described as COMPUTATIONAL,
the elementary items in the group are
COMPUTATIONAL. The group item itself is
not COMPUTATIONAL and cannot be used in
computations.

COMPUTATIONAL-3, which may be abbreviated
COMP-3, defines a packed (internal decimal)
field. COMPUTATIONAL-O (abbreviated

COMP-0) defines a 16-bit binary field.

Note

In MS-COBOL for the 2800/8080
microprocessor, items with USAGE IS
COMPUTATIONAL are treated as binary
items, unless the /V (Validation)
compiler switch is used. In that case,
and in all other versions of MS-COBOL,
items with USAGE IS COMPUTATIONAL are

treated as external decimal items, as
if defined with USAGE IS DISPLAY.

~ 126 =

Remarks

wy Example

DATA DIVISION

The USAGE IS DISPLAY clause indicates that

the data are in standard ASCII data format.

USAGE IS INDEX indicates that the data-item
will be used as an index data-item (see
Chapter 8, "Table Handling by the Indexing
Method" for more information on using
tables). USAGE IS INDEX defines the
data-item to be a binary item, in the same
format as a COMPUTATIONAL-0O data-item. If

USAGE IS INDEX is used, no PICTURE clause

can be used.

If a USAGE clause is given at a group
level, it applies to each elementary item

in the group. The USAGE clause for an
elementary item must not contradict the
USAGE clause of a group to which the item
belongs.

The USAGE clause may be written at any
level. If USAGE is not specified, the item

is assumed to be USAGE IS DISPLAY.

05 TOTAL-AMT-SALES PIC S9(5)V99

USAGE IS COMP-3.

Microsoft COBOL Reference Manual

5.4.28 USING Clause

See Section 5.4.11, "FROM/TO/USING Clause."

- 128 =

DATA DIVISION

5.4.29 VALUE IS Clause

Purpose

Format

Remarks

Specifies the initial value of data-items

Or conditions.

In MS-COBOL the VALUE IS clause appears
only in the WORKING-STORAGE and SCREEN
SECTIONS or in level 88 conditions. The
format for a standard data-description
entry is:

[; VALUE IS literal).

The format for a level 88 condition-name

is:

PA VALUE IS literal-1 [literal-2 ...]

88 condition-name; | VALUES ARE | literal-1 oo] werai2}|
THRU

THROUGH and THRU are equivalent.

Note that the VALUE IS clause is required
for level 88 conditions.

The VALUE IS clause must not be written in

a data-description entry that also has an
OCCURS or REDEFINES clause, or in an entry
that is subordinate to an entry containing
an OCCURS or REDEFINES clause.
Furthermore, it cannot be used in the FILE
or LINKAGE SECTIONS, except in level 88
condition descriptions.

The size of the literal given in a VALUE IS
clause must be less than or equal to the
size of the item as given in the PICTURE
clause. The positioning of the literal
within a data area is the same as would
result from specifying a MOVE of the
literal to the data area, except that
editing characters in the PICTURE have no
effect on the initialization, nor do BLANK

WHEN ZERO or JUSTIFIED clauses.

The type of literal written in a VALUE IS
clause depends on the type of data-item, as
described in Chapter 1, "Language
Elements." For edited items, values must be
specified as non-numeric literals, and must

- 129 =

Microsoft COBOL Reference Manual

Examples

be presented in edited form. A figurative
constant may be given as the literal.

When an initial value is not specified, no

assumption should be made regarding the
initial contents of an item in
WORKING-STORAGE.

The VALUE IS clause may be specified at the
group level, in the form of a correctly
sized non-numeric literal, or a figurative
constant. In these cases the VALUE IS
Clause cannot be stated at the subordinate

levels within the group. However, the
VALUE IS clause should not be written for a
group containing items with descriptions
that include JUSTIFIED, SYNCHRONIZED and

USAGE clauses (other than USAGE IS
DISPLAY).

See Section 5.4.30 for a description of the
VALUE OF clause, which provides information
for the label records associated with a
disk file.

05 QTY PIC 99 VALUE IS 24.
88 ON-HAND-QTY VALUE IS 1 THRU 3.

- 130 -

DATA DIVISION

5.4.30 VALUE OF Clause

Purpose

Format

Remarks

Examples

Provides information for the label records

associated with a file that is assigned to
disk.

The VALUE OF clause appears in any FD (or
SD) entry for a disk-assigned file. (SD
entries apply only to implementations that
have MS-SORT.) The VALUE OF clause contains
a file-ID expressed as a data-name or

quoted literal.

The general format is:

{ data-name-1 }
- VALUE OF FILE-IDIS (literal-1

If a file is assigned to PRINTER, it is

unlabelled and the VALUE OF clause must not
be included in the associated FD or SD. If
a file is assigned to DISK, it is necessary
to include both LABEL RECORDS STANDARD and
VALUE OF clauses in the associated FD or
SD.

If a data-name is specified, it may contain
as many characters as desired, but it must
end with a space character.

See your MS-DOS manual for file-ID formats

for specific operating systems.

(MS-DOS) VALUE OF FILE-ID "A:MASTER.ASM"

(DTC) VALUE OF FILE-ID IS "DO:X201A.L"
(ALTAIR) VALUE OF FILE-ID "FO: INVNT.LST"

om S34 =

CHAPTER 6

PROCEDURE DIVISION

6.1 Arithmetic Statements 140

gat Sree § SIZE ERROR Option 141

Situe ROUNDED Option 141

ee | GIVING Option 142

ae I-O Error Handling 143

c.3 Dynamic Debugging Statements 144

wy 6.4 PROCEDURE DIVISION Statements 145

6.4.1 ACCEPT Statement 146

6.4.22 Format 1
ACCEPT Statement 147

eS se ee Format 2

ACCEPT Statement 148

G245343 Format 3
ACCEPT Statement 150

6.4.1.4 Format 4

ACCEPT Statement 164

~iios >

6.4.2

6.4.3

6.4.4

6.4.5

6.4.6

6.4.7

6.4.8

6.4.9

6.4.10

6.4.11

6.4.12

6.4.13

6.4.14

6.4.15

6.4.16

6.4.17

6.4.18

6.4.19

6.4.20

6.4.21

6.4.22

6.4.23

ADD Statement 166

ALTER Statement 167

CLOSE Statement 168

COMPUTE Statement 169

DELETE Statement 170

DISPLAY Statement 171

DIVIDE Statement 174

EXHIBIT Statement i75

EXIT Statement ave

EXIT PROGRAM Statement 178

GO TO Statement 179

IF Statement 180

INSPECT Statement 185

MERGE Statement 190

MOVE Statement 191

MULTIPLY Statement 195

OPEN Statement 196

PERFORM Statement 198

READ Statement 201

READY /RESET

TRACE Statements 202

RELEASE Statement 203

RESET TRACE Statement 204

- 134 -

6.4.24

6.4.25

6.4.26

6.4.27

6.4.28

6.4.29

6.4.30

6.4.31

6.4.32

6.4.33

6.4.34

6.4.35

RETURN Statement 205

REWRITE Statement 206

SEARCH Statement 207

SET Statement 208

SORT Statement 209

START Statement 210

STOP Statement a

STRING Statement Z21iZ

SUBTRACT Statement ro the

UNSTRING Statement 216

USE Sentence 219

WRITE Statement 220

- 135. -

PROCEDURE DIVISION

This chapter describes the statements used in the
PROCEDURE DIVISION of a program. This introduction
provides an overview of the entire division.
Descriptions of individual statements are arranged
alphabetically in Section 6.4.

Purpose The PROCEDURE portion of a source program

specifies the procedures needed to solve a
given data processing problem. These steps
(computations, logical decisions, etc.) are
expressed in statements, similar to
English, which employ the concept of verbs
to denote actions, and statements and
sentences to describe procedures.

Format The PROCEDURE DIVISION must begin with the
header:

PROCEDURE DIVISION,

which is followed by a period (.).

See Chapter 7, "Inter-Program Communi-

cation," for the general format for the
wy PROCEDURE DIVISION of programs that use

CALL or CHAIN statements.

«| {25 -

Microsoft COBOL Reference Manual

Remarks

The general format for the PROCEDURE

DIVISION is:

PROCEDURE DIVISION eter } data-name-1[, data-name-2]... |.

CHAINING

[DECLARATIVES. -

{section-name SECTION [segment-number]. declarative-sentence

[paragraph-name. [sentence] ...] ...} ...

END DECLARATIVES. |

{ section-name SECTION [segment-number].

[paragraph-name. [sentence] ...] ...} ...

The PROCEDURE DIVISION may be subdivided in

three possible ways:

1. It may consist only of paragraphs.

2. It may consist of a number of
paragraphs followed by a number of
sections (each. section subdivided into
one or more paragraphs).

3. It may consist of a DECLARATIVES region
and a series of sections (each section a
subdivided into one or more

paragraphs).

The DECLARATIVES region of the

PROCEDURE DIVISION is optional; it

provides a means of designating a
procedure to be invoked in the event of
an input-output error. If DECLARATIVES
are used, only the organizational
possibility described in the preceding
Paragraph above may be used. See
Chapter 12, "DECLARATIVES and the USE
Sentence," for a discussion of

DECLARATIVES.

Sections, paragraphs, sentences, and
Statements are defined in Chapter 2,
"Structure of a COBOL Program."

- 138 -

PROCEDURE DIVISION

Example PROCEDURE DIVISION.

POOO-MAINLINE.

OPEN INPUT INVENTORY-MASTER-FILE,
OUTPUT INVENTORY-WARNING-FILE,
INVENTORY-REPORT FILE.

WRITE REPORT-RECORD FROM PR-HEADER

AFTER ADVANCING PAGE.
PERFORM P100-WRITE-REPORT

UNTIL END-OF-FILE.

MOVE REC-COUNT TO PR-REC-COUNT.

MOVE WARNING-COUNT TO PR-WARNING-COUNT.
WRITE REPORT-RECORD

FROM PR-TOTAL-—RECORD

AFTER ADVANCING 2 LINES.

CLOSE INVENTORY-MASTER-FILE,
INVENTORY-WARNING-FILE,
INVENTORY-REPORT-FILE.

STOP RUN.

P100-WRITE-REPORT.

READ INVENTORY-MASTER-FILE

AT END MOVE "Y" TO END-OF-FILE-SW.
IF NOT END-OF-FILE

PERFORM P200-PROCESS—-RECORD.

P200-—PROCESS-RECORD.

MOVE MSTR-KEY TO PR-KEY.
MOVE MSTR-DESCRIPTION

TO PR-DESCRIPTION.
MOVE MSTR-AMT-—-ON-HAND

TO PR-AMT-ON-HAND.
MOVE MSTR-WARNING-LEVEL

TO PR-WARNING-LEVEL.
PERFORM P300-WRITE-LINE.

IF MSTR-AMT-ON-HAND <

MST R-WARNING-LEVEL

MOVE MASTER-RECORD

TO WARNING-RECORD
ADD 1 TO WARNING-COUNT

WRITE WARNING-RECORD.

P300-WRITE-LINE.

WRITE REPORT-—-RECORD
FROM PR-REPORT-RECORD
AFTER ADVANCING 1 LINE.

- 139 -

Microsoft COBOL Reference Manual

6.1 Arithmetic Statements

There are five arithmetic statements: ADD, SUBTRACT,
MULTIPLY, DIVIDE and COMPUTE. The following discussion
applies to all arithmetic statements. The individual
statements are described in the alphabetical listings “a
later in this chapter. See Chapter 1, "Language
Elements," for further discussion of arithmetic
statements and for explanation of the evaluation order
of precedence.

Any arithmetic statement may be either imperative or
conditional. When an arithmetic statement includes an
ON SIZE ERROR specification, the entire statement is
termed conditional, because the size-error condition is
data-dependent.

An example of a conditional arithmetic statement is:

ADD 1 TO RECORD-COUNT

ON SIZE ERROR
MOVE ZERO TO RECORD-COUNT

DISPLAY "LIMIT 99 EXCEEDED".

Note that if a size error occurs (in this case, it is

apparent that RECORD-COUNT has PICTURE 99, and cannot
hold a value of 100), both the MOVE and DISPLAY ~
statements are executed.

The following rules apply to arithmetic statements:

1. All data-names used in arithmetic statements
must be elementary numeric data items that are
defined in the DATA DIVISION of the program,
except that operands of the GIVING option may
be report (numeric edited) items. Index-names
and index-items are not permissible in these
arithmetic statements.

2. Decimal point alignment is supplied
automatically throughout the computations.

3. Intermediate result fields generated for the
evaluation of arithmetic expressions assure
the accuracy of the result field, except where
high-order truncation is necessary.

- 140 -

PROCEDURE DIVISION

6.1.1 SIZE ERROR Option

If, after decimal-point alignment and any low-order
rounding, the value of a calculated result exceeds the
largest value that the receiving field is capable of
holding, a size error condition exists.

The optional SIZE ERROR clause is written immediately
after any arithmetic statement, as an extension of the
Statement. The format of the SIZE ERROR option is:

[; ON SIZE ERROR imperative-statement]

If the SIZE ERROR option is present, and a size error
condition arises, the value of the resultant data-name
is unaltered and the series of imperative statements
specified for the condition is executed.

If the SIZE ERROR option has not been specified and a

size error condition arises, no assumption should be
made about the final result.

An arithmetic statement, if written with SIZE ERROR
option, is not an imperative statement. Rather, it is
a conditional statement and is prohibited in contexts
where only imperative statements are allowed.

6.1.2 ROUNDED Option

If, after decimal-point alignment, the number of places
in the fraction of the result is greater than the
number of places in the fractional part of the data
item that is to be set equal to the calculated result,
truncation occurs unless the ROUNDED option has been
specified.

When the ROUNDED option is specified, the least
Significant digit of the resultant data-name has its
value increased by 1 whenever the most significant
digit of the excess is greater than or equal to 5.

Rounding of a computed negative result is performed by
rounding the absolute value of the computed result and
then making the final result negative.

The following chart illustrates the relationship
between a calculated result and the value stored in an
item that is to receive the calculated result, with and
without rounding.

- 141 -

Microsoft COBOL Reference Manual

Calculated PICTURE Value After Value After

Result Rounding Truncation

A246 S99V9 «12,4 a
8.432 9v9 8.4 8.4
35.6 99V9 35.6 35.6 *)
65.6 S99V 66 65
0055 SV999 .006 .005

When the low-order integer positions in a
resultant-identifier are represented by the character
"p" in its picture, rounding or truncation occurs
relative to the right-most integer position for which

storage is allowed.

6.1.3 GIVING Option

If the GIVING option is written, the value of the

data-name that follows the word GIVING is made equal to
the calculated result of the arithmetic operation. The
data-name that follows GIVING is not used in the
computation and may be a report (numeric edited) item.

- 142 -

PROCEDURE DIVISION

6.2 I-O Error Handling

If an I-O error occurs, the file's FILE STATUS item, if
one exists, is set to the appropriate two-character
code. Otherwise it assumes the value "00".

If an I-O error occurs and is of the type that is
pertinent to an AT END or INVALID KEY clause, then the
imperative statements in such a clause, if present on
the statement that gave rise to the error, are
executed. But, if there is not an appropriate clause
(such clauses may not appear on OPEN or CLOSE, for
example, and are optional for other I-O statements),
then the logic of program flow is as follows:

1. If there is an associated DECLARATIVES error
procedure, it is performed automatically;

user-written logic must determine what action
is taken because of the existence of the

error. Upon return from the error procedure,
normal program flow to the next sentence
(following the I-O statement) is allowed.

2. If no DECLARATIVES error procedure is
applicable but there is an associated FILE
STATUS item, it is presumed that the user may
base actions upon testing the status item, so
normal flow to the next sentence is allowed.

Only if none of the above (INVALID KEY/AT END clause,

DECLARATIVES error procedure, or testable FILE STATUS
item) exists, then the runtime error handler receives
control; the location of the error (source program
line number) is noted, and the run is terminated
"abnormally."

These remarks apply to processing of any file, whether

Organization is SEQUENTIAL, LINE SEQUENTIAL, INDEXED,
Or RELATIVE.

Microsoft COBOL Reference Manual

6.3 Dynamic Debugging Statements

The execution TRACE mode may be set or reset
dynamically. When it is set, procedure-names are
printed on the user's terminal in the order in which
they are executed. “

Execution of the READY TRACE statement sets the trace
mode to cause printing of every section and paragraph
name each time it is entered. The RESET TRACE
statement inhibits such printing. A printed list of
procedure-names in the order of their execution is
invaluable in detection of a program malfunction,
because it aids in detection of the point at which
actual program flow departed from the expected program
flow.

Another debugging feature may be required in order to
reveal critical data values at specifically designated
points in the procedure. The EXHIBIT statement
provides this facility. EXHIBIT produces a printout of
values of a specified literal, or data-items in the
format data-name = value.

The EXHIBIT, READY TRACE, and RESET TRACE statements

are extensions to ANSI 74 Standard COBOL. These
statements are designed to provide a convenient aid to “A
program debugging. For more information, see the
discussions of the individual statements in Section
6.4, "PROCEDURE DIVISION Statements."

Note

It is often desirable to include such statements
on source lines that contain D in column 7. In

this case, the debugging statements are ignored by
the compiler unless the WITH DEBUGGING MODE clause
is included in the SOURCE-COMPUTER paragraph.

MS-COBOL also provides an interactive debug facility
for dynamic program debugging. See the MS-COBOL

Compiler User's Guide for information about this
facility.

- 144 -

PROCEDURE DIVISION

6.4 PROCEDURE DIVISION Statements

The remainder of this chapter discusses the individual
PROCEDURE DIVISION statements. These statements are
arranged alphabetically. For information about how the
statements appear in the general format of the
PROCEDURE DIVISION, see the introduction to this
chapter.

- 145 -

Microsoft COBOL Reference Manual

6.4.1 ACCEPT Statement

Purpose The ACCEPT statement is used by a
processing program to obtain low-volume
input at runtime.

Format Four formats are available:

ACCEPT identifier

DATE
ACCEPT identifier FROM } DAY

TIME
LINE NUMBER

ESCAPE KEY

ZERO-FILL
ACCEPT (position-spec) identifier [WITH SPACE-FILL =

LEFT-JUSTIFY
RIGHT-JUSTIFY
TRAILING-SIGN
PROMPT
UPDATE
LENGTH-CHECK
AUTO-SKIP
BEEP
NO-ECHO

EMPTY-CHECK

ACCEPT screen-name [ON ESCAPE imperative-statement]

Formats 3 and 4 are Microsoft COBOL

extensions to ANSI 74 Standard COBOL.

Remarks The function of each form of the ACCEPT
statement is to acquire data from a source
external to the program and place it in a
specified receiving field or set of
receiving fields. The forms differ
primarily in the data source with which
they are designed to interface. The format
1 ACCEPT obtains date or time information
from the operating system clock. The next
two formats of the ACCEPT statement receive
data keyed in by an operator at the
terminal. For Format 2, this device is
assumed to be a teletype, a glass teletype,
Or a terminal in scrolling mode. For -
Format 3, it is assumed that the input
device is a video terminal and that
scrolling is not desired. The Format 4
ACCEPT receives an entire data entry form
(as defined in the SCREEN SECTION) when it

- 146 -

PROCEDURE DIVISION

has been completed by the terminal
Operator. Note that an ordinary terminal
is suitable as an input device for a format
2, 3, Or 4 ACCEPT, although the effects on
the appearance of the screen will differ.
The effects of the various WITH phrase
options of the Format 3 ACCEPT statement
are summarized in Section 6.4.1.3.

6.4.1.1 Format 1 ACCEPT Statement

Any of several standard values may be obtained at
execution time by use of the Format 1 ACCEPT statement.
The formats of the standard values are:

DATE

a Six-digit value of the form YYMMDD (year, month,
day). Example: July 4, 1976 is 760704

DAY

a five-digit "Julian date" of the form YYNNN where Yy
is the two low-order digits of year and NNN is the
day-in-year number between 1 and 366.

TIME

an eight-digit value of the form HHMMSSFF where HH is
from 00 to 23, MM is from 00 to 59, SS is from 0 to 59,
and FF is from 00 to 99; HH is the hour, MM is the
minutes, SS is the seconds, and FF represents
hundredths of a second.

LINE NUMBER

the ACCEPT...FROM LINE NUMBER statement is provided for
compatibility, but in MS-COBOL, the value of LINE
NUMBER is always zero.

ESCAPE KEY

a two-digit code generated by the key that
terminated the most recently executed Format 3 or
Format 4 ACCEPT statement.

Identifier can be interrogated to determine exactly
which key was typed. Input may be terminated by any of

~ 247 =

Microsoft COBOL Reference Manual

the following keys, which set the ESCAPE KEY value to:

Key Name Value

Backtab 99

(terminates only
Format 3 ACCEPTs)

Escape O1

Field-terminator 00

(of the last field

if Format 4 ACCEPT

is used)

Function key 02-nn

Refer to Appendix A of the Microsoft COBOL Compiler

User's Guide for information on how key codes are

defined for specific terminals. The identifier

specified in the format should be an unsigned numeric

integer whose length agrees with the content of the

system-defined data-item. If not, the standard rules

for a MOVE govern storage of the source value in the

receiving item (identifier).

6.4.1.2 Format 2 ACCEPT Statement

Format 2 of the ACCEPT statement is used to accept a

string of input characters from a scrolling device such

as a teletype or a terminal in scrolling mode. When

the ACCEPT statement is executed, input characters are

read from the terminal until a carriage return is

encountered, then a carriage return/line feed pair is

sent back to the console. The input data string is

considered to consist of all characters keyed prior to

(but not including) the carriage return.

For a Format 2 ACCEPT with an alphanumeric receiving

field, the input data string is transferred to the

receiving field exactly as if it were being MOVEd from

an alphanumeric field of length equal to the number of

characters in the string. (That is, left

justification, space filling, and right truncation

occur by default, and right justification and left

truncation occur if the receiving field is described as

JUSTIFIED RIGHT.) If the receiving field is

alphanumeric-edited, it is treated as an alphanumeric

field of equal length (as if each character in its

PICTURE were "X"), so that no insertion editing occurs.

For a Format 2 ACCEPT with a numeric or numeric-edited

- 148 -

PROCEDURE DIVISION

receiving field, the input data String is subjected to
a validity test which depends on the PICTURE of the
receiving field. (If the receiving field is described
as COMP-0, its PICTURE is treated as "S957" “for
purposes of this discussion.) The digits 0 through 9
are considered valid anywhere in the input data string.

The decimal point character is either a period (.) or a
comma (,), depending on whether the DECIMAL POINT IS
COMMA clause of the CONFIGURATION SECTION is used. In
the following discussions, any reference to the decimal
point character as a period should be interpreted as if
the reference were to a comma if the DECIMAL POINT IS
COMMA clause is active.

The decimal point character is considered valid if:

1. it occurs only once in the input data string,

2. the PICTURE of the receiving field contains a
Fractional digit position; thet is, a5, 3, *,
Or floating insertion character which appears
to the right of either an assumed decimal
point (V) or an actual decimal point (.).

The operational sign characters + and - are considered
valid only as the first or last character of the input
String and only if the PICTURE of the receiving field
contains one of the sign indicators S, +, -, CR, or DB.

All other characters are considered invalid. If the
input data string is invalid, the message "INVALID
NUMERIC INPUT -- PLEASE RETYPE" is sent to the console,
and another input data string is read.

When a valid input data string has been obtained, data
are transferred to the receiving field exactly as if
the instruction being executed were a MOVE to the
receiving field from a hypothetical source field with
the following characteristics:

Ls a PICTURE of the form S9...9V9...9

2. USAGE DISPLAY

3. a total length equal to the number of digits
in the input data string

4. as many digit positions to the right of the
assumed decimal point as there are digits to
the right of the explicit decimal point in the
input data string (zero if there is no decimal
point in the input data string)

- tao =

Microsoft COBOL Reference Manual

5. current contents equal to the string of digits

embedded in the input data string

6. a separate sign with a current negative status

if the input data string contains the

character "-", and a current positive status “A

otherwise

6.4.1.3 Format 3 ACCEPT Statement

Format 3 of the ACCEPT statement is used to accept data

into a field from a nonscrolling video terminal. The

following syntax rules must be observed when the format

3 ACCEPT is used:

1. The identifier must reference a data item

whose length is less than or equal to 1920

characters.

2. The options SPACE-FILL and ZERO-FILL may not

both be specified in the same ACCEPT

statement.

3. The options LEFT-JUSTIFY and RIGHT-JUSTIFY may

not both be specified within the same ACCEPT ~

statement.

4. If the identifier is described as a

numeric-edited item, the UPDATE option must

not be specified.

5. The TRAILING-SIGN option may be specified only

if the identifier is described as an
elementary numeric data-item. If the

identifier is described as unsigned, the

TRAILING-SIGN option is ignored.

6. For alphanumeric or alphanumeric-edited

identifiers, the SPACE-FILL option is assumed

if the ZERO-FILL option is not specified, and

the LEFT-JUSTIFY option is assumed if the

RIGHT-JUSTIFY option is not specified.

7. For numeric or numeric-edited identifiers, the

ZERO-FILL option is assumed if the SPACE-FILL

option is not specified. >

- 150 =

PROCEDURE DIVISION

Data Input Field

The position-spec and receiving field (identifier)
specifications of the Format 3 ACCEPT statement are
used to define the location and characteristics of a
data input field on the screen of the terminal.

Location of the Data Input Field

The position-spec is of the form:

mig integer-1] ; hui wei)

integer-2 integer-4

The opening and closing parentheses and the comma
separating the two major bracketed groups are required.
A space must follow the comma. The position-spec
specifies the position on the terminal screen at which
the data input field will begin. LIN and COL are
MS-COBOL special registers. Each behaves like a
numeric data item with USAGE IS COMP-0, but they may be
referenced by every MS-COBOL program without being
declared in the DATA DIVISION.

If LIN is specified, the data input field will begin on
the screen row whose number is equal to the value of
the LIN special register, incremented (or decremented)
by integer-l if "+ integer-1" (or "- integer-1") is
Specified. If integer-2 is specified, the data input
field will begin on the row whose number is integer-2.
If neither LIN nor integer-2 is specified, the data
input field will begin on the screen row containing the
Current cursor position.

If COL is specified, the data input field will begin in
the screen column whose number is equal to the value of
the COL special register, incremented (or decremented)
by integer-3 if "+ integer-3" (or "- integer-3") is
specified. If integer-4 is specified, the data input
field will begin in the screen column whose number is
integer-4. If neither COL nor integer-4 is specified,
the data input field will begin in the screen column
containing the current cursor position.

Characteristics of the Data Input Field

The characteristics (other than position) of the data
input field on the terminal screen are determined by
the receiving field's PICTURE specification (which is
treated as S9(5) in the case of an item whose USAGE is

~~ 1S. =

Microsoft COBOL Reference Manual

COMP-0). For alphanumeric or alphanumeric-edited

identifier-3, the data input field is simply a string

of data input character positions starting at the

Screen location specified by position-spec. The length

of the data input field in character positions is equal

to the length of the receiving field in memory. “a

For numeric or numeric-edited identifiers, the data

input field may contain any or all of the following:

integer digit positions, fractional digit positions,

sign position, decimal point position. There will be

one digit position for each 9, Z, *, P, Or noninitial

floating insertion symbol (a floating insertion symbol

is a +, -, or $ which is not the last symbol ina

PICTURE character string) in the PICTURE of the

identifier.

Each digit position in the data input field is a

fractional digit position if the corresponding PICTURE

character is to the right of an assumed decimal point

(V) or actual decimal point (.) in the PICTURE of the

identifier. Otherwise it is an integer digit position.

There will be one sign position if the identifier is

described as signed, and no sign position otherwise.

There will be one decimal point position if there is at

least one fractional digit position, and no decimal

point position otherwise. ~

The data input positions which are defined will occupy

successive character positions on the terminal screen,

beginning with the position specified by position-spec.

If TRAILING-SIGN is specified in the ACCEPT statement,

the data input positions will be in the following

Sequence: integer digit positions (if any), decimal

point position (if any), fractional digit positions (if

any), Sign position (if any). If TRAILING-SIGN is not

specified, the data input positions will be in the

following sequence: sign position (if any), integer

digit positions (if any), decimal point position Cat

any), fractional digit positions (if any).

Data Input and Data Transfer

A character entered into the data input field by the

terminal operator may be treated either as an editing

character, a terminator character, or as a data

character. When a terminator key is typed, the ACCEPT

is terminated and the ESCAPE KEY value is set as

described in Section 6.4.1.1. This value can be

interrogated by using a Format 1 ACCEPT statement FROM

ESCAPE KEY.

- 152 -

PROCEDURE DIVISION

The editing characters are line-delete, forward-space,
backspace, and rubout. See Appendix A in the Microsoft
COBOL Compiler User's Guide to determine which keys
perform these functions on your terminal. The action
of the editing characters is described later in this
section; for now, only data characters will be
considered.

Alphanumeric Receiving Field

Consider first the execution of the Format 3 ACCEPT
Statement with an alphanumeric or alphanumeric-edited
receiving field. An alphanumeric-edited receiving
field is treated as an alphanumeric field of the same
length (as if every character in its PICTURE were ge at
Specifically, no insertion editing will occur.

The initial appearance of the data input field depends
on the specifications in the WITH phrase of the ACCEPT
Statement. If UPDATE is specified, the current
contents of the identifier are displayed in the input
field. In this case all data input positions will be
treated as if they were keyed by the terminal operator.
If UPDATE is not specified, but PROMPT is specified, a
period (.) is displayed in each input data position.
If neither UPDATE nor PROMPT is specified, the data
input field is not changed. The cursor is placed in
the first data input position, and characters are
accepted as they are keyed by the operator until a
terminator character (normally carriage return) is
encountered.

If AUTO-SKIP is specified in the ACCEPT statement, the
ACCEPT will also be terminated if the operator keyS a
character into the last (right-most) data input
position.

As each input character is received, it is echoed to
the terminal screen. If all positions of the data
input field are filled, additional input is ignored
until a terminator character or editing character is
encountered. If RIGHT-JUSTIFY was specified in the
ACCEPT statement, the operator-keyed characters are
shifted to the right-most positions of the data input
field when the ACCEPT is terminated. All unkeyed
character positions are filled on termination; the
fill character is either space (if SPACE-FILL is in
effect) or zero (if ZERO-FILL was specified).

The contents of the receiving field will be the same
set of characters which appears in the input field;
however, the justification of Operator-keyed characters

~ boo =

Microsoft COBOL Reference Manual

will be controlled by the JUSTIFIED specification in

the receiving field's data description, not by the

RIGHT- or LEFT-JUSTIFY option of the ACCEPT statement.

Excess positions of the receiving field will be filled

with spaces or zeroes based on the SPACE-FILL or

ZERO-FILL specification in the ACCEPT statement. “a

Numeric Receiving Field

Next, consider the execution of a Format 3 ACCEPT

statement with a numeric or numeric-edited receiving

field. As described above, the data input field on the

terminal screen may contain integer digit positions,

fractional digit positions, or both. First assume that

both are present; the other cases will be treated as

variations.

As with the alphanumeric ACCEPT, the data input field

may be initialized in a way determined by the WITH

options specified in the ACCEPT statement. If UPDATE

is specified (not permitted for a numer ic-edited

receiving field), the integer and fractional parts of

the data input field will be set to the integer and

fractional parts of the decimal representation of the

initial value of the receiving field, with leading and

trailing zeroes included, if necessary, to fill all ~

digit positions. Except for leading zeroes, these

initialization characters are treated as operator-keyed

data.

When a numeric field with UPDATE is accepted, any

digit, sign, or decimal point entered will cause the

entire field to be cleared and set to zero or the value

of the entered digit. Such a numeric field can be

accepted without change by entering a terminator key

instead of a digit, sign, or decimal point.

If UPDATE is not specified, but PROMPT is specified, a

zero will be displayed in each input digit position.

In either of these cases (UPDATE or PROMPT) a decimal

point will be displayed at the decimal point position.

If neither UPDATE nor PROMPT is specified, the input

field on the screen will not be initialized, except for

the sign position. The sign position is always

initialized positive except when UPDATE is specified,

in which case it is initialized according to the sign

of the current contents of the receiving field. On

most systems, a positive sign position is shown as a

space, and a negative sign position is shown as a minus

sign.

- 154 -

PROCEDURE DIVISION

The cursor is initially placed in the right-most
integer digit position, and characters are accepted one
at a time as they are keyed by the operator. A
received character may be treated in one of several
ways: If the incoming character is a digit, previously
keyed digits are shifted one position to the left in
the input field and the new digit is displayed in the
right-most integer digit position. If all integer
digit positions have not been filled, the cursor
remains on the right-most digit position and another
character is accepted. If the entire integer part of
the input field has been filled and AUTO-SKIP was
specified, the integer part is terminated and the
cursor is moved to the left-most fractional digit
position. If the integer part has been filled and
AUTO-SKIP was not specified, the cursor is moved to the
decimal point position, and any further digits keyed
are ignored until the integer part is terminated with a
decimal point.

If the character entered is one of the Sign characters
+ or -, the sign position is changed to a positive or
negative status respectively. Cursor position is not
affected.

If the character entered is a decimal point character,
the integer part is terminated and the cursor is moved
to the left-most fractional digit position.

If the character entered is a field terminator
(normally carriage-return), the ACCEPT is terminated
and the cursor is turned off. Any other character is
ignored.

When the integer part is terminated, the cursor is
placed in the left-most fractional digit position, and
Operator-keyed characters are again accepted. Digits
are simply echoed to the terminal. The sign characters
+ and - are treated exactly as they were while integer
part digits were being entered. The field terminator
character terminates the ACCEPT. (If AUTO-SKIP is in
effect, filling the entire fractional part also
terminates the ACCEPT.) Other characters are ignored.
After all digit positions of the fractional part have
been filled, further digits are also ignored.

If no fractional digit positions are present, the
decimal point is ignored as an input character, and
entry of integer part digits may be terminated only by
terminating the entire ACCEPT. If no integer digit
positions are present, the cursor is initially placed
in the left-most fractional digit position and entry of
the fractional part digits proceeds as described above.

= 155 =

Microsoft COBOL Reference Manual

On termination of the Format 3 ACCEPT of a numeric or

numeric-edited item, data are transferred to the
receiving field. The exact form of the data in the
receiving field after execution of the ACCEPT is as
described in the last paragraph of the discussion of

the Format 2 ACCEPT, where the role of the "input data ‘>

string" mentioned in that paragraph is taken by the
string of characters displayed in the data input field.

After termination, if SPACE-FILL is in effect, leading

zeroes in the integer part of the data input field (not

in the receiving field) will be replaced by spaces, and

the leading operational sign, if present, will be moved

to the right-most space thus created.

Editing Characters

The editing characters (line-delete, forward-space,
backspace, and rubout) may be used to change data which
has already been keyed (or supplied by the MS-COBOL
runtime system as a result of a WITH UPDATE

specification). Entering the line-delete character

will cause the ACCEPT to be restarted and all data
keyed by the operator or initially present in the
receiving field to be lost. The data input field on

the terminal screen will be reinitialized if PROMPT is

in effect. Otherwise, the data input field will be ~
filled with spaces or zeroes according to the
SPACE-FILL or ZERO-FILL specification.

Typing the forward-space or backspace characters will

move the cursor forward or back one data input position
in the case of an alphanumeric or alphanumeric-edited
receiving field, or one digit position in the case of a
numeric or numeric-edited receiving field. In no case,

however, will the forward-space or backspace characters

move the cursor outside the range of positions

including

1. the positions already keyed by the operator

(or filled by MS-COBOL runtime support when
WITH UPDATE is specified), and

2. the right-most data input position which the

cursor has occupied during the execution of
this ACCEPT. If the cursor is moved to a
position of this range other than the
right-most, and a legal data character is “
entered, it is displayed at the current cursor
position and the cursor is moved forward one
data position (alphanumeric or
alphanumeric-edited) or one digit position

(numeric or numeric-edited).

- 156.-

PROCEDURE DIVISION

Typing the rubout character effectively cancels the
last data character entered. The cursor is moved back
One data position (digit position if the receiving
field is numeric or numeric-edited) and a fill
Character (space or zero) is displayed under the cursor
(except when the cursor is to the left of the decimal
point for a numeric ACCEPT. Then no fill character is
displayed and the cursor is not moved, but the digit at
the cursor position is deleted and all digits to the
left of it are shifted one position to the right.)

Note

The rubout character has no effect unless the
cursor is in position to accept a new data
Character; in other words, it has no effect if
backspace character(s) have been used to move the
cursor back over already keyed positions.

WITH Phrase

The following list summarizes the effects of the WITH
phrase specifications for a Format 3 ACCEPT with an
alphanumeric or alphanumeric-edited receiving field:

1. SPACE-FILL causes unkeyed character positions
of the data input field and the receiving
field to be space-filled when the ACCEPT is
terminated.

2. ZERO-FILL causes unkeyed character positions
of the data input field and the receiving
field to be set to ASCII zeroes when the
ACCEPT is terminated.

3. LEFT-JUSTIFY is treated by this compiler as
commentary.

4. RIGHT-JUSTIFY causes operator-keyed characters
to occupy the right-most positions of the data
input field after the ACCEPT is terminated.
Note that the justification of transferred
data in the receiving field is controlled by
the JUSTIFIED declaration or default of the
receiving field's data description, not by the
WITH RIGHT-JUSTIFY phrase.

Laer =

Microsoft COBOL Reference Manual

5. PROMPT causes the data input field on the

screen to be set to all periods (.) before

input characters are accepted.

6. UPDATE causes the data input field to be

initialized with the initial contents of the “A

receiving field and the initial data to be

treated as operator-keyed data.

7. LENGTH-CHECK causes a field terminator

character to be ignored unless every data

input position has been filled.

8. EMPTY-CHECK causes all field terminator

characters to be ignored until at least one

nonterminator character has been keyed.

9. AUTO-SKIP forces the ACCEPT to be terminated

when all data input positions have been
filled. A terminator character explicitly
keyed has its usual effect.

10. BEEP causes an audible alarm to sound when the

ACCEPT is initialized and the system is ready

to accept operator input.

The following list summarizes the effects of the WITH ‘-

phrase specifications for the Format 3 ACCEPT with a

numeric or numeric-edited receiving field:

1. SPACE-FILL causes unkeyed digit positions of

the data input field (not of the receiving

field) to the left of the (possibly implied)

decimal point to be space-filled when the

ACCEPT is terminated and any leading
operational sign to be displayed in the
right-most space thus created.

2. ZERO-FILL causes all unkeyed digit positions

of the data input field to be set to zero when

the ACCEPT is terminated.

3. LEFT-JUSTIFY and RIGHT-JUSTIFY have no effect

for a numeric or numeric-edited receiving

field.

4. TRAILING-SIGN causes the operational sign to

appear as the right-most position of the data -

input field. Ordinarily the sign is the

left-most position of the field.

= 155 =

10.

PROCEDURE DIVISION

PROMPT causes the data input field positions
to be initialized as follows before input
characters are accepted: digit positions to
zero, decimal point position (if any) to the
decimal point character, and sign position (if
any) to space.

UPDATE causes the data input field to be
initialized to the current contents of the
receiving field and this initial data to be
treated like operator-keyed data.

LENGTH-CHECK causes a received decimal point
character to be ignored unless all integer
digit positions have been keyed, and a field
terminator character to be ignored unless all
digit positions have been keyed.

EMPTY-CHECK causes all field terminator
characters to be ignored until at least one
nonterminator character has been keyed.

AUTO-SKIP causes the integer part of the
ACCEPT to be terminated when all integer digit
positions have been keyed, and the entire
ACCEPT to be terminated when all digit
positions have been keyed.

BEEP causes an audible alarm to sound when the
ACCEPT is initialized and the system is ready
to accept operator input.

~ poo =

Microsoft COBOL Reference Manual

The following three examples use the Format 3 ACCEPT

statement.

Example l.

SET-UP PRIOR TO EXECUTING: %

Receiving Field:

05 RS-DISCOUNT PIC X(8).

Initial Contents:

ABCDEFGH

ACCEPT Statement:

ACCEPT (1, 1) RS-DISCOUNT WITH PROMPT.

EXECUTING THE ACCEPT:

At Start of ACCEPT:

Operator Enters N: a

N.. e*eee#e#

Operator Enters ONE:

NONE....

Operator Enters Carriage Return:

NONEDbbb

RESULT:

Final Contents of Receiving Field:

NONEbDbbb

- 160 -

PROCEDURE DIVISION

Example 2.

SET-UP PRIOR TO EXECUTING:

es Receiving Field:

10 VEND-NAME PIC X(12).

Initial Contents:

ACME WIDGETS

ACCEPT Statement:

ACCEPT (1, 1) VEND-NAME

WITH PROMPT UPDATE.

At Start of ACCEPT:

ACME WIDGETS

(If operator enters carriage return here, the receiving
field will not be changed.)

oy EXECUTING THE ACCEPT:

Operator Enters Line-delete:

Operator Enters XYZ:

Se ee

Operator Enters Carriage Return:

XYZbbbbbbbbb

RESULT :

Final Contents of Receiving Field:

XYZbbbbbbbbb

ee

Microsoft COBOL Reference Manual

Example 3.

SET-UP PRIOR TO EXECUTING:

Receiving Field: “a

05 CREDIT PIC S9(4)V99

Initial Contents:

"i

111111

ACCEPT Statement:

ACCEPT (LIN + 4, COL - 3) CREDIT

WITH PROMPT TRAILING-SIGN.

EXECUTING THE ACCEPT:

At Start of ACCEPT:

0000.00b

Operator Enters 8: “

0008.00b

Operator Enters 7:

0087.00b

Operator Enters -:

0087 .00-

Operator Enters 6:

0876.00-

- 162 -

PROCEDURE DIVISION

Operator Enters N:

0876.00-

Operator Enters .:

~ 0876.00-

Operator Enters 5:

0876 .50-

Operator Enters Carriage Return:

0876.50-

RESULT:

Final Contents of Receiving Field:

0876 50

Microsoft COBOL Reference Manual

6.4.1.4 Format 4 ACCEPT Statement

Format 4 of the ACCEPT statement causes a transfer of
information from the operator's terminal to all TO
and/or USING fields specified in the SCREEN SECTION
definition of screen-name or any screen item “a
subordinate to screen-name. Screen items having only
VALUE literals or FROM fields or literals have no
effect on the operation of the ACCEPT statement. If
you wish to have such fields displayed, perform the
DISPLAY screen-name statement before the Format 4

ACCEPT statement.

Each such transfer of data consists of an implicit
Format 3 ACCEPT of a field defined by the appropriate
screen item's PICTURE followed by an implicit MOVE to

the associated TO or USING field.

If an escape key is typed during data input, the entire
ACCEPT is terminated without moving the current field
to the associated TO or USING item, the ESCAPE KEY
value is set to 01, and the ON ESCAPE statement is
executed. If a function key is typed, the appropriate
ESCAPE KEY value is set and the entire ACCEPT is
terminated.

If a field-terminator key (carriage return, tab, etc.,) ‘o
is typed, the ESCAPE KEY value is set to 00 and the

cursor moves to the next input field defined under
screen-name, if one exists. If the current field is

the last field, the entire ACCEPT is terminated.

If the backtab key is typed, the current field is
terminated and the cursor moves to the previous input
field defined under screen-name. If the current field
is the first field, the cursor does not move from that
field.

When a field is terminated by a function key,
field-terminator key, or backtab key, the contents of
the current field are moved to the associated TO or
USING item, except in the case where no data characters
and no editing characters have been entered in that

field. This allows the operator to tab forward or
backward through the input fields without affecting the
contents of the receiving items.

- 164 -

PROCEDURE DIVISION

All the editing and validation features described in

Section 6.4.1.3 for the Format 3 ACCEPT apply to the
Format 4 ACCEPT as well. Several SCREEN SECTION
specifications correspond to the Format 3 ACCEPT
options:

AUTO corresponds to AUTO-SKIP

BELL corresponds to BEEP
JUSTIFIED corresponds to RIGHT-JUSTIFY
SECURE corresponds to NO-ECHO

REQUIRED corresponds to EMPTY-CHECK
FULL corresponds to LENGTH-CHECK

Furthermore, if an input field specifies the USING
Clause or both a FROM and TO clause, the ACCEPT will be
executed with the UPDATE option. Format 4 ACCEPT
statements always use the PROMPT and TRAILING-SIGN
options when executing the individual Format 3 ACCEPTs.

If the screen item's PICTURE specifies a numeric-edited

Or alphanumeric-edited input field, the ACCEPT is
executed as if the field were numeric or alphanumeric,
respectively. When the field is terminated the data is
edited according to the PICTURE and redisplayed in the
specified screen position. In this case, the JUSTIFIED
clause has no effect.

Moves from screen fields to receiving items follow the
standard MS-COBOL rules for MOVE statements, except
that moves from numeric-edited fields are allowed. In
this case, the data is input as if the field were
numeric and the MOVE uses only the sign, decimal point,
and digit characters.

The Format 4 ACCEPT does not cause the display of any

text or prompting label information. That is
accomplished by using the "DISPLAY screen-name"
Statement before accepting the screen-name. See the
discussion of DISPLAY in Section 6.4.7 for more
information on displaying text.

- 165 =

Microsoft COBOL Reference Manual

6.4.2 ADD Statement

Purpose

Format

Remarks

Examples

Adds two or more numeric values and stores

the resulting sum. a)

The general formats are:

ADD fecectigerey) een.) ... TO identifier-m [ROUNDED]
literal-1 literal-2

[; ON SIZE ERROR imperative-statement]

AD identifier-1) , {identifier-2) , | identifier-3] ...
literal-1 literal-2 literal-3

GIVING identifier-m [ROUNDED]

[; ON SIZE ERROR imperative-statement]

Either the TO or the GIVING option must be
specified.

When the TO option is used, the values of

all the identifiers (including
identifier-m) and literals in the “~
statements are added, and the resulting sum

replaces the value of identifier-m. When
the GIVING option is used, at least two
identifiers and/or numeric literals must be

coded between ADD and GIVING. The sum of
the values of these identifiers and
literals (not including identifier-m)
replaces the value of identifier-m.

ADD INTEREST,
DEPOSIT TO BALANCE ROUNDED.

ADD REGULAR-TIME OVERTIME
GIVING GROSS-PAY.

The first statement would result in the sum

of INTEREST, DEPOSIT, and BALANCE being

placed at BALANCE, while the second would
result in the sum of REGULAR-TIME and
OVERTIME earnings being placed in item “A
GROSS-PAY.

- 166 -

PROCEDURE DIVISION

6.4.3 ALTER Statement

Purpose

Format

Remarks

Example

Modifies a simple GO TO statement elsewhere

in the PROCEDURE DIVISION, thus changing
the sequence of execution of program
statements.

The general format is:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

Paragraph (the first operand) must be an
MS-COBOL paragraph that consists of only a
Simple GO TO statement; the ALTER
statement in effect replaces the former
operand of that GO TO by procedure-name.

GATE.

GO TO MF-OPEN.
MF-OPEN.

OPEN INPUT MASTER-FILE.

ALTER GATE TO PROCEED TO NORMAL.
NORMAL.

READ MASTER-FILE,

AT END GO TO EOF-MASTER.

Examination of the above code reveals the
technique of "Shutting a gate," providing a
one-time initializing program step.

- 167 -

Microsoft COBOL Reference Manual

6.4.4 CLOSE Statement

Purpose

Format

Remarks

Examples

Upon completion of the processing of a

file, a CLOSE statement must be executed,
causing the system to make the proper “
disposition of the file. Whenever a file
is closed, or has never been opened, READ,
REWRITE, Or WRITE statements cannot be
executed properly; a runtime error would
occur, aborting the run.

The general format for all file

Organizations is:

CLOSE file-name-1 [WITH LOCK] [, file-name-2 [WITH LOCK] | ...

If the LOCK suffix is used, the file cannot

be reopened during the current job. If
LOCK is not specified immediately after a
file-name, then that file may be reopened
later in the program, if the program logic
dictates the necessity.

An attempt to execute a CLOSE statement for “

a file that is not currently open is a
runtime error, and causes execution to be

discontinued.

CLOSE MASTER-FILE-IN WITH LOCK, WORK-FILE.

CLOSE PRINT-FILE, TAX-RATE-FILE,
JOB-PARAMETERS WITH LOCK.

~- 168 -

PROCEDURE DIVISION

6.4.5 COMPUTF Statement

Purpose

Format

Remarks

Examples

Evaluates an arithmetic expression and then
stores the result in a designated numeric
Or report (numeric edited) item.

The general format is:

COMPUTE identifier-1 [ROUNDED]

=arithmetic-expression [; ON SIZE ERROR imperative-statement]

Note that exponentiation to an integral
power can be accomplished by using the
COMPUTE statement.

COMPUTE GROSS-PAY ROUNDED = BASE-SALARY *
(1 + 1,55)% @eouRgs — 40) / 40).

COMPUTE AMT-CUBED ROUNDED = AMT ** 3,

- 169 -

Microsoft COBOL Reference Manual

6.4.6 DELETE Statement

See Chapters 9, 10, and 11 for discussion of use of the
DELETE statement in SEQUENTIAL, INDEXED, and RELATIVE

files.

= 170 -

PROCEDURE DIVISION

6.4.7 DISPLAY Statement

Purpose Provides the capability of outputting

low-volume data at runtime without the

wy complexities of file definition.

Format The general formats are:

DISPLAY ficectiesys ; eciiaeal _.: [UPON mnemonic-name]
literal-1 , literal-2

idéntifier

DISPLAY { (position-spec) literal } ... LUPON mnemonic-name]

ERASE

DISPLAY screen-name

See the following remarks for information
on individual parts of the format.

Remarks The following rules must be observed:

1. All identifiers must reference data
wy items whose lengths are less than or

equal to 1920 characters.

2. Mnemonic-name must be defined in the

PRINTER IS clause of the SPECIAL-—-NAMES

paragraph of the CONFIGURATION SECTION.

3. Screen-name must be defined in the

SCREEN SECTION of the DATA DIVISION.

The DISPLAY statement will cause output to
be sent to the terminal unless UPON
mnemonic-name is specified, in which case
output will be sent to the printer. Each
display-item (that is, each occurrence of
identifier, literal, or ERASE) will be
processed in turn as described in the

paragraphs below; then, if no
position-spec is coded in the entire
DISPLAY statement, a carriage
return/line-feed pair will be sent to the

oy receiving device.

Position-Spec

For each display-item, if position-spec is

- 171i =

Microsoft COBOL Reference Manual

specified, the cursor is positioned prior
to the transfer of data for this item.

Position-spec is of the form:

(gs [{+} integer-1] | ‘eee ~~) “a

integer-2 integer-4

The opening and closing parentheses and the

comma separating the two major bracketed
groups are required. A space must follow
the comma. The position-spec specifies the
position on the terminal screen at which
the cursor will be placed. LIN and COL are
MS-COBOL special registers. Each behaves
like a numeric data-item with USAGE IS
COMP-0, but they may be referenced by every
MS-COBOL program without being declared in
the DATA DIVISION.

If LIN is specified, the cursor will be

placed on the screen row whose number is
equal to the value of the LIN special
register, incremented (or decremented) by

integer-l if "+ integer-1" (or "-
integer-1") is specified. If integer-2 is ~
specified, the cursor will be placed on the
row whose number is integer-2. If neither
LIN nor integer-2 is specified, the cursor
will be placed on the screen row containing
the current cursor position.

If COL is specified, the cursor will be
placed in the screen column whose number is
equal to the value of the COL special
register, incremented (or decremented) by

integer-3 if "+ integer-3"
(or "— integer-3") is specified. If
integer-4 is specified, the cursor will be
placed in the screen column whose number is
integer-4. If neither COL nor integer-4 is
specified, the cursor will be placed in the
screen column containing the current cursor
position.

Identifier, Literal, and ERASE -

If identifier or literal is specified for a
given display-item, the contents of
identifier or the value of literal are sent

to the receiving device.

- 172 =-

Examples

PROCEDURE DIVISION

Note

Since the data transfer occurs without
conversion or reformatting, it is
recommended that numeric data be moved
to numeric-edited fields for purposes
of DISPLAY.

If ERASE is specified and if position-spec
is coded for this or a previous
display-item, the terminal screen will be
cleared from the current cursor position to
the end of the screen. The initial cursor
position for the next display-item will be
that specified by the position-spec coded
in the ERASE display-item, if present, or
the position in which the cursor was left
by the previous display-item. If ERASE is
specified and no position-spec has been
encountered up to this point in the DISPLAY
statement, no action will be taken.

Screen-name

The "DISPLAY screen-name" statement causes
a transfer of information from screen-name
(or each elementary screen item subordinate
to screen-name) to the terminal screen.
For each such screen item having a VALUE,
FROM, or USING specification, the specified
literal or field is the source of the
displayed data. For a field having only a
TO clause, the effect is as if FROM ALL "."
had been specified. The source data is
MOVEd implicitly to a temporary item
defined by the appropriate screen item's
PICTURE (or by the length of the data in
the case of a VALUE literal). Then an
implied identifier-type DISPLAY of the
constructed temporary is executed as
modified by the positioning and control
Clause coded in the definition of the
appropriate screen item.

DISPLAY QTY-ON-HAND.

DISPLAY INPUT-SCREEN.
DISPLAY (10, 2) USER-NAMES.
DISPLAY (LIN, COL) ERASE.

DISPLAY USER-NAME UPON PRINTER.

Microsoft COBOL Reference Manual

6.4.8 DIVIDE Statement

Purpose

Format

Remarks

Examples

Divides two numeric values and stores the

quotient.

The general formats are:

DIVIDE beeps INTO identifier-2 [ROUNDED]
literal-1

[; ON SIZE ERROR imperative-statement]

DIVIDE eae INTO pate al GIVING identifier-3 [ROUNDED}
literal-1 literal-2

[; ON SIZE ERROR imperative-statement]

DIVIDE oa BY begin GIVING identifier-3 [ROUNDED]
literal-1 literal-2

[; ON SIZE ERROR imperative-statement]

The BY-form signifies that the first
operand (identifier-1 or literal-1l) is the
dividend (numerator), and the second

operand (identifier-2 or literal-2) is the
divisor (denominator). If GIVING is not -)
written in this case, then the first
operand must be an identifier, in which the
quotient is stored.

The INTO-form signifies that the first
operand is the divisor and the second
operand is the dividend. If GIVING is not
written in this case, then the second
operand must be an identifier, in which the
quotient is stored.

Division by zero always causes a size-error

condition.

DIVIDE QTY INTO TOTAL

GIVING UNIT-COST.

DIVIDE WEIGHT BY 10.

- 174 -

PROCEDURE DIVISION

6.4.9 EXHIBIT Statement

Purpose

Format

Remarks

Reveals critical data values at

specifically designated points in a
procedure. This statement is used for
debugging.

The general format is:

identifier
EXHIBIT NAMED {4 [position-spec] { literal ... LURPON mnemonic-name]

ERASE

EXHIBIT produces a printout of values of

the specified literal, or identifiers in
the format identifier = value; i.e., both

the value of the identifier and its name
are displayed.

The EXHIBIT, READY TRACE, and RESET TRACE

statements are extensions to ANSI 74
Standard COBOL. These statements are

designed to provide a convenient aid to
program debugging.

Note

Since the data transfer occurs without
conversion or reformatting, it is
recommended that numeric data be moved
to numeric-edited fields for purposes
of display.

Also, it is often desirable to include

such statements on source lines that
contain D in column 7. In this case,
the statements are ignored by the
compiler unless the WITH DEBUGGING
MODE clause is included in the
SOURCE-COMPUTER paragraph.

= 19> =

Microsoft COBOL Reference Manual

For more information on debugging, see

Section 6.4.21, "READY/RESET TRACE
Statements."

Examples EXHIBIT QTY-ON-HAND. “A

D EXHIBIT DEBUG-VALUES.

In the second example, "D" is in column 7,
and "EXHIBIT" begins in column 12.

- 176 -

PROCEDURE DIVISION

6.4.10 EXIT Statement

Purpose

Format

Remarks

Example

Provides an end-point for a procedure.

The general format is:

EXIT.

EXIT must appear in the source program as a

One-word paragraph preceded by a
paragraph-name. An exit paragraph provides
an end-point to which preceding statements
may transfer control if operator decides to
bypass some part of a section.

P100-EXIT-POINT.

EALIT .

Microsoft COBOL Reference Manual

6.4.11 EXIT PROGRAM Statement

Purpose Marks the logical end of a called program.

Format The general format is: >

EXIT PROGRAM.

Remarks The EXIT PROGRAM statement must appear in a
sentence by itself and must be the only
sentence in the paragraph. It is used
instead of STOP RUN to terminate a
subprogram and to return control to the

calling program.

If an EXIT PROGRAM statement is encountered

in a program that was not called, the
statement is treated as if it were an EXIT

statement (see Section 6.4.10, "EXIT
Statement").

Example EXIT PROGRAM.

- 178 -

PROCEDURE DIVISION

6.4.12 GO TO Statement

Purpose

Format

Remarks

Examples

Transfers control from one portion of a
program to another.

The general formats are:

GO TO [procedure-name-1]

GO TO procedure-name-1 [, procedure-name-2] ... , procedure-name-n

DEPENDING ON identifier

The simple form GO TO procedure-name

changes the path of flow to a designated
paragraph or section. If the GO statement
is without a procedure-name, then that GO
statement must be the only one in a
paragraph, and must be altered prior to its
execution.

The more general form designates N
procedure-names as a choice of N paths to

transfer to, if the value of identifier is
1 to N, respectively. Otherwise, there is
no transfer of control and execution
proceeds in the normal sequence.
Identifier must be a numeric elementary
item and have no positions to the right of
the decimal point.

If a GO (non-DEPENDING) statement appears
in a sequence of imperative statements, it
must be the last statement in that
sequence.

GO TO P200-PROCESS-RECORD.

GO TO DO-WEEKLY, DO-MONTHLY,

DO-YEARLY

DEPENDING ON MODE-OF-PAYMENT.

Microsoft COBOL Reference Manual

6.4.13 IF Statement

Purpose Permits the programmer to specify a series
of procedural statements to be executed in
the event a stated condition is true. “a
Optionally, an alternative series of
statements may be specified for execution
if the condition is false.

Format The general format is:

IF condition; { statement-1 } { - ELSE statement-2
NEXT SENTENCE : ELSE NEXT SENTENCE }

Remarks The ELSE NEXT SENTENCE phrase may be
omitted if it immediately precedes the
terminal period of the sentence.

Examples IF BALANCE = 0
PERFORM NOT-FOUND.

IF T LESS THAN 5
NEXT SENTENCE “a

ELSE
PERFORM T-1-4.

IF ACCOUNT-FIELD = SPACES

OR NAME = SPACES
ADD 1 TO SKIP-COUNT

ELSE
PERFORM PROCESS-—RECORD.

The first series of statements (all three

IF parts) is executed only if the
designated condition is true. The second
series of statements (the two ELSE parts)

is executed only if the designated
condition is false.

The second series (the two ELSE parts) is
terminated by a sentence-ending period
unless it is ELSE NEXT SENTENCE, in which

case more statements may be written before
the period. Aa

Regardless of whether the condition is true
or false, the next sentence is executed
after execution of the appropriate series
of statements, unless a GO TO is contained

- 180 -

PROCEDURE DIVISION

in the imperatives that are executed, or

unless the nominal flow of program steps is
Superseded because of an active PERFORM
statement.

If there is no ELSE part to an IF

statement, then the first series of

statements must be terminated by a
sentence-ending period. Refer to Appendix
C for discussion of nested IF statements.

Conditions

A condition is either a simple condition or
a compound condition. The four simple
conditions are the relational, class,
condition-name, and sign condition tests.
A simple relational condition has the
following structure:

operand-1l relation operand-2

where "operand" is a data-name, literal, or
figurative-constant.

A compound condition may be formed by
connecting two conditions, of any sort, by
the logical operator AND or OR (e.g., A < B
OR C = D). Refer to Appendix A for further
permissible forms involving parentheses,
NOT, or "abbreviation."

The simplest "simple relations" have three
basic forms, expressed by the relational
symbols equal to (=), less than (<), or

greater than (>).

Another form of simple relation that may be
used involves the reserved word NOT,
preceding any of the three relational
Symbols. In summary, the six simple
relations in conditions are:

Relation Meaning

= equal to
< less than
> greater than

NOT = not equal to
NOT < greater than or equal to
NOT > less than or equal to

> ee =

Microsoft COBOL Reference Manual

It is worthwhile to briefly discuss how

relational conditions can be compounded.
The reserved words AND or OR permit the
specification of a series of relational
tests, as follows:

1. Individual relations connected by AND “

specify a compound condition that is
met (true) only if all the individual
relationships are met.

2. Individual relations connected by OR
specify a compound condition that is
met (true) if any one of the individual
relationships is met.

The following is an example of a compound
relational condition containing both AND
and OR connectors (refer to Appendix A for
formal specification of evaluation rules):

IF X = Y AND FLAG = 'Z' OR SWITCH = 0

PERFORM PROCESSING.

In the preceding example, execution will be

as follows, depending on various data
values. ~

Data Value FLAG SWITCH Does Execution Go

x Y to PROCESSING?

10 10 sy z Yes
10 se a 1 No
10 2 se 0 Yes

10 10 be 1 No
6 3 ‘}* 0 Yes
6 6 “7 z No

The reserved words EQUAL TO, LESS THAN, and
GREATER THAN are accepted equivalents of =,

< , and >, respectively. Any form of the
relation may be preceded by the word IS,
optionally.

Before discussing class-test, sign-test,
and condition-name-test conditions, methods

of performing comparisons will be
discussed. “a

- 182 =<

PROCEDURE DIVISION

Numeric Comparisons

The data operands are compared after

alignment of their decimal positions. The
results are as defined mathematically, with
any negative values being less than zero,
which in turn is less than any positive
value. An index-name or index-item may
appear in a comparison. Comparison of any
two numeric operands is permitted
regardless of the formats specified in
their respective USAGE clauses, and
regardless of length.

Character Comparisons

Non-equal-length comparisons are permitted,

with spaces being assumed to extend the
length of the shorter item, if necessary.
Relationships are defined in the ASCII
code; in particular, the letters A-Z are
in an ascending sequence, and digits are
less than letters. Group items are treated
Simply as characters when compared. Refer
to Appendix D for all ASCII character
representations. If one operand is numeric
and the other is not, the numeric operand
must be an integer and have an implicit or
explicit USAGE IS DISPLAY.

Returning to the discussion of simple
conditions, there are three additional
forms of a simple condition, in addition to
the relational form, namely: class test,

condition-name test (88), and sign test.

A class-test condition has the following
syntactical format:

identifier IS [NOT] NUMERIC }
ALPHABETIC

This condition specifies an examination of

the data-item content to determine whether
all characters are proper digit
representations regardless of any
operational sign (when the test is for
NUMERIC), Or only alphabetic or blank space
characters (when the test is for
ALPHABETIC).

~ Ses =

Microsoft COBOL Reference Manual

The NUMERIC test is valid only for a group,

decimal, or character item (not having an
alphabetic PICTURE). The ALPHABETIC test
is valid only for a group or character item
(alphanumeric PICTURE).

Example: “Aa

IF NUM-VALUE IS NOT ALPHABETIC

PERFORM NUMERIC-—ROUTINE.

A sign-test condition has the following
syntactical format:

POSITIVE
arithmetic-expression IS [NOT] NEGATIVE

ZERO

This test is equivalent to comparing an
arithmetic expression to zero in order to
determine the truth of the stated
condition.

Example:

IF RECORD-COUNT NOT ZERO

NEXT SENTENCE -)
ELSE

PERFORM INITIALIZE-ROUTINE.

In a condition-name-test condition, a

conditional variable is tested to determine
whether its value is equal to one of the
values associated with the condition-name.
A condition-name test is expressed by the
following syntactical format:

condition-name

where condition-name is defined by a level

88 DATA DIVISION entry.

Example:

IF END-OF-FILE
PERFORM EOF-ROUTINE.

- 184 -

PROCEDURE DIVISION

6.4.14 INSPECT Statement

Purpose Enables the programmer to examine a

character-string item. Options permit
various combinations of the following
actions:

1. Counting appearances of a specified
character

2. Replacing a specified character with
another

3. Limiting the above actions by requiring
the appearance of other specific
characters

Microsoft COBOL Reference Manual

Format The general formats are:

INSPECT identifier-1 TALLYING

tex } ee} a INITIAL fidentifier-4
identifier-2 FOR LEADING literal-1 AFTER literal-2 se ee

CHARACTERS

INSPECT identifier-1 REPLACING

CHARACTERS BY ewe. ee | INITIAL ‘ie
literal-4 AFTER literal-5

FIRST literal-3 literal-4 AFTE literal-5

ALL
LEADING f identifier-5 } BY { identifier-6 } | BEFORE | INITIAL identifier-7] 28

INSPECT identifier-1 TALLYING

{ ALL { identifier-3 }
identifier-2 FOR LEADING literal-1 { BEFORE } INITIAL { identifier-4

CHARACTERS AFTER literal-2 }

REPLACING

CHARACTERS BY sae aaa { BEFORE } INITIAL Fete ae
literal-4 AFTER literal-5

ALL
LEADING { identifier-5 } BY f identifier-6 { BEFORE pene identifier-7 =
FIRST literal-3 literal-4 AFTER literal-5

- 186 -

Remarks

PROCEDURE DIVISION

In the remarks that follow, operand-n
refers to the braced pair which consists of
identifier-n and its associated literal,
e.g., Operand-5 represents
{identifier-5|literal-3}.

Because identifier-l is to be treated as a

string of characters by INSPECT, it must
not be described by USAGE IS INDEX, COMP-0O
or COMP-3. Identifier-2 must be a numeric
data-item.

The TALLYING clause and REPLACING clause
may not both be omitted; if both are
present, TALLYING clause must be first.

The TALLYING clause causes
Character-by-character comparison, from
left to right, of identifier-l,
incrementing identifier-2 by one each time
a match is found. The matching is done
under the following conditions:

1. When an AFTER INITIAL operand-4
subclause is present, the counting
process begins only after detection of
a character in identifier-l matching
operand-4.

2. If BEFORE INITIAL operand-4 is
specified, the counting process
terminates upon encountering a
character in identifier-l which matches
operand-4. Also going from left to
right, REPLACING clause causes
replacement of characters under
conditions specified by the REPLACING
clause.

3. If BEFORE INITIAL operand-7 is present,
replacement does not continue after
detection of a character in
identifier-l matching operand-7.

4. If AFTER INITIAL operand-7 is present,
replacement does not commence until
detection of a character in
identifier-l matching operand-7.

With bounds on identifier-l thus

determined, TALLYING and REPLACING is done

on characters as specified by the

- 187 -

Microsoft COBOL Reference Manual

following:

1. CHARACTERS implies that every character
in the bounded identifier-l is to be

TALLYed or REPLACEd. ny

2. ALL operand-n means that all characters

in the bounded identifier-1l which match
the operand-n character are to
participate in TALLYING/REPLACING.

3. LEADING operand specifies that only
characters matching operand-n from the
left-most portion of the bounded
identifier-1l which are contiguous (such
as leading zeros) are to participate in
TALLYING or REPLACING.

4. FIRST operand-n specifies that only the

first-encountered character matching
operand-n is to participate in
REPLACING. (This option is unavailable
in TALLYING.)

When both TALLYING and REPLACING clauses

are present, the two clauses behave as if

two INSPECT statements were written, the ~
first containing only a TALLYING clause and
the second containing only a REPLACING
clause.

In developing a TALLYING value, the final

result in identifier-2 is equal to the
tallied count plus the initial value of

identifier-2. In the first example below,
the item COUNTX is assumed to have been set
to zero initially elsewhere in the program.

- 188 -

PROCEDURE DIVISION

Examples INSPECT ITEM TALLYING COUNT X

FOR ALL "L" REPLACING LEADING "A"
BY "“E" AFTER INITIAL "L".

wy Original (ITEM): SALAMI ALABAMA
Result (ITEM): SALEMI ALEBAMA
Final (COUNTX): 1 1

INSPECT WORK-AREA REPLACING ALL DELIMITER

BY TRANSFORMATION

Original (WORK-AREA) : NEW YORK N Y

(length 16)
Original (DELIMITER): (space)
Original (TRANSFORMATION):. (period)
Result (WORK-AREA) : NEW. TORK. Ni Ys és

Note

If any identifier-l or operand-n is
described as signed numeric, it is

treated as if it were unsigned.

- [89 =

Microsoft COBOL Reference Manual

6.4.15 MERGE Statement

The MERGE statement iS available only with
implementations that use the MS-SORT facility. See the
Microsoft SORT Sorting Facility Reference Manual for
discussion Of MERGE. “a

- 190 -

PROCEDURE DIVISION

6.4.16 MOVE Statement

Purpose

Format

Remarks

Moves data from one area of main storage to

another and performs conversions and/or
editing on the data that is moved.

The general format is:

MOVE ven e TO identifier-2[, identifier-3] ...
literal

The data represented by identifier-1l or the

specified literal is moved to the area
designated by identifier-2. Additional
receiving fields may be specified
(identifier-3, etc.). When a group item is
a receiving field, characters are moved
without regard to the level structure of
the group involved and without editing.

Subscripting or indexing associated with
identifier-2 is evaluated immediately
before data is moved to the receiving
field. The same is true for other
receiving fields (identifier-3, etc.), if
any. But for the source field,

subscripting or indexing (associated with
identifier-l) is evaluated only once,

before any data is moved.

To illustrate, consider the statement

MOVE A (B) TO B, C (B),

which is equivalent to

MOVE A (B) TO temp
MOVE temp TO B
MOVE temp TO C (B)

where temp is an intermediate result field

assigned automatically by the compiler.

The following considerations pertain to
moving items:

1. Numeric (external or internal decimal,
binary, numeric literal, or ZERO) or
alphanumeric to numeric or report:

~~ Ta

Microsoft COBOL Reference Manual

The items are aligned by decimal
points, with generation of zeros or
truncation on either end, as
required. If source is
alphanumeric, it is treated as an
unsigned integer and should not be “a
longer than 31 characters.

When the types of the source field

and receiving field differ,
conversion to the type of the
receiving field takes place.
Alphanumeric source items are
treated as unsigned integers with
usage display.

The items may have special editing

performed on them with suppression
of zeros, insertion of a dollar
Sign, etc., and decimal point
alignment, as specified by the
receiving area.

One should not move an item whose

PICTURE declares it to be
alphabetic or alphanumeric edited
to a numeric or report item, nor is ~
it possible to move a numeric item
of any sort to an alphabetic item.
Though numeric integers and numeric
report items can be moved to
alphanumeric items with or without
editing, operational signs are not
moved in this case even if SIGN IS
SEPARATE has been specified.

m LOD =

PROCEDURE DIVISION

Non-numeric source and destinations:

a. The characters are placed in the
receiving area from left to right,
unless JUSTIFIED RIGHT applies.

b. If the receiving field is not

completely filled by the data being
moved, the remaining positions are
filled with spaces.

c. If the source field is longer than
the receiving field, the move is
terminated as soon as the receiving
field is filled.

When overlapping fields are involved,

results are not predictable.

Appendix B shows, in tabular form, all
permissible combinations of source and
receiving field types.

An index-data-item or an index-name

cannot appear as an operand of a MOVE
statement. See Section 6.4.27, "SET
Statement."

~ 193 =

Microsoft COBOL Reference Manual

The following examples show data movement

(a lowercase "b" represents a blank).

Source Field Receiving Field

PICTURE Value PICTURE Before After ‘o

MOVE MOVE

99V99 1234 S99V99 9876- 1234+
99V99 1234 S99V9 987 i232
S9V9 i2= S$ovss9 98765 01200
XXX A2C XXXXX YOX8W A2Cbb
9V99 123 99.99 87.65 OLs23

- 194 -

PROCEDURE DIVISION

6.4.17 MULTIPLY Statement

Purpose

Format

Remarks

Example

Multiplies two numeric data items and

stores the product.

The general formats are:

MULTIPLY { identifier-1 } BY identifier-2 [ROUNDED]
literal-1

[; ON SIZE ERROR imperative-statement]

MULTIPLY eens. BY fidentifier-2) GIVING identifier-3 [ROUNDED]
literal-1 literal-2

[; ON SIZE ERROR imperative-statement]

When the GIVING option is omitted, the
second operand must be an identifier; the
product replaces the value of identifier-2.
For example, a new BALANCE value is
computed by the statement MULTIPLY 1.03 BY
BALANCE. Since this order might seem
somewhat unnatural, it is recommended that
GIVING always be written.

MULTIPLY UNIT-PRICE BY QTY

GIVING TOT-PRICE.

~~ ia =

Microsoft COBOL Reference Manual

6.4.18 OPEN Statement

Purpose

Format

Remarks

Accesses a file. The OPEN statement must

be executed prior to commencing file
processing. “

The general format for all file
Organizations is:

INPUT file-name-1 [, file-name-2] ...
OUTPUT file-name-3 [, file-name-4] ...

OPEN } 1-O file-name-5 [, file-name-6] ...

] EXTEND file-name-7 [, file-name-8] ...

For a SEQUENTIAL INPUT file, opening
initiates reading the file's first records
into memory, so that subsequent READ
statements may be executed without waiting.

For an OUTPUT file, opening makes available
a record area for development of one
record, which will be transmitted to the
assigned output device upon the execution
of a WRITE statement. An existing file ~
which has the same name will be overwritten

by the file created with OPEN OUTPUT.

An OPEN I-O statement is valid only for a

DISK file; it permits use of the REWRITE
statement to modify records which have been
accessed by a READ statement. The WRITE
statement may not be used in I-O mode for
files with SEQUENTIAL organization. The
file must exist on disk at OPEN time; it
cannot be created by OPEN I-0O.

- 196 =

PROCEDURE DIVISION

When the EXTEND phrase is specified, the

OPEN statement positions the file
immediately following the last logical
record of that file. Subsequent WRITE
statements referencing the file will add
records to the end of the file. Thus,
processing proceeds as though the file had

been opened with the OUTPUT phrase and
positioned at its end. EXTEND can be used
only for SEQUENTIAL or LINE SEQUENTIAL

files.

Failure to precede (in terms of time
sequence) file reading or writing by the
execution of an OPEN statement is an
execution-time error which will cause
abnormal termination of a program run.
(See the Microsoft COBOL Compiler User's
Guide for information on error messages.)
Furthermore, a file cannot be opened if it
has been CLOSEd "WITH LOCK".

SEQUENTIAL files opened for INPUT or I-O

access must have been written in the
appropriate format described in the
Microsoft COBOL Compiler User's Guide for
such files.

Example OPEN INPUT INV-MSTR-FILE,
OUTPUT INV-REPORT-FILE.

~ 197 =

Microsoft COBOL Reference Manual

6.4.19 PERFORM Statement

Purpose Permits the execution of a separate body of

program steps. “ny

Format The general formats are:

PERFORM procedure-name-1 {ee } seeded
THRU

PERFORM procedure-name-1 ipa de | procedure-name-2 ae TIMES
THRU integer-1

PERFORM procedure-name-1 eee pyshcue taney UNTIL condition-1
THRU

PERFORM procedure-name-1 || meat provers att
THRU

identifier-3

VARYING Laie } FROM 4 index-name-2
index-name-1 literal-1

BY Po UNTIL condition-1
literal-3 ‘-

{ identifier-5 } identifier-6
AFTER \ index-name-3} FROM 4 index-name-4

literal-3

BY { oie UNTIL condition-2
literal-4

{ identifier-8 } identifier-9
AFTER \ index-name-5$ FROM { index-name-6

literal-5

BY { lod aia UNTIL condition-3
literal-6

- 198 -

PROCEDURE DIVISION

Remarks In the discussion which follows, range is

defined as a paragraph-name, a
section-name, or the construct

procedure-name-1l1 THRU procedure-name-2.
(THRU is synonymous with THROUGH.) If only

we a paragraph-name is specified, the return
is after the paragraph's last statement.
If only a section-name is specified, the
return is after the last statement of the
last paragraph of the section. If a range
is specified, control is returned after the
appropriate last sentence of a paragraph or
section. These return points are valid
only when a PERFORM has been executed to
set them up; in other cases, control will
pass right through.

The designated range may be performed a
fixed number of times, as determined by an
integer or by the value of an integer
data-item. If no TIMES, UNTIL, or VARYING
phrase is given, the range is performed
once. When any PERFORM has finished,

execution proceeds to the next statement
following the PERFORM.

wy The range may instead be performed a
variable number of times, with
{identifier-2|index-name-1} varying from an
initial value of
identifier-3|index-name-2|literal-1} with

increments of {indentifier-4|literal-3}, until
a specified condition is met, at which time
execution proceeds to the next statement
after the PERFORM.

=~ 139: =

Microsoft COBOL Reference Manual

Examples

The condition in a PERFORM using the UNTIL
phrase is evaluated prior to each attempted
execution of the range. Consequently, it
is possible to not PERFORM the range, if
the condition is met at the outset.
Similarly, if the TIMES phrase is used, if

{identifier-1|integer-1} <0, the range is
not performed at all.

At runtime, it is illegal to have

concurrently active PERFORM ranges whose
end points are the same.

PERFORM POOO-MAINLINE

THRU P100-WRITE-REPORT.

PERFORM PO50-INITIALIZE

TBL-LENGTH TIMES.

PERFORM P100-WRITE-REPORT

UNTIL END-OF-FILE.

PERFORM P200-LOOP

VARYING SUB1 FROM 1 BY 1
UNTIL (SUB1 > 10
OR TABLE-VAL (SUB1) = 0).

- 200 -

PROCEDURE DIVISION

6.4.20 READ Statement

The description of the READ statement differs for the
various types of file organization. See Chapters 9,
10, and 11 for discussion of READ statements for
SEQUENTIAL, INDEXED, and RELATIVE files, respectively.

- 201 -

Microsoft COBOL Reference Manual

6.4.21 READY/RESET TRACE Statements

Purpose

Format

Remarks

Examples

Execution of a READY TRACE statement sets

trace mode to cause printing of every
section and paragraph name each time it is “Aa
encountered. The RESET TRACE statement

inhibits such printing.

The general formats for these statements

are:

READY TRACE

RESET TRACE

A printed list of procedure-names in the
order of their execution is invaluable in
detecting a program error, because it helps
find the point at which actual program flow
departed from the expected program flow.

The READY TRACE, RESET TRACE, and EXHIBIT

statements are extensions to ANSI 74

Standard COBOL. ‘

Note

It is often desirable to include such

statements on source lines that
contain a "D" in column 7. In this
case, the statements are ignored by
the compiler unless the WITH DEBUGGING

MODE clause is included in the
SOURCE-COMPUTER paragraph.

READY TRACE.

D RESET TRACE.

In the second example, the "D" is in column

7 and "RESET TRACE" begins in column 12.

= 205 =

PROCEDURE DIVISION

6.4.22 RELEASE Statement

The RELEASE statement is available only with
implementations that have the MS-SORT facility. See
the Microsoft SORT Sorting Facility Reference Manual
for information about this statement.

- 203 -

Microsoft COBOL Reference Manual

6.4.23 RESET TRACE Statement

For a description of the RESET TRACE statement, see
Section 6.4.21, "READY/RESET TRACE Statements."

- 204 -

PROCEDURE DIVISION

6.4.24 RETURN Statement

The RETURN statement is available only with
implementations that have the MS-SORT facility. See
the Microsoft SORT Sorting Facility Reference Manual
for information about this statement.

- 205 -

Microsoft COBOL Reference Manual

6.4.25 REWRITE Statement

The REWRITE statement differs for the various types of
file organizations. See Chapter 9, 10, and 11 for
discussion of the REWRITE statement in SEQUENTIAL,
INDEXED, and RELATIVE files, respectively. ‘>

- 206 -

PROCEDURE DIVISION

6.4.26 SEARCH Statement

The SEARCH statement is used for the indexing method of
table handling. See Chapter 8, "Table Handling by the
Indexing Method," for discussion of this statement.

~ 207 -

Microsoft COBOL Reference Manual

6.4.27 SET Statement

The SET statement is used for the indexing method of
table handling. See Chapter 8, "Table Handling by the
Indexing Method," for discussion of this statement. a)

= 208 =

PROCEDURE DIVISION

6.4.28 SORT Statement

The SORT statement is available only with
implementations that have the MS-SORT facility. See
the Microsoft SORT Sorting Facility Reference Manual
for information about this statement.

Microsoft COBOL Reference Manual

6.4.29 START Statement

The START statement is used only with INDEXED and
RELATIVE files. See Chapters 10 and 11 for discussion
of this statement.

- 210 -

PROCEDURE DIVISION

6.4.30 STOP Statement

Purpose Terminates or delays execution of the
wy object program.

Format The general format is:

STOP { BUN \
literal

Remarks STOP RUN terminates execution of a program,
returning control to the operating system.
If used in a sequence of imperative
statements, it must be the last statement
in that sequence.

The form STOP literal displays the
specified literal on the terminal and
Suspends execution.

Execution of the program is resumed only
after operator intervention. Presumably,
the operator performs a function suggested

ey by the content of the literal prior to
resuming program execution by pressing the
Carriage return key.

Examples CLOSE INV-MSTR-FILE, INV-WARNING-FILE.
STOP RUN.

STOP "CHANGE DISKETTE,

THEN PRESS RETURN".

- 211 -

Microsoft COBOL Reference Manual

6.4.31 STRING Statement

Purpose Allows joining together of multiple sending
data-item values into a single receiving

item. “a

Format The general format is:

STRING oes) , identifier-2 identifier-3
literal-1 , literal-2 .. DELIMITED BY 4 literal-3

SIZE

F ele ae , identifier-5 | ... DELIMITED BY { identifier-6
literal-4 , literal-5 literal-6

SIZE

INTO identifier-7 [WITH POINTER identifier-8]

[; ON OVERFLOW imperative-statement]

Remarks In this format, identifier-7 is the

receiving data-item name, which must be
alphanumeric without editing symbols or the
JUSTIFIED clause; identifier-8 is a
counter and must be an elementary numeric
integer data-item of sufficient size (plus
1) to point to positions within
identifier-7.

If no POINTER phrase exists, the default
value of the logical pointer is one. The
logical pointer value designates the
beginning position of the receiving field
into which data placement begins. During
movement to the receiving field, the
criteria for termination of an individual
source are controlled by the DELIMITED BY

phrase.

DELIMITED BY SIZE

The entire source field is moved (unless

the receiving field becomes full).

=- 212 =

PROCEDURE DIVISION

DELIMITED BY an identifier or literal.

The character string specified by the
identifier or literal is a "key" which, if
found to match a like-numbered succession
of sending characters, terminates the
function for the current sending field (and

causes automatic switching to the next
sending field, if any).

If at any point the logical pointer (which
is automatically incremented by one for
each character stored into identifier-7) is

less than one or greater than the size of
identifier-7, no further data movement
occurs, and the imperative statement given
in the OVERFLOW phrase (if any) is
executed. If there is no OVERFLOW phrase,
control is transferred to the next
executable statement.

There is no automatic space fill into any

position of identifier-7. That is,
unaccessed positions are unchanged upon
completion of the STRING statement.

Upon completion of the STRING statement, if
there was a POINTER phrase, the resultant
value of identifier-8 equals its original
value plus the number of characters moved
during execution of the STRING statement.

et

Microsoft COBOL Reference Manual

Example STRING OLD-NAME DELIMITED BY SIZE

INTO NEW-NAME
WITH POINTER STRING-PTR.

STRING OLD-NAME
DELIMITED BY STR-DELIM “a
INTO NEW-NAME
ON OVERFLOW

PERFORM P500-OVERFLOW.

STRING OLD-NAME-1, OLD-NAME-2

DELIMITED BY SIZE
INTO NEW-NAME.

The following lists show how the values in

the last example are affected by the STRING

statement.

Variable PICTURE SIZE

OLD-NAME-1 PIC X(5) 3
NEW-NAME PIC X(10) 10
OLD-NAME-2 PIC X(5) 5

For these same variables, the contents are

affected as follows: ~

Variable Before String After String

OLD-NAME-1 ABCDE unchanged
NEW-NAME 1234567 ABCDEFGHIJ

OLD-NAME-2 FGHIJ unchanged

- 214 -

PROCEDURE DIVISION

6.4.32 SUBTRACT Statement

Purpose

Format

Remarks

Example

Subtracts one Or more numeric data items

from a specified item and stores the
difference.

The general format is:

SUBTRACT { mati , Identifier-2 | ...-F ROM { identifier-m
literal-1 , literal-2 literal-m

GIVING identifier-n [ROUNDED]

[; ON SIZE ERROR imperative-statement]

The effect of the SUBTRACT statement is to
sum the values of all the operands that
precede FROM and subtract that sum from the
value of the item following FROM.

The result (difference) is stored in

identifier-n, if there is a GIVING option.
Otherwise, the result is stored in

identifier-m.

SUBTRACT TOT-EXP,

TOT-DEDUCTIONS FROM TOT-EARNINGS

GIVING NET-INCOME.

~~ 219 >

Microsoft COBOL Reference Manual

6.4.33 UNSTRING Statement

Purpose

Format

Remarks

Causes data in a Single sending field to be
separated into subfields that are placed
into multiple receiving fields. “A

The general format is:

UNSTRING identifier-1

{ identifier-2
DELIMITED BY [ALL] \ literal-1 OR [ALL] { identifier-3 } es,

literal-2

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6]

[, identifier-7 [, DELIMITER IN identifier-8] [, COUNT IN identifier-9]]..

[WITH POINTER identifier-10] [TALLYING IN identifier-1 1]

{; ON OVERFLOW imperative-statement]

The braced items {identifier-2|literal-1}
and {identifier-3|literal-2} may be
referred to in the following remarks as
operand-i, where "i" refers to the number a
of the identifier being discussed.

Criteria for separation of subfields may be
given in the DELIMITED BY phrase. Each
time a succession of characters matches one
of the non-numeric literals, one-character
figurative constants, or data-item values
named by operand-2, the current collection
of sending characters is terminated and
moved to the next receiving field specified
by the INTO clause. When the ALL phrase is
specified, more than one contiguous
occurrence of operand-2 in identifier-1 is
treated as one occurrence.

When two or more delimiters exist, an ‘'OR'

condition exists. Each delimiter is
compared to the sending field in the order
specified in the UNSTRING statement.

- 216 -

PROCEDURE DIVISION

Identifier-l must be a group or character

string (alphanumeric) item. When a
data-item is employed as an operand, that
operand must also be a group or character
string item.

Receiving fields (identifiers 4,7,...) may

be any of the following types of items:

1. an unedited alphabetic item

2. a character-string (alphanumeric) item

3. a group item

4. an external decimal item (numeric,

usage DISPLAY) whose PICTURE does not
contain any P character

When any examination encounters two
contiguous delimiters, the current
receiving area is either space or zero
filled depending on its type. If there is
a DELIMITED BY phrase in the UNSTRING
statement, then there may be DELIMITER IN

phrases following any receiving item (e.g.,
identifier-4) mentioned in the INTO clause.
In this case, the character(s) that delimit
the data moved into identifier-4 are
themselves stored in identifier-5, which
should be an alphanumeric item.
Furthermore, if a COUNT IN phrase is
present, the number of characters that were
moved into identifier-4 is moved to
identifier-6, which must be an elementary

numeric integer item.

If there is a POINTER phrase, then
identifier-10 must be an integer numeric
item, and its initial value becomes the
initial logical pointer value (otherwise, a

logical pointer value of one is assumed).
The examination of source characters begins

at the position in identifier-l specified
by the logical pointer; upon completion of
the UNSTRING statement, the final logical
pointer value will be copied back into
identifier-10.

«S87 —

Microsoft COBOL Reference Manual

Example

If at any time the value of the logical

pointer is less than one or exceeds the
size of identifier-l, then overflow is said
to occur and control passes over to the
imperative statements given in the ON
OVERFLOW clause, if any.

Overflow also occurs when all receiving
fields have been filled prior to exhausting
the source field.

During the course of source field scanning
(looking for matching delimiter sequences),
a variable length character string is
developed which, when completed by
recognition of a delimiter or by acquiring
as many characters as the size of the
Current receiving field can hold, is then
moved to the current receiving field in the
standard MOVE fashion.

If there is a TALLYING IN phrase,
identifier-1ll must be an integer numeric
item. The number of receiving fields acted
upon, plus the initial value of

identifier-1l1l, will be produced in
identifier-1ll upon completion of the
UNSTRING statement.

Any subscripting or indexing associated
with identifier-l, 10, or 11 is evaluated

only once at the beginning of the UNSTRING
statement. Any subscripting associated
with operand-i or identifier-4 through
identifier-9 is evaluated immediately
before access to the data-item.

UNSTRING FIELD-A DELIMITED BY SPACES
INTO FIELD-B.

- 218 -

PROCEDURE DIVISION

6.4.34 USE Sentence

The USE sentence is found only in the DECLARATIVES
region of the PROCEDURE DIVISION. See Chapter 12,
"Declaratives and the Use Sentence," for discussion of

wy this statement.

- 219 -

Microsoft COBOL Reference Manual

6.4.35 WRITE Statement

The WRITE statement differs for the various types of

file organizations. See Chapters 9, 10, and 11 for
discussion of the WRITE statement in SEQUENTIAL,

INDEXED, and RELATIVE files, respectively. “a

= 220 =

CHAPTER 7

INTER-PROGRAM COMMUNICATION

CALL Statement 223

EXIT PROGRAM Statement 224

CHAIN Statement 224

PROCEDURE DIVISION
Header With CALL and CHAIN 225

- 221 -

Inter-Program Communication

Separately compiled MS-COBOL program modules may be

combined into a single executable program.
Inter-program communication is made possible through
the use of the LINKAGE SECTION of the DATA DIVISION
(which follows the WORKING-STORAGE SECTION) and by the
CHAIN and CALL statements and the USING list appendage
to the PROCEDURE DIVISION header of a subprogram

module.

The LINKAGE SECTION describes data made available in
memory from another program module. Record-description
entries in the LINKAGE SECTION provide data-names by
which data-areas reserved in memory by other programs

may be referenced. Entries in the LINKAGE SECTION do
not reserve memory areas because the data is assumed to
be present elsewhere in memory, in a calling program.

Any record-description entry may be used to describe

items in the LINKAGE SECTION as long as the VALUE
Clause is not specified for other than level 88 items.

7.1 CALL Statement

The CALL statement causes control to be transferred

temporarily from one object program to another within
the same run unit.

The format of the CALL statement is:

CALL literal-1 [USING data-name-1 [, data-name-2] ...]

Literal-l is a subprogram name defined as the
PROGRAM-ID of a separately compiled program, and must
be a non-numeric (quoted) literal. Data names in the
USING list are made available to the called subprogram
by passing addresses to the subprogram; these
addresses are assigned to the LINKAGE SECTION items
declared in the USING list of that subprogram.
Therefore the number and order of data-names specified
in matching CALL and PROCEDURE DIVISION USING lists
must be identical. Information-passing conventions at
the machine language level are described in the
Microsoft COBOL Compiler User's Guide.

Note

Correspondence between caller and callee lists is

by position, not by identical spelling of names.

~ 223 -

Microsoft COBOL Reference Manual

7.2 EXIT PROGRAM Statement

The EXIT PROGRAM statement, appearing in a called

Subprogram, causes control to be returned to the next
executable statement after CALL in the calling program.
This statement must be a paragraph by itself.

7.3 CHAIN Statement

The CHAIN statement causes a specified program to be

loaded into memory and executed.

The CHAIN statement is coded according to the following

format:

CHAIN bee [USING identifier-2 ...]
identifier-1

Literal and identifier-1l must be alphanumeric, and

identifier-1l must contain a terminating space. Each
occurrence of identifier-2 must be defined in the
WORKING-STORAGE or LINKAGE SECTION or in the record

area of a file open at the time the CHAIN statement is
executed.

When the CHAIN statement is executed, the value of

literal or identifier-l, up to but not including the
first space encountered (or the end of the literal), is

interpreted as the name of an executable program file
in the format of the appropriate operating system. The
named program is loaded into memory and executed. All
program and data structures of the CHAINing program are
permanently destroyed except that the USING clause may
be used to transfer parameters to the CHAINed program.
See Section 7.4, "PROCEDURE DIVISION Header With CALL

and CHAIN."

The CHAINed program need not be an MS-COBOL program.
If it is, it must be a main program.

- 224 -

Inter-Program Communication

7.4 PROCEDURE DIVISION Header With CALL and CHAIN

The PROCEDURE DIVISION header of a main program is

coded as:

PROCEDURE DIVISION {vane } data-name-1[, data-name-2] ...

CHAINING

where the PROCEDURE DIVISION header of the main program
uses CHAINING, and the PROCEDURE DIVISION header of the
subprogram uses USING.

The various forms of the PROCEDURE DIVISION header

describe the linkage and parameter initialization
requirements of a program. A main program must be
linked by itself or with any number of subprograms. It
may then be run independently or invoked by the
execution of a CHAIN statement in another program. A
subprogram must be linked with exactly one main program
and, optionally, any number of other subprograms. It
May only be executed by the action of a CALL statement.
For a description of the linking process, see the

Microsoft COBOL Compiler User's Guide.

Warning

A CHAINed or CALLed program should have a CHAINing
list or nonempty USING list if and only if the
invoking CHAIN or CALL statement has a USING list.
Furthermore, the numbers of entries in the lists
should be equal, and positionally corresponding
entries in the two lists should reference data
items of the same size and USAGE. Failure to
conform to these rules will not be diagnosed and
will cause unpredictable results at runtime.

Microsoft COBOL Reference Manual

The values of the data items named in the PROCEDURE

DIVISION header are established at program
initialization time by using the contents of
positionally corresponding data items named in the
invoking CALL or CHAIN statement. In the case of CALL,
the identification is made by passing pointers. “a
Therefore, if the value of a data item named in a
PROCEDURE DIVISION USING clause is changed during
subprogram execution, the corresponding data item in
the CALLing program will reflect the change after
control is returned from the subprogram.

For a description of the formats in which parameters
are passed by the CALL and CHAIN statements, see the
Microsoft COBOL Compiler User's Guide.

~ 220 >

CHAPTER 8

TABLE HANDLING BY THE INDEXING METHOD

Index-Names and Index-Items 229

SET Statement 229

Relative Indexing 230

Format 1 SEARCH Statement ood

Format 2 SEARCH Statement 234

Table Handling by the Indexing Method

This chapter describes the indexing method of table
handling.

8.1 Index-Names and Index-Items

An index-name is declared not by the usual method of
level number, name, and data description clauses, but
implicitly by appearance in the "INDEXED BY index-name"
appendage to an OCCURS clause. An index-name must be
unique.

An index-data-item is an item defined by the USAGE IS
INDEX phrase. An index-data-item must not have a
PICTURE clause. An index-name or index-data-item may
only be referred to by a SET or SEARCH statement, a
CALL statement's USING 1ist or a PROCEDURE DIVISION
header USING list; or used in a relational condition
Or as the variation item in a PERFORM VARYING
statement, or in place of a subscript. In all cases
the process is equivalent to dealing with a binary word
integer subscript. Index-name must be initialized to
some value before use via SET, SEARCH or PERFORM.

8.2 SET Statement

The SET statement permits the manipulation of
index-names, index-items, or binary subscripts for
table handling purposes. There are two formats:

identifier-3
SET eos } [, identifier-2] TO { index-name-3

index-name-1J [, index-name-2] integer-1

SET index-name-4_ [, index-name-5] ... Lara Sie }
DOWN integer-2

Format 1 is equivalent to moving the TO value (e.g.,
integer-2) to multiple receiving fields written
immediately after the verb SET.

Format 2 is equivalent to reduction (DOWN) or increase
(UP) applied to each of the quantities written
immediately after the verb SET; the amount of the
reduction or increase is specified by a name or value
immediately following the word BY.

Microsoft COBOL Reference Manual

In any SET statement, identifiers are restricted to

integer items.

8.3 Relative Indexing

A user reference to an item in a table controlled by an
OCCURS clause is expressed with a proper number of
subscripts (or indexes), separated by commas, and
enclosed in matching parentheses. For example:

TAX-RATE (BRACKET, DEPENDENTS)
ROODE > (1L.,. 2)

where subscripts are ordinary integer decimal

data-names, or integer constants, or binary integer
(COMPUTATIONAL-O or INDEX) items, or index-names.

Subscripts may be qualified, but not subscripted. A
subscript may be signed, but if so, it must be
positive. The lowest acceptable value is 1, pointing
to the first element of a table. The highest
permissible value is the maximum number of occurrences
of the item as specified in its OCCURS clause.

A further capability exists, called relative indexing.
In this case, an index is expressed as

index-name + integer constant

where a space must be on either side of the plus or

minus sign.

For example:

XCODE (I + 3, J - l).

- 230 -

Table Handling by the Indexing Method

8.4 Format 1 SEARCH Statement

A linear search of a table may be done using the SEARCH
statement. The general format is:

[{ita }
SEARCH identifier-1 | VARYING | index-name-1 [; AT END imperative-statement-1]

> WHEN condition-1 { Neh eeeee
NEXT SENTENCE

[: WHEN condition-2 Met aha e
NEXT SENTENCE

Identifier-l is the name of a data-item having an
OCCURS clause that includes an INDEXED-BY list;
identifier-1l must be written without subscripts or
indexes because the nature of the SEARCH statement
causes automatic variation of an index-name associated
with a particular table.

There are four possible VARYING cases:

1. NO VARYING phrase

The first-listed index-name for the table is

varied.

wy 2. VARYING index-name in a different table

The first-listed index-name in the table's
definition is varied, implicitly, and the
index-name listed in the VARYING phrase is
varied in like manner, simultaneously.

3. VARYING index-name defined for table

This specific index-name is the only one

varied.

4. VARYING integer data-item name

Both this data-item and the first-listed

index-name for table are varied,

simultaneously.

Microsoft COBOL Reference Manual

The term "variation" has the following interpretation:

1. The initial value is assumed to have been

established by an earlier statement such as
SET.

2. If the initial value exceeds the maximum

declared in the applicable OCCURS clause, the
SEARCH operation terminates at once; and if

an AT END phrase exists, the associated
imperative statement is executed.

3. If the value of the index is within the range
of valid indexes (1,2,... up to and including
the maximum number of occurrences), then each
WHEN condition is evaluated until one is true
Or all are found to be false. If one is true,
its associated imperative statement is
executed and the SEARCH operation terminates.
If none is true, the index is incremented by
one and the steps in this paragraph are
repeated. Note that incrementation of index

applies to whatever item and/or index is
selected according to the four cases listed
above.

If the table is subordinate to another table, an
index-name must be associated with each dimension of

the entire table via INDEXED BY phrases in all the
OCCURS clauses. Only the index-name of the SEARCH
table is varied (along with another "VARYING"
index-name or data-item). To search an entire two- or
three-dimensional table, a SEARCH must be executed
several times with the other index-names set

appropriately each time, probably with a PERFORM,
VARYING statement.

- 232 -

Table Handling by the Indexing Method

Execute
imperative
statement(s)-1

(may be null)

Index

maximum

Execute
imperative

statement(s)-2

Next

statement

WHEN
Condition-1

Execute
imperative

statement(s)-3

WHEN
Condition-2

Increment

index(es)

Figure 8.1. Logic Diagram
for Format 1 SEARCH Statement

Microsoft COBOL Reference Manual

8.5 Format 2 SEARCH Statement

Format 2 SEARCH statements deal with tables of ordered

data. The general format of such a SEARCH ALL
statement is:

SEARCH ALL identifier-1 [; AT END imperative-statement-1] “a

identifier-3
data-name-1 IS EQUAL TO literal-1

IS = arithmetic-expression-1 >; WHEN
condition-name-1

identifier-4
data-name-2 IS EQUAL TO literal-2

AND IS = arithmetic-expression-2
condition-name-2

{ imperative-statement-2 }
NEXT SENTENCE

Only one WHEN clause is permitted.

The following rules apply to the condition:

1. Only simple relational conditions or
condition-names may be employed, and the
subject must be properly indexed by the first
index-name associated with identifier-l (along ~
with sufficient other indexes if multiple
OCCURS clauses apply). Furthermore, each
subject data-name (or the data-name associated
with a condition-name) in the condition must
be mentioned in the KEY clause of the table.
The KEY clause is an appendage to the OCCURS
clause having the following format:

[; OCCURS integer-1 TIMES

ASCENDING } KEY IS data-name-4 [, data-name-5]... | ...
DESCENDING

[INDEXED BY index-name-1 [, index-name-2] ...]]

where the data-names are the names defined in

this data-description entry (following level
number) or one of the subordinate data-names.
If more than one data-name is given, then all
of them must be the names of entries
subordinate to this group item. “a

- 234 -

Table Handling by the Indexing Method

The KEY phrase indicates that the repeated

data is arranged in ascending or descending
order according to the data-names which are
listed (in any given KEY phrase) in decreasing
order of significance. More than one KEY
phrase may be specified.

2. In a simple relational condition, only the
equality test (using relation = or IS EQUAL
TO) is permitted.

3. Any condition-name variable (level 88 items)
must be defined as having only a single value.

4. The condition may be compounded by use of the

logical connector AND, but not OR.

5. In a simple relational condition, the object
(to the right of the equal sign) may be a
literal or an identifier; the identifier must
not be referenced in the KEY clause of the
table or be indexed by the first index-name
associated with the table. (The term
identifier means data-name, including any
qualifiers and/or subscripts or indexes.)

Warning

Failure to conform to the restrictions described

in the preceding list may yield unpredictable
results. Unpredictable results also occur if the
table data is not ordered in conformance to the
declared KEY clauses, or if the keys referenced in
the WHEN-condition are not sufficient to identify
a unique table element.

- 235 -

Microsoft COBOL Reference Manual

In a Format 2 SEARCH, a nonserial type of search
Operation may take place, relying upon the declared
Ordering of data. The initial setting of the
index-name for table is ignored and its setting is
varied automatically during the searching, always
within the bounds of the maximum number of occurrences.
If the condition (WHEN) cannot be satisfied for any
valid index value, control is passed to
imperative-statement-l, if the AT END clause is
present, or to the next executable sentence in the case
of no AT END clause.

If all the simple conditions in the single WHEN

condition are satisfied, the resultant index value
indicates an occurrence that allows those conditions to
be satisfied, and control passes to
imperative-statement-2. Otherwise the final setting is
not predictable.

- 236 -

CHAPTER 9

SEQUENTIAL FILES

Definition of
Sequential File Organization 239

Syntax Considerations 240

File Status Reporting 241

PROCEDURE DIVISION

Statements for Sequential Files 242

DELETE Statement 243

READ Statement 244

REWRITE Statement 246

WRITE Statement 247

- 237 -

SEQUENTIAL Files

9.1 Definition of Sequential File Organization

Sequential file organization provides the capability of
accessing the records of a file in an established
sequence. Each record in the file except the first has
a unique predecessor, and each record except the last
has a unique successor. The order in which the records
are stored is established by the order in which they
were written when the file was created. This order
does not change, except that records may be added to
the end of the file.

Ina sequential file, records are accessed in the order

in which they were originally written.

There are two organizations of sequential files:

The SEQUENTIAL format consists of a 2-byte record
length followed by the record itself, for as many
records as exist in the file. This is the default
format for files created by an MS-COBOL program.

The LINE SEQUENTIAL organization consists of records
followed by carriage return and linefeed delimiters,
for as many records as exist in the file. This type of
file is often produced by non-COBOL programs, such as
editors. No COMP-0O or COMP-3 information should be
written into a LINE SEQUENTIAL file because these
data-items may contain the same binary codes used for
Carriage return and line feed, and this would
Subsequently cause a problem when the file is read.

Note

If files in LINE SEQUENTIAL format are to be used

as input to MS-COBOL programs, the ORGANIZATION IS
LINE SEQUENTIAL phrase must be specified in the
SELECT clause of the input file. If an attempt is
made to read a LINE SEQUENTIAL file without this
specification, a runtime error will result.

Microsoft COBOL Reference Manual

9.2 Syntax Considerations

Information about file organization is specified in the
ENVIRONMENT DIVISION of a program. The general format
for the FILE-CONTROL paragraph in the ENVIRONMENT
DIVISION is: ‘>

FILE-CONTROL.

SELECT file-name

DISK
ASSIGNTO | PRINTER

AREA]
; RESERVE integer | AREAS

[; ORGANIZATION IS [LINE] SEQUENTIAL J

[; ACCESS MODE IS SEQUENTIAL}

[; FILE STATUS IS data-name-1] .

For sequential organization, the SELECT clause must be
specified first in the FILE-CONTROL paragraph. The
Clauses which follow the SELECT clause may appear in
any order.

The SELECT clause must also specify ORGANIZATION IS “A

SEQUENTIAL or ORGANIZATION IS LINE SEQUENTIAL. The

ORGANIZATION clause is the only place where the
distinction is made between the regular SEQUENTIAL and
the LINE SEQUENTIAL organizations. In all other
places, the description "Sequential" refers to both the
SEQUENTIAL and LINE SEQUENTIAL organizations.

Because sequential organization is the most common type
of file organization, most optional clauses in MS-COBOL
default to sequential organization. For example, the
ORGANIZATION and ACCESS MODE clauses, if not specified,

default to ORGANIZATION IS SEQUENTIAL and ACCESS MODE

IS SEQUENTIAL, respectively. For LINE SEQUENTIAL
files, the ACCESS MODE clause should be specified as
ACCESS MODE IS SEQUENTIAL, or it should be omitted.

The general formats for the clauses used with
sequential files are given in Chapter 4, "ENVIRONMENT
DIVISION."

In the DATA DIVISION of the program, the FILE SECTION “a

header begins the FILE SECTION. It is followed by a
period (.). Following the header, FD (file definition)
entries are included for each file that was described

in the FILE-CONTROL paragraph of the ENVIRONMENT

- 240 -

SEQUENTIAL Files

DIVISION. FD entries specify the size of the logical
and physical records, the value of implementor-—defined
label items, names of the data records which make up

the file, and the number of lines to be included on a
logical printer page. The FD entry is ended by a
period (.).

The general formats for FD entries and for

record-description and data-description entries are
given in Chapter 5, "DATA DIVISION."

9.3 File Status Reporting

If the FILE STATUS clause is specified in the

FILE-CONTROL paragraph, the designated two-character
data-item is set after any OPEN, CLOSE, READ, WRITE, or

REWRITE statement and before any USE procedure is
executed. The value of this data-item indicates to the
program the status of the input-output operation. The
possible settings are shown in the following table.

Table 9.1. SEQUENTIAL File Status Settings

Data Status Data Item RIGHT Character

No Further Structure Duplicate No Record Disk Space
Description Error Key Found Full

Status (0) (1) (2) (3) (4)

Successful
Completion
(O) X

At End(1) 4

Permanent
Error(3) X xX

Special
Cases(Q9) xX

In an OPEN INPUT or OPEN I-O statement, a file status

of "30" means "File Not Found."

If file status "91" should occur in an OPEN EXTEND

statement, it indicates that the end of the file could
not be correctly determined.

- 241 -

Microsoft COBOL Reference Manual

9.4 PROCEDURE DIVISION Statements for Sequential Files

The statements that are used with sequential input and
output are:

DELETE

USE

The general formats for the OPEN and CLOSE statements

are the same for SEQUENTIAL, INDEXED, and RELATIVE

files. These statements are described in Section 6.4,

"PROCEDURE DIVISION Statements." The USE statement
applies only to SEQUENTIAL files, and it is used only
in the DECLARATIVES region of the PROCEDURE DIVISION.

See Chapter 12, "Declaratives and the USE Sentence,"
for discussion of USE.

The remaining statements differ for SEQUENTIAL,
INDEXED, and RELATIVE file organizations. The formats
and descriptions that apply to sequential files are
given in the remainder of this chapter.

- 242 -

SEQUENTIAL Files

9.4.1 DELETE Statement

Purpose

Format

Example

Removes a record from the file. The record

that is deleted is the last one that was
read.

The general format for a sequential file
is:

DELETE file-name RECORD

DELETE INV-REC-FILE RECORD.

- 243 -

Microsoft COBOL Reference Manual

9.4.2 READ Statement

Purpose Makes available the next logical data
record of the designated file from the
assigned device, and updates the value of “a
the FILE STATUS data item, if one was
specified.

Format The general format for a sequential file
is:

READ file-name RECORD [INTO identifier] [; AT END imperative-statement]

Since at some time the end-of-file will be

encountered, the user should include the AT

END clause.

Remarks The reserved word END is followed by any
number of imperative statements, all of
which are executed only if the end-of-file
situation arises. The last statement in
the AT END series must be followed by a
period to indicate the end of the sentence.
If end-of-file occurs but there is no AT ~
END clause on the READ statement, an

applicable DECLARATIVES procedure is
performed. If neither AT END nor
DECLARATIVE exists and no FILE STATUS item

is specified for the file, a runtime I-O
error is processed.

When a data record to be read exists,

successful execution of the READ statement
is immediately followed by execution of the
next sentence.

When more than one level O1 item is
subordinate to a file definition, these
records share the same storage area.
Therefore, the user must be able to

distinguish between the types of records
that are possible, in order to determine
exactly which type is currently available.
This is accomplished with a data
comparison, using an IF statement to test a “A
field which has a unique value for each
type of record.

- 244 -

SEQUENTIAL Files

The INTO option permits the user to specify
that a copy of the data record is to be
placed into a designated data field in
addition to the file's record area. The
data-name must not be defined in the FILE

ey SECTION.

Also, the INTO phrase should not be used

when the file has records of various sizes,

as indicated by their record descriptions.
Any subscripting or indexing of data-name
is evaluated after the data has been read

but before it is moved to data-name.
Afterward, the data is available in both
the file record and data-name.

In the case of a blocked input file (such

as disk files), not every READ statement
performs a physical transmission of data
from an external storage device; instead,
READ may simply obtain the next logical
record from an input buffer.

If the actual record is shorter than the

file record area, the file record area is

padded on the right with spaces.

Example READ INV-MSTR-FILE

INTO WS-MSTR-REC
AT END MOVE "Y" TO END-OF-FILE-SW.

- 245 -

Microsoft COBOL Reference Manual

9.4.3 REWRITE Statement

Purpose

Format

Remarks

Example

Replaces a logical record on a SEQUENTIAL
disk file. 4

The general format for a SEQUENTIAL file
is:

REWRITE record-name [FROM identifier]

Record-name is the name of a logical record

in the FILE SECTION of the DATA DIVISION

and may be qualified. Record-name and
identifier must refer to separate storage
areas.

At the time of execution of this statement,
the file to which record-name belongs must
be open in the I-O mode.

If a FROM part is included in this
statement, the effect is as if MOVE
data-name TO record-name were executed just
prior to the REWRITE. “

Execution of REWRITE replaces the record
that was accessed by the most recent READ
statement; the READ must have been

completed successfully. If the record
which is rewriting the record in the file
is longer than the file's record, only as
many bytes as will fit are actually
rewritten. On the other hand, if the
record which is rewriting the record in the
file is shorter than the file's record,
unpredictable information will be written
after the record, until the beginning of
the next record in the file.

REWRITE PR-REC FROM INV-COUNT.

- 246 -

SEQUENTIAL Files

9.4.4 WRITE Statement

Purpose

Format

Remarks

Releases a logical record for an output or
input-output file.

The general format for a SEQUENTIAL file

is:

WRITE record-name [FROM identifier-1]

ee ee]
{ BEFORE ADVANCING integer LINES
AFTER

PAGE

Ek ia END-OF-PAGE imperative-statement |
EOP

In MS-COBOL, file output is achieved by

execution of the WRITE statement.
Depending on the device assigned, "written"
output may take the form of printed matter
Or magnetic recording on a floppy disk
storage medium. Remember also that you
READ file-name, but you WRITE record-name.

The associated file must be open in the
OUTPUT mode at time of execution of a WRITE
statement.

Record-name must be one of the level Ol
records defined for an output file, and may
be qualified by the file-name.

If the data to be output has been developed
in WORKING-STORAGE or in another area (for
example, in an input file's record area),
the FROM suffix permits the user to
stipulate that the designated data
(data-name-1) is to be copied into the
record-name area and then output from

there. Record-name and data-name-l must
refer to separate storage areas.

Microsoft COBOL Reference Manual

When an attempt is made to write beyond the

externally defined boundaries of a
SEQUENTIAL file, a DECLARATIVES procedure
will be executed (if available) and the
FILE STATUS (if available) will indicate a
boundary violation. If neither is “a
available, a runtime error occurs.

The ADVANCING option is restricted to line
printer output files, and permits the
programmer to control the line spacing on
the paper in the printer.

{Identifier-1| integer } may have values from
0 €6° 120,

Integer Carriage Control Action

0 No spacing

1 Normal single spacing
2 Double spacing
3 Triple spacing

Single spacing (i.e., "after advancing 1 ‘oa
line") is assumed if there is no BEFORE or
AFTER option in the WRITE statement.

Use of the key word AFTER implies that the
Carriage control action precedes printing a
line, whereas use of BEFORE implies that
writing precedes the carriage control
action. If PAGE is specified, the data is

printed BEFORE or AFTER the printer is
repositioned to the next physical page.
However, if a LINAGE clause is associated

with the file, the repositioning is to the
first line that can be written on the next
logical page as specified in the LINAGE
clause.

If the END-OF-PAGE phrase is specified, the
LINAGE clause must be specified in the file
description entry for the associated file.
EOP is equivalent to END-OF-PAGE.

~ 248 -

Example

SEQUENTIAL Files

An end-of-page condition is reached

whenever a WRITE statement with the
END-OF-PAGE phrase causes printing or
spacing within the footing area of a page
body. This occurs when such a WRITE
statement causes the LINAGE-COUNTER to
equal or exceed the value specified by the
FOOTING value, if specified. In this case,
after the WRITE statement is executed, the
imperative statement in the END-OF-PAGE
phrase is executed.

A "page overflow" condition is reached

whenever a WRITE statement cannot be fully

accommodated within the current page body.
This occurs when a WRITE statement would
cause the LINAGE-COUNTER to exceed the
value specified as the size of the page
body in the LINAGE clause. In this case,
the record is printed before or after
(depending on the phrase used) the printer
is repositioned to the first line of the
next logical page. The imperative
statement in the END-OF-PAGE clause, if
specified, is executed after the record is

written and the printer has been
repositioned.

Clearly, if no FOOTING value is specified
in the LINAGE clause, or if the end-of-page
and overflow conditions occur

Simultaneously, then only the overflow
condition is effective.

WRITE REPORT-REC FROM PR-HEADER
AFTER ADVANCING PAGE.

10.1

10.2

10.2.1

1052.2

10.3

ww 10.3.1

10.3.2

£043.35

10.3.4

20605

CHAPTER 10

INDEXED FILES

Definition of

INDEXED File Organization 253

Syntax Considerations 254

RECORD KEY Clause 255

File Status Reporting 255

PROCEDURE DIVISION

Statements for INDEXED Files 257

DELETE Statement 258

READ Statement 259

REWRITE Statement 261

START Statement 262

WRITE Statement 263

INDEXED Files

10.1 Definition of INDEXED File Organization

An INDEXED file organization provides for recording and
accessing records of a "data base" by keeping a
directory (called the "control index") of pointers that
enable direct location of records having particular
unique key values. An INDEXED file must be assigned to
DISK in its defining SELECT sentence.

Each INDEXED file declared in an MS-COBOL program will

generate two disk files: a key file and a data file.
The file specification in the VALUE OF FILE-ID clause
specifies a file containing data only. The file-name
included in the file specification is joined with the
extension .KEY to form the file specification of the
key file.

Key File

The key file contains keys, pointers to keys, and
pointers to data. A key file is divided into 256-byte
units, called "granules." There are five possible
granule types. A type indicator is located in the
first byte of each granule. The granule type
indicators have the following values:

Value Type Indicator

Fs Data Set Control Block
2 Key Set Control Block
r. Node
4 Leaf
5 Deleted granule

The key file will have only one Data Set Control Block

in the first granule, one Key Set Control Block for the
primary file key, and additional Key Set Control Blocks
for alternate keys.

Each Data Set Control Block and Key Set Control Block
contains, in the fourth byte, a "damaged" flag which
notifies you when the last file use was not terminated
properly. The runtime executor sets these flags to
nonzero values when the file is opened for updating and
restores them to zero when the file is closed.

- 292 >

Microsoft COBOL Reference Manual

Data File

The data file consists of data records. Each data

record is preceded by a two-byte field and a one-byte
"reference count" that indicates whether a record has

been deleted. The data file is terminated by a control -)
record with a length field containing a "2", followed

by two bytes of high-values.

A file whose organization is INDEXED can be accessed

either sequentially, dynamically or randomly.

Sequential access provides access to data records in
ascending order of RECORD KEY values.

In the random access mode, the order of access to

records is controlled by the programmer. Each record
desired is accessed by placing the value of its key in
a key data item prior to an access statement.

In the dynamic access mode, the programmer's logic may
change from sequential access to random access, and

vice versa, at will.

10.2 Syntax Considerations a

In the ENVIRONMENT DIVISION, the SELECT entry must

specify ORGANIZATION IS INDEXED. The general format
for the SELECT entry is:

FILE-CONTROL.

SELECT file-name

ASSIGN TO DISK

- RESERVE integer bers
AREAS

; ORGANIZATION IS INDEXED

SEQUENTIAL
; ACCESS MODE IS 4 RANDOM

DYNAMIC

; RECORD KEY IS data-name-1

[; FILE STATUS IS data-name-3] . A

- 254 -

INDEXED Files

ASSIGN, RESERVE, and FILE STATUS clause formats are
identical to those specified in Chapter 4, "ENVIRONMENT
DIVISION."

In the FD entry for an INDEXED file, both LABEL RECORDS

STANDARD and a VALUE OF FILE-ID clause must appear.
The formats of Chapter 5, "DATA DIVISION," apply,

except that only the DISK-related forms are applicable.

10.2.1 RECORD KEY Clause

The general format of the RECORD KEY clause, which is

required, is:

; RECORD KEY IS data-name-1

where data-name-l is an item defined within the record

descriptions of the associated file description, and is
a group item or an elementary alphanumeric item. The
maximum key length is 60 bytes and the key should never
be made to contain all nulls.

If random access mode is specified, the value of

data-name-1l designates the record to be accessed by the
next DELETE, READ, REWRITE or WRITE statement. Each
record must have a unique RECORD KEY value.

10.2.2 File Status Reporting

If a FILE STATUS clause appears in the ENVIRONMENT

DIVISION for an INDEXED organization file, the
designated two-character data-item is set after every

I-O statement. The following table summarizes the
possible settings:

- 255 -

Microsoft COBOL Reference Manual

Table 10.1. INDEXED File Status Settings

Data Status Data Item RIGHT Character

No Further Structure Duplicate No Record Disk Space
Description Error Key Found Full

Status (0) (1) (2) (3) (4)

Successful
Completion
(O) Xx

At End(1) Xx

Invalid

Key(2) x x Xx X

Permanent

Error(3) Xx x

Special
Cases(Q9) Xx

File status "21" arises if ACCESS MODE IS SEQUENTIAL
when WRITES do not occur in ascending sequence for an
INDEXED file, or the key is altered prior to a rewrite.
In an OPEN INPUT or OPEN I-O statement, a File status
of "30" means "File Not Found." File status "91" occurs
On an OPEN INPUT or OPEN I-O statement for a relative
Or indexed file whose structure has been destroyed (for
example, by a system crash during output to the file).
When this status is returned on an OPEN INPUT, the file
is considered to be open, and READS may be executed.
On an OPEN I-O, however, the file is not considered to

be open, and all I-O operations fail.

Note that "Disk Space Full" occurs with INVALID KEY (2)

for INDEXED and RELATIVE file handling, whereas it
occurred with "Permanent Error" (3) for SEQUENTIAL

files.

If an error occurs at execution time and no AT END or

INVALID KEY statements are given, and no appropriate
DECLARATIVES error section is supplied, and no FILE
STATUS is specified, the error will be displayed on the
console and the program will terminate.

- 256 -

INDEXED Files

10.3 PROCEDURE DIVISION Statements for INDEXED Files

The syntax of the SEQUENTIAL file OPEN statement

(Section 6.4.18) also applies to INDEXED organized
files, except that EXTEND is inapplicable.

ww The following table summarizes the available statement
types and their permissibility in terms of ACCESS mode
and OPEN option in effect.

Table 10.2. I-O Permitted With INDEXED Files

OPEN Option in Effect
ACCESS Procedure
MODE IS Statement Input Output fe)

READ X
WRITE X

SEQUENTIAL REWRITE
START X
DELETE

READ X
WRITE X

RANDOM REWRITE
START
DELETE

PKS TO Om OK

READ X
WRITE X

DYNAMIC REWRITE
START X
DELETE x KK OK OX

In the preceding table, an "X" indicates the statement

is permissible. CLOSE is permissible under all
conditions.

The statements described in the remainder of this

chapter differ for SEQUENTIAL, INDEXED, and RELATIVE
files.

Microsoft COBOL Reference Manual

10.3.1 DELETE Statement

Purpose

Format

Remarks

Example

Logically removes a record from the INDEXED
file.

The general format for INDEXED files is:

DELETE file-name RECORD [; INVALID KEY imperative-statement]

For a file in the sequential access mode,

the last input-output statement executed
for file-name would have been a successful
READ statement. The record that was read
is deleted. Consequently, no INVALID KEY
phrase should be specified for
sequential-access mode files.

For a file having random or dynamic access
mode, the record deleted is the one

associated with the RECORD KEY; if there
is no such matching record, the INVALID KEY
condition exists, and control passes to the

imperative statements in the INVALID KEY
clause, or to an applicable DECLARATIVES
error section if no INVALID KEY clause
exists.

DELETE INV-REC RECORD

INVALID KEY DISPLAY "KEY NOT FOUND".

- 258 -

INDEXED Files

10.3.2 READ Statement

Purpose

Format

Remarks

Makes available the next logical data
record of the designated file from the
assigned device, and updates the value of
the FILE STATUS data item, if one was
specified.

The general formats for INDEXED files are:

READ file-name [NEXT] RECORD [INTO identifier]

[; AT END imperative-statement]

READ file-name RECORD [INTO identifier]

[; KEY IS data-name]

[; INVALID KEY imperative-statement]

Format 1 without NEXT must be used for all
files having sequential access mode.
Format 1 with the NEXT option is used for
sequential reads of a dynamic access mode
file. The AT END clause is executed when
the logical end-of-file condition arises.
If this clause is not written in the source
statement, an appropriately assigned
DECLARATIVES error section is given control
at end-of-file time, if available.

Format 2 is used for files in random-access
mode or for files in dynamic-access mode
when records are to be retrieved randomly.

In Format 2, the INVALID KEY clause
specifies action to be taken if the access
key value does not refer to an existing key
in the file. If the clause is not given,
the appropriate DECLARATIVES error section,
if supplied, is given control.

“ 299 =

Microsoft COBOL Reference Manual

The optional KEY IS clause must designate
the record key item declared in the file's
SELECT entry. This clause serves as
documentation only. The user must ensure

that a valid key value is in the designated
key field prior to execution of a ‘>
random-access READ.

The rules for sequential files regarding
the INTO phrase apply here as well.

Examples READ INV-REC-FILE NEXT RECORD

INTO REC-COUNT
AT END PERFORM P300.

READ INV-REC-FILE RECORD INTO REC-COUNT

KEY IS DATE-REC
INVALID KEY DISPLAY "REC NOT FOUND".

- 260 -

INDEXED Files

10.3.3 REWRITE Statement

Purpose

Format

Remarks

Example

Logically replaces an existing record.

The general format for INDEXED files is:

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

For a file in sequential-access mode, the

last READ statement must have been
successful in order for a REWRITE statement
to be valid. If the value of the record
key in record-name (or corresponding part
of data-name, if FROM appears in the
Statement) does not equal the key value of

the immediately previous READ, then the
invalid key condition exists and the
imperative statements are executed, if
present; otherwise an applicable
DECLARATIVES error section is executed, if
available.

For a file in a random or dynamic access
mode, the record to be replaced is
specified by the record key; no previous
READ is necessary. The INVALID KEY
condition exists when the record key's
value does not equal that of any record
stored in the file.

REWRITE PR-REC FROM INV-REC

INVALID KEY PERFORM P300.

= 261 -

Microsoft COBOL Reference Manual

10.3.4 START Statement

Purpose

Format

Remarks

Example

Enables an INDEXED organization file to be
positioned for reading at a specified key
value. This is permitted for files open in
either sequential or dynamic access modes.

The general format for INDEXED files is:

IS EQUAL TO
IS =

START file-name | KEY J ISGREATER THAN \ data-name
is>
IS NOT LESS THAN
ISNOT<

[; INVALID KEY imperative-statement]

Data-name must be the declared record key
and the value to be matched by a record in
the file must be prestored in the
data-name.

When this statement is executed, the file

must be open in the input or I-O mode.

If the KEY phrase is not present, equality

between a record in the file and the record
key value is sought. If key relation
GREATER or NOT LESS is specified, the file
is positioned for next access at the first
record greater than, or greater than or

equal to, the indicated key value.

If no matching record is found, the

imperative statements in the INVALID KEY
clause are executed, or an appropriate
DECLARATIVES error section is executed.

START INV-REC-FILE

KEY IS EQUAL TO QTY-RECEIVED
INVALID KEY DISPLAY "KEY NOT FOUND".

- 262 -

INDEXED Files

10.3.5 WRITE Statement

Purpose

Format

Remarks

Example

Releases a logical record for an output or

input-output file.

The general format for INDEXED files is:

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Just prior to executing the WRITE

Statement, a valid (unique) value must be
in that portion of the record-name (or
data-name-1l if FROM appears in the
statement) which serves as RECORD KEY.

In the event of an improper key value, the

imperative statements are executed if the
INVALID KEY clause appears in the
statement; otherwise an appropriate
DECLARATIVES error section is invoked, if
applicable. The INVALID KEY condition
arises if:

1. for sequential access, key values are
not ascending from one WRITE to the
next WRITE

2. the key value is not unique

3. the allocated disk space is exceeded

WRITE INV-REC FROM PR-REC

INVALID KEY DISPLAY "REC NOT FOUND".

- 263 -

i i ae

ke

hip SR ae

oie a |

11.4

1244.1

Li 4.2

to

11.4.4

11.4.5

CHAPTER 11

RELATIVE FILES

Definition of

RELATIVE File Organization 267

Syntax Considerations 268

RELATIVE KEY Clause 268

File Status Reporting 269

PROCEDURE DIVISION

Statement for RELATIVE Files 270

DELETE Statement Sia

READ Statement nie

REWRITE Statement 274

START Statement ais

WRITE Statement 276

RELATIVE Files

11.1 Definition of RELATIVE File Organization

RELATIVE file organization is restricted to disk files.
Records are differentiated on the basis of a relative
record number, which ranges from 1 to 32,767, or toa
lesser maximum for a smaller file. Unlike the case of
an INDEXED file, where the identifying key field
occupies a part of the data record, relative record
numbers are conceptual and are not embedded in the data
records. Relative file records are fixed length
records whose length is that of the largest record in
the file.

A RELATIVE file may be accessed either sequentially,

dynamically or randomly. In sequential access mode,
records are accessed in the order of. ascending record
numbers.

In random access mode, the sequence of record access is

controlled by the program, by placing a number in a
relative key item. In dynamic access mode, the program
may intermix random and sequential access at will.

- 267 -

Microsoft COBOL Reference Manual

11.2 Syntax Considerations

In the ENVIRONMENT DIVISION, the SELECT entry must

specify ORGANIZATION IS RELATIVE. The general format
for the SELECT clause of a RELATIVE file is: a)

FILE-CONTROL.

SELECT file-name

ASSIGN TO DISK

AREA
; RESERVE integer | AREAS

; ORGANIZATION IS RELATIVE

SEQUENTIAL [, RELATIVE KEY IS data-name-1]
; ACCESS MODE IS

{ RANDOM |
DYNAMIC J , RELATIVE KEY IS data-name-1

[; FILE STATUS IS data-name-2].

ASSIGN, RESERVE, and FILE STATUS clause formats are

identical to those used for SEQUENTIAL or INDEXED
files. |

In the associated FD entry, STANDARD labels must be ~
declared and a VALUE OF FILE-ID clause must be

included.

The first byte of the record area associated with a

RELATIVE file should not be set to binary zero by being
described as part of a COMP-O or COMP-3 item, nor set

to LOW-VALUES by any record description for the file.

11.2.1 RELATIVE KEY Clause

In addition to the usual clauses in the SELECT entry,
the "RELATIVE KEY IS data-name-1" clause is required
for random or dynamic access mode. It is also required
for sequential-access mode, if a START statement exists
for such a file.

Data-name-1l must be described as an unsigned binary
integer item not contained within any record
description of the file itself. Its value must be
positive and nonzero. a)

~- 268 +

RELATIVE Files

11.3 File Status Reporting

If a FILE STATUS clause appears in the ENVIRONMENT
DIVISION for a RELATIVE file, the designated
two-character data-item is set after every I-O
Statement. The following table summarizes the possible
settings:

Table 11.1. RELATIVE File Status Settings

Data Status Data Item RIGHT Character

No Further Structure Duplicate No Record Disk Space
Description Error Key Found Full

Status (1) (2) (3) (4)

Successful
Completion
(OQ) xX

At End(1) X

Invalid
Key(2) X Xx xX xX

Permanent
Error(3) X X

Special
Cases(9) Xx

Note that the settings for RELATIVE files are the same
as those for INDEXED files.

In an OPEN INPUT or OPEN I-O statement, a file status

of "30" means "File Not Found."

File status "91" occurs on a OPEN INPUT or OPEN I-O

statement for a relative or indexed file whose

structure has been destroyed (for example, by a system
Crash during output to the file). When this status is
returned on an OPEN INPUT, the file is considered to be
open, and READS may be executed. On an OPEN I-O,
however, the file is not considered to be open, and all
I-O operations fail.

"Disk Space Full" occurs with INVALID KEY (2) for
RELATIVE and INDEXED file handling, whereas it occurred
with "Permanent Error" (3) for SEQUENTIAL files.

Microsoft COBOL Reference Manual

11.4 PROCEDURE DIVISION Statement for RELATIVE Files

Within the PROCEDURE DIVISION, the verbs OPEN, CLOSE,

READ, WRITE, REWRITE, DELETE, and START are available,

just as for files whose organization is INDEXED. a)

The formats for OPEN and CLOSE are the same as those

described in Chapter 6, “PROCEDURE DIVISION," except
that the EXTEND phrase is applicable to the OPEN
statement for RELATIVE files.

The following table summarizes the available statement
types and their permissibility in terms of ACCESS mode
and OPEN option in effect.

Table 11.2. I-O Permitted With RELATIVE Files

OPEN Option in Effect
ACCESS Procedure
MODE !S Statement Input Output 0

READ X
WRITE X

SEQUENTIAL REWRITE
START X
DELETE

READ X
WRITE X

RANDOM REWRITE
START
DELETE

x KK KK KOK

READ X
WRITE X

DYNAMIC REWRITE
START X
DELETE x XK KK OX

In the preceding table, an "X" indicates the statement

is permissible. CLOSE is permissible under all
conditions.

The other input-output statements are described in the
remainder of this chapter.

- 270 -

RELATIVE Files

11.4.1 DELETE Statement

Purpose

Format

Remarks

Example

Removes a record from the file. The record

that is deleted is the last one that was
read.

The format of the DELETE statement is the

same for a RELATIVE file as it is for an

INDEXED file:

DELETE file-name RECORD [; INVALID KEY imperative-statement]

For a file in a sequential access mode, the

immediately previous action would have been
a successful READ statement; the record
thus previously made available is logically
removed from the file. If the previous
READ was unsuccessful, a runtime error will
terminate execution. Therefore, an INVALID

KEY phrase may not be specified for
sequential-access mode files.

For a file with dynamic or random access

mode declared, the removal action pertains
to whatever record is designated by the
value in the RELATIVE KEY item. If no such
numbered record exists, the INVALID KEY
condition arises.

DELETE INV-REC RECORD

INVALID KEY LISPLAY "KEY NOT FOUND".

- 271 -

Microsoft COBOL Reference Manual

11.4.2 READ Statement

Purpose Makes available the next logical data

record of the designated file from the
assigned device, and updates the value of “a
the FILE STATUS data item, if one was
specified.

Format The general formats for RELATIVE files are:

READ file-name [NEXT] RECORD [INTO identifier]

[; AT END imperative-statement]

READ file-name RECORD [INTO identifier] [; INVALID KEY imperative-statement]

Remarks Format 1 must be used for all files in

sequential access mode. The NEXT phrase
must be present to achieve sequential
access if the file's declared mode of
access is dynamic. The AT END clause, if
given, is executed when the logical
end-of-file condition exists, or, if not
given, the appropriate DECLARATIVES error
section is given control, if available. a)

Format 2 is used to achieve random access

with declared mode of access either random
Or dynamic.

If a RELATIVE KEY is defined (in the file's

SELECT entry), successful execution of a
Format 1 READ statement updates the
contents of the RELATIVE KEY item

(data-name-1l) so as to contain the record

number of the record retrieved.

- 2712 -

RELATIVE Files

For a Format 2 READ, the record that is

retrieved is the one whose relative record

number is prestored in the RELATIVE KEY
item. If no such record exists, however,

the INVALID KEY condition arises, and is

oy handled by

1. the imperative statements given in the
INVALID KEY portion of the READ, or

2. an associated DECLARATIVES region.

The rules for SEQUENTIAL files regarding

the INTO phrase apply here as well.

Examples READ INV-REC-FILE NEXT RECORD

INTO REC-COUNT
AT END PERFORM P300.

READ INV-REC-FILE RECORD INTO REC-COUNT
INVALID KEY DISPLAY "REC NOT FOUND".

Microsoft COBOL Reference Manual

11.4.3 REWRITE Statement

Purpose

Format

Remarks

Example

Replaces a logical record in the file.

The format of the REWRITE statement is the

same for a RELATIVE file as it is for an
INDEXED file:

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

For a file in sequential access mode, the

immediately previous action would have been
a successful READ; the record thus

previously made available is replaced in
the file by executing REWRITE. If the
previous READ was unsuccessful, a runtime
error will terminate execution. Therefore,
no INVALID KEY clause is allowed for
sequential access.

For a file with dynamic or random access
mode declared, the record that is replaced
by executing REWRITE is the one whose
Ordinal number is preset in the RELATIVE
KEY item. If no such item exists, the
INVALID KEY condition arises.

REWRITE PR-REC FROM INV-REC
INVALID KEY PERFORM P300.

- 274 =

RELATIVE Files

11.4.4 START Statement

Purpose

Format

Remarks

Example

Enables a RELATIVE file to be positioned

for reading at a specified key value. This
statement is allowed only for files whose
access mode is defined as sequential or
dynamic.

The format of the START statement is the

same for a RELATIVE file as it is for an
INDEXED file:

IS EQUAL TO
IS =

START file-name | KEY J ISGREATER THAN \ data-name
iS >
IS NOT LESS THAN
IS NOT <

[; INVALID KEY imperative-statement]

Data-name may only be that of the

previously declared RELATIVE KEY item, and
the number of the relative record must be
stored in it before START is executed.

When this statement is executed, the

associated file must be currently open in
INPUT or I-O mode.

If the KEY phrase is not present, equality
between a record in the file and the record
key value is sought. If key relation
GREATER or NOT LESS is specified, the file
is positioned for next access at the first
record greater than, or greater than or
equal to, the indicated key value.

If no such relative record is found, the

imperative statements in the INVALID KEY
clause are executed, or an appropriate

DECLARATIVES error section is executed.

START INV-REC-FILE

KEY IS EQUAL TO QTY-RECEIVED
INVALID KEY DISPLAY "KEY NOT FOUND".

- 273 =

Microsoft COBOL Reference Manual

11.4.5 WRITE Statement

Purpose

Format

Remarks

Example

Releases a logical record for an output or
input-output file.

The format of the WRITE statement is the

same for a RELATIVE file as it is for an
INDEXED file:

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

If access mode is sequential, then
completion of a WRITE statement causes the
relative record number of the record just
output to be placed in the RELATIVE KEY
item.

If access mode is random or dynamic, then
the user must preset the value of the
RELATIVE KEY item in order to assign the
record an ordinal (relative) number. The
INVALID KEY condition arises if there
already exists a record having the
specified ordinal number, or if the disk

Space is exceeded.

WRITE INV-REC FROM PR-REC

INVALID KEY DISPLAY "REC NOT FOUND".

- 276 -

CHAPTER 12

DECLARATIVES AND THE USE SENTENCE

The DECLARATIVES region provides a method of including
procedures that are executed not as part of the
sequential coding written by the programmer, but rather
when a condition that cannot normally be tested by the
programmer occurs.

Although the system automatically handles checking and

creation of standard labels and executes error recovery
routines in the case of input-output errors, additional
procedures may be specified by the COBOL programmer.

Since these procedures are executed only at the time an

error in reading or writing occurs, they cannot appear
in the regular sequence of procedural statements. They
must be written at the beginning of the PROCEDURE
DIVISION in a subdivision called DECLARATIVES. Related
procedures are preceded by a USE sentence that
specifies their function. A declarative section ends
with the occurrence of another section-name with a USE
sentence or with the key words END DECLARATIVES.

The key words DECLARATIVES and END DECLARATIVES must

each begin in Area A and be followed by a period (.).

~ 277 -

Microsoft COBOL Reference Manual

The general format is:

[DECLARATIVES.

{section-name SECTION [segment-number]. declarative-sentence

[paragraph-name. [sentence] ...] ...} ... ‘>

END DECLARATIVES.]J

The USE sentence defines the applicability of the

associated section of coding.

A USE sentence, when present, must immediately follow a

section header in the DECLARATIVES region of the
PROCEDURE DIVISION and must be followed by a period
followed by a space. The remainder of the section must
consist of zero, one, or more procedural paragraphs
that define the procedures to be used. The USE
sentence itself is never executed; rather, it defines
the conditions for the execution of the USE procedure.
The general format of the USE sentence is:

file-name-1 [, file-name-2] ...
INPUT

USE AFTER STANDARD { EXCEPTION } PROCEDURE ON 4 OUTPUT
ERROR 1-O

XTEND

The words EXCEPTION and ERROR may be used

interchangeably. The associated DECLARATIVES region is
executed (by the PERFORM mechanism) after the standard
I-O recovery procedures for the files designated, or
after the INVALID KEY or AT END condition arises on a
statement lacking the INVALID KEY or AT END clause. A
given filename may not be associated with more than one
DECLARATIVES region.

Within a DECLARATIVES region there must be no reference
to any nondeclarative procedure. Conversely, in the
nondeclarative portion there must be no reference to
procedure-names that appear in the DECLARATIVES region,
except that PERFORM statements may refer to a USE
statement and its procedures; but in a range

specification (see Section 6.4.19 "PERFORM Statement")
if one procedure-name is in a DECLARATIVES region, then
the other must be in the same DECLARATIVES region.

An exit from a DECLARATIVES region is inserted by the ~
compiler following the last statement in the section.
All logical program paths within the section must lead
to the exit point.

- 278 -

CHAPTER 13

SEGMENTATION

The program segmentation facility is provided to enable
the execution of Microsoft COBOL programs that are
larger than physical memory. When segmentation is used
(that is, when any section header in the program
contains a segment number), the entire PROCEDURE
DIVISION must be written in sections. Each section is
assigned a segment number by a section header of the
form:

{section-name SECTION [segment-number].

Segment-number must be an integer with a value in the
range from 0 through 99. If the segment-number is
omitted, it is assumed to be 0. DECLARATIVES regions
must have segment-numbers less than 50. All sections
which have the same segment number constitute a single
program segment and must occur together in the source
program. Furthermore, all segments with numbers less
than 50 must occur together at the beginning of the
PROCEDURE DIVISION.

Segments with numbers 0 through 49 are called fixed

segments and are always resident in memory during
execution.

Segments with numbers greater than 49 are called
independent segments. Each independent segment is
treated as a program overlay. An independent segment
is in its initial state when control is passed to it
for the first time during the execution of a program,
and also when control is passed to that section
(implicitly or explicitly) from another segment with a
different segment number. Specifically, an independent
segment is in its initial state when it is reached by
"falling through" the end of a fixed or different
independent segment.

Microsoft COBOL Reference Manual

Segmentation causes the following restrictions on the

use of the ALTER and PERFORM statements:

1 A GO TO statement in an independent segment
must not be referred to by an ALTER statement
in any other segment.

A PERFORM statement in a fixed segment may
have within its range only

a. sections and/or paragraphs wholly
contained within fixed segments, or

b. sections and/or paragraphs wholly

contained in a single independent segment

A PERFORM statement in an independent segment
may have within its range only

a. sections and/or paragraphs wholly
contained within fixed segments, or

b. sections and/or paragraphs wholly
contained within the same independent
segment as the PERFORM statement

- 280 -

oe So Oe OR oe

APPENDICES

Advanced Forms of Conditions 283

Table of Permissible MOVE Operands 289

Nested IF Statements 291

ASCII Character Set for ANSI 74 COBOL 295

Reserved Words 297

APPENDIX A

ADVANCED FORMS OF CONDITIONS

Evaluation Rules for Compound Conditions

Parenthesized Conditions 286

Abbreviated Conditions 286

NOT, the Logical Negation Operator 287

- £283 -

285

Advanced Forms of Conditions

A.1 Evaluation Rules for Compound Conditions

The following list presents rules for compound
conditions:

1. Evaluation of individual simple conditions
(relation, class, condition-name, and sign
test) is done first.

2. AND-connected simple conditions are evaluated

next aS a Single result.

3. OR and its adjacent conditions (or previously

evaluated results) are then evaluated.

Examples:

1. AS BOR C = DD ORS Bore

The evaluation is equivalent to (A<B) OR (C=D)
OR (E<F) and is true if any of the three
individual parenthesized simple conditions is
true.

2. WEEKLY AND HOURS NOT = 0

The evaluation is equivalent, after expanding
level 88 condition-name WEEKLY, to:

(PAY-CODE = 'W') AND (HOURS NOT = 0)

and is true only if both the simple conditions
are true.

3. A = 1 AND B = 2 AND G = -3

OR P NOT EQUAL TO "SPAIN"

is evaluated as:

[(A = 1) AND (B = 2) AND (G = -3)]

OR (P NOT = "SPAIN")

- 295 -

Microsoft COBOL Reference Manual

If P = "SPAIN", the compound condition can
only be true if all three of the following are
true:

(¢.1) A. 1
(fo,2); “8.3 2

(c.3) Ge -3

However, if P is not equal to "SPAIN", the

compound condition is true regardless of the
values of A, B and G.

A.2 Parenthesized Conditions

Parentheses may be written within a compound condition
Or parts thereof in order to take precedence in the
evaluation order.

Example:

IF Az= B AND (A = 5 OR A = 1)
PERFORM PROCEDURE-44.

In this case, PROCEDURE-44 is executed if A = 5 OR
A = 1 while at the same time A = B. In this manner,
compound conditions may be formed containing other
compound conditions, not just simple conditions, with
the use of parentheses.

A.3 Abbreviated Conditions

For the sake of brevity, the user may omit the
"subject™ when it is common to several successive
relational tests. For example, the condition A = 5 OR
A = 1 may be written A = 5 OR = 1. This may also be
written A = 5 OR 1, where both subject and relation
being implied are the same.

Another example:

IF A= B OR < C OR Y

is a shortened form of

IF Az B OR A<CORA< Y

- 286 -

Advanced Forms of Conditions

The interpretation applied to the use of the word NOT
in an abbreviated condition is:

1. If the item immediately following NOT is a
relational operator, then the NOT participates
as part of the relational operator;

2. Otherwise, the beginning of a new, completely
separate condition must follow NOT, not to be
considered part of the abbreviated condition.

Warning

Abbreviations in which the subject and relation
are implied are permissible only in relation
tests; the subject of a sign-test or class-test
cannot be omitted.

A.4 NOT, the Logical Negation Operator

In addition to its use as a part of a relation (e.g.,
IF A IS NOT = B), NOT may precede a condition. For
example, the condition NOT (A = B OR C) is true when (A
= BORA=C) is false. The word NOT may precede a
level 88 condition name, also.

APPENDIX B

TABLE OF PERMISSIBLE MOVE OPERANDS

Table B.1. Permissible MOVE Operands

Receiving Operand In MOVE Statement

Source Numeric Numeric Numeric Alphanumeric
Operand Integer Non-integer Edited Edited Alphanumeric Group

Numeric

Integer OK OK OK OK(A) OK(A) OK(B)

Numeric
Non-integer OK OK OK OK(B)

Numeric

ey Edited OK OK OK(B)

Alphanumeric

Edited OK OK OK(B)

Alphanumeric OK(C) OK(C) OK(C) OK OK OK(B)

Group OK(B) OK(B) OK(B) OK(B) OK(B) OK(B)

The characters (A), (B), and (C) in the preceding table
indicate:

(A) Source sign, if any, is ignored.
(B) If the source operand or the receiving

operand is a group item, the move is
considered to be a group move.

(C) Source is treated as an unsigned integer;
source length may not exceed 31l.

Note

ow No distinction is made in the compiler between
alphabetic and alphanumeric. Therefore, numeric
items should not be moved to alphabetic items, and
vice versa.

APPENDIX C

NESTED IF STATEMENTS

A "nested IF" exists when the conjunction IF appears
more than once in a single sentence.

Example:

Lf ax = YF

IF A=B

MOVE "*" TO SWITCH
ELSE

MOVE "A" TO SWITCH
ELSE

wy MOVE SPACE TO SWITCH.

The flow of the preceding example may be represented by
a tree structure. Such a structure is illustrated by
the figure on the following page.

Microsoft COBOL Reference Manual

F T

‘ 1

A =? Switch > ———— Switch

Figure C.l. Tree Structure of Nested IF Statements

Another useful way of viewing nested IF structures is

based on numbering IF and ELSE verbs to show their
priorities.

IF1l X = Y

true-actionl:

IF2 A = B

true-action2:
MOVE "*" TO SWITCH

ELSE2

false-action2:
MOVE "A" TO SWITCH

ELSE1l

false-actionl:
MOVE SPACE TO SWITCH.

The preceding illustration shows that IF2 is wholly
nested within the true-action side of IFl.

- 292 =

Nested IF Statements

The number of ELSEs in a sentence need not be the same

as the number of IFs; there may be fewer ELSE
branches.

oy Examples:

IF M= 1

IF K = 0
GO TO M1-KO

ELSE
GO TO M1-KNOTO.

IF AMOUNT IS NUMERIC
IF AMOUNT IS ZERO

GO TO CLOSE-OUT.

In the latter case, IF2 could equally well have been

written as AND.

APPENDIX D

ASCII CHARACTER SET FOR ANSI 74 COBOL

Character Octal Value Character Octal Value

A 101 0 60

B 102 1 61

cC 103 y 62
D 104 3 63

E 105 4 64
F 106 5 65
G 107 6 66
H EiL0 7 67

wy I 543 8 70
J 232 9 we

K dig He SPACE 40
L 114 ss 42
M Lo $ 44

N 116 * non-ANSI 47
O ce oy (50
Pp 120) 51

Q 121 * 52
R 122 + S3
S 123 F 54

yh 124 - 55
U 125 i 56
V 126 rs 57

WwW iz? H 2
»4 130 < 74
Y pees = be

Z 132 > 76

APPENDIX E

RESERVED WORDS

A plus sign (+) before a reserved word indicates
additional words required by Microsoft COBOL for
interactive screens, debug extensions, and packed

decimal format.

ACCEPT CHARACTER (S)

ACCESS CLOCK-UNITS
ADD CLOSE
ADVANCING COBOL

AFTER CODE
ALL CODE-SET

ALPHABETIC +COL

ALSO COLLATING
ALTER COLUMN
ALTERNATE COMMA
AND COMMUNICATION
ARE COMP
AREA (S) COMPUTATIONAL
ASCENDING +COMPUTATIONAL-—0O

+ASCII +COMP-0
ASSIGN +COMPUTATIONAL-3

AT +COMP-3
AUTHOR COMPUTE

+AUTO-SKIP CONFIGURATION

CONTAINS
+BEEP CONTROL (S)
BEFORE Copy

BLANK CORR (ESPONDING)
BLOCK COUNT
BOTTOM CURRENCY
BY

DATA
CALL DATE
CANCEL DATE-COMPILED
CD DATE-WRITTEN
cr DAY
CH DEBUGGING

- 297 -

DEBUG-CONTENTS

DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME

DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3

DECIMAL-POINT
DECLARATIVES
DELETE

DELIMITED
DELIMITER
DEPENDING

DESCENDING
DESTINATION
DE (TAIL)

DISABLE
+DISK
DISPLAY

DIVIDE
DIVISION
DOWN

DUPLICATES
DYNAMIC

EGI
ELSE
EMI
ENABLE
END
END-OF-PAGE
ENTER
ENVIRONMENT
EOP
EQUAL

+ERASE

ERROR

ESI
EVERY
EXCEPTION

+EXHIBIT
EXIT
EXTEND

FD
FILE
FILE CONTROL

+FILE-ID
FILLER
FINAL
FIRST
FOOTING

Microsoft COBOL Reference Manual

FOR

FROM
GENERATE
GIVING

GO
GREATER
GROUP

HEADING
HIGH-VALUE (S)

IDENTIFICATION
IF

IN
INDEX
INDEXED

INITIAL
INITIATE
INPUT

INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS
Bf
I-O-CONT ROL

JUST (IFIED)

KEY

LABEL
LAST
LEADING
LEFT

+LEFT-JUSTIFY

i
LENGTH

LENGTH-CHECK
LESS

LIMIT (S)
+LIN
LINAGE
LINAGE-COUNTER
LINE (S)
LINE-COUNTER
LINKAGE
LOCK
LOW-VALUE (S)

MEMORY
MERGE

298 =

MESSAGE

MODE
MODULES
MOVE
MULTIPLE
MULTIPLY

NUMERIC

OBJECT-COMPUTER

OCCURS
OF
OFF
OMITTED

OPTIONAL
OR
ORGANI ZATION

OUTPUT
OVERFLOW

PAGE
PAGE-COUNTER
PERFORM

PIC (TURE)

PLUS
POINTER
POSITION
POSITIVE

+PRINTER
PRINTING
PROCEDURE (S)

PROCEED
PROGRAM

PROGRAM-ID
+PROMPT

QUEUE

QUOTE (S)
RANDOM
RD
READ

+READY

RECEIVE
RECORD (S)
REDEFINES
REEL
REFERENCES
RELATIVE
RELEASE

REMAINDER

REMOVAL
RENAMES

REPLACING
REPORT (S)
REPORTING

RERUN
RESERVE
RESET
RETURN
REVERSED
REWIND
REWRITE
RF

RH
RIGHT

+RIGHT-JUSTIFY

ROUND

SEARCH
SECTION
SECURITY
SEGMENT
SEGMENT-LIMIT

SELECT

SEND
SENTENCE
SEPARATE

SEQUENCE

Reserved Words

SEQUENTIAL
SET
SIGN
SIZE
SORT
SORT-MERGE
SOURCE

SOURCE-COMPUTER
SPACE (S)

+SPACE-FILL

SPECIAL—NAMES
STANDARD
STANDARD-1
START
STATUS
STOP
STRING
SUB-QUEUE-1,2,3
SUBTRACT
SUM
SUPPRESS
SYMBOLIC

SYNC (HRONI ZED)

TABLE

TALLYING
TAPE
TERMINAL
TERMINATE
TEXT
THAN
THROUGH
THRU

Microsoft COBOL Reference Manual

TRAILING
+TRAILING-SIGN
TYPE
UNIT
UNSTRING
UNTIL
UP

+UPDATE

UPON
USAGE

USE
USING

VALUE (S)
VARYING

WHEN
WITH
WORDS

WORKING-STORAGE
WRITE

ZERO ((E) S)
+ZERO-FILL

ae aT

- 300 =

APPENDIX F

PERFORM WITH VARYING AND AFTER CLAUSES

The general format for the PERFORM statement with

VARYING and AFTER clauses is:

PERFORM procedure-name- 1 | ies i aaa
THRU

identifier-3

VARYING { identifier-2 } FROM 2 index-name-2
index-name-1 literal-1

BY ees UNTIL condition-1
literal-3

{ identifier-5 } identifier-6
AFTER \ index-name-3} FROM index-name-4

literal-3

BY { uaa UNTIL condition-2
literal-4

identifier-8 | identifier-9
AFTER \ index-name-5) FROM 4 index-name-6

literal-5

BY { vesdiilgge ga UNTIL condition-3
literal-6

Microsoft COBOL Reference Manual

The operation of this complex PERFORM statement is
equivalent to the following MS-COBOL statements
(example varying three items and using the identifier
option for braced items):

START-PERFORM. “A

MOVE identifier-3 TO identifier-2
MOVE identifier-6 TO identifier-5
MOVE identifier-9 TO identifier-8

TEST-CONDITION-1l.

IF condition-1l GO TO END-PERFORM.

TEST-—-CONDITION-2.

IF condition-2

MOVE identifier-6 to identifier-5

ADD identifier-4 TO identifier-2
GO TO TEST-CONDITION-1.

TEST-CONDITION-3.

IF condition-3
MOVE identifier-9 TO identifier-8
ADD identifier-7 TO identifier-5
GO TO TEST-CONDITION-2.

PERFORM range

ADD identifier-10 TO identifier-8 ~
GO TO TEST-CONDITION-3.

END-PERFORM. Next statement.

Note

If any identifier in the preceding example were an
index-name, the associated MOVE would instead be a

SET (TO form), and the associated ADD would be a
SET (UP form).

- 302 <-

ACCEPT statement

ANSI 74 extension, xix

data input field, 151
described, 146

format 1, 14/

format 2, 148

format 3, i150

format 4, 164

use as reference, 8
ACCESS MODE clause, 50,

254, 268
Acknowledgment, iii
ADD STATEMENT, 166

Advanced conditions, 285
ADVANCING option, 248

ALL phrase
figurative constant,
12

with UNSTRING, 216

ALPHABET-NAME clause, 54

Alphanumeric
edited item, 110

item, 66, 109
receiving field, 153

ALTER statement, xvii,

167, 280
MS-COBOL extensions,
xix

modules, xvi-xix
Arithmetic

expressions, 14

operators, 15
statements, xvii, 13,
140

ASSIGN clause, 40, 44, 50

INDEX

AT END clause, 143, 244,

2505 259, 272
AUTHOR paragraph, 28
AUTO clause, 86

AUTO-SKIP option, 153,
155, 158-159

BEEP option, 158-159
BELL clause, 87
Binary item, 67, 69
BLANK LINE clause, 88

BLANK SCREEN clause, 89
BLANK WHEN ZERO clause,

90
BLINK clause, 91

BLOCK clause, xviii, 92

CALL statement, 223, 225

CHAIN statement, 224-225
Character

comparisons, 183
lowercase, xiii, xix
set, 4

Class test condition, 183
Clause, definition, 20
CLOSE statement, xviii,
168

Index

COBOL

ANSI 74 Standard,
xvi-xix

Microsoft extensions,
xix

tutorials, xv
CODE-SET clause, 93, 123

Coding rules, 3
COLUMN clause, 94
Comments, 3

Compiler directing
statements, 13, 23

Compound condition, 181
COMPUTATIONAL, 181

COMPUTATIONAL-O,

XxVi-xvii, 126

COMPUTATIONAL-3, xix, 126

COMPUTE statement, 169

Condition-names, 7, 184
Conditional

items, 22
statements, xvi, 13,
140

Conditions
advanced, 285

description, 181
CONFIGURATION SECTION, 41

Continued line, 3, 10

Control index, 253
COPY statement, 13, 23
CORRESPONDING option,
ay Se Re Be

COUNT IN phrase, 217
CURRENCY SIGN clause, 55

Damaged flags, 253
DATA DIVISION, 19, 59, 73
DATA RECORD(S) clause, 96
Data

file, 254
input field, 151, 152

set control block, 253
Data-description entry,
65

Data-item, 21, 65
Data-name, 6, 96, 108
DATE option, 147
DATE-COMPILED paragraph,
29

DATE-WRITTEN paragraph,
30

DAY option, 147

Debug
dynamic, xix
trace-style, xviii

Debugging statements, 144
Decimal point, 111
DECIMAL-—POINT IS COMMA

Clause, 10, 55
ES ee L286 277,

79
DELETE statement, 170,
243, Zee; 271

Deleted granule, 253

DELIMITED BY phrase, 212
DISPLAY statement, xix,
S, 2s

DIVIDE statement, 174
DIVISION, definition, 21
Division remainders, xvii

Dynamic debugging, xix

Edited items
alphanumeric, 110
numeric, 66

Editing characters, 156,
164

Elementary item, 21, 66
Ellipses, xiv
Entry, definition, 20

ENVIRONMENT DIVISION, 19,

37 ¢ a2
ESCAPE KEY, 147, 152, 164
ESCAPE KEY phrase, 152
Evaluation order, 15
EXHIBIT statement, xix,
144, 175

EXIT PROGRAM statement,
178, 224

EXIT statement, 177
EXTEND phrase, 197
Extensions to ANSI 74

Standard, COBOL, xix

External decimal item, 67

- 304 -

FD entry, 4, 21
Figurative constant

as literal, xvi
described, 11-12

FILE SECTION, 75
FILE STATUS

clause, 50,255, 269

item, 143
File-description entry,

See FD entry
File-ID, 131
FILE-CONTROL paragraph,

43
File-names, 7
Files
See INDEXED files,

SEQUENTIAL files

RELATIVE files

FILLER as data-name, 7

Fixed segments, 279
Flags, damaged, 253
Floating string, 112

Footing, 102
Formats

see also specific
reserved word

DATA DIVISION, 59

ENVIRONMENT DIVISION,

38
IDENTIFICATION

DIVISION, 27

PROCEDURE DIVISION,

138
syntax notation, xiii

FROM clause, 97

FULL clause, 98

General format, See

Formats

GIVING option, 142
GO TO statement, 8, 179

Granules, 253

Group item, 21, 65

Hierarchy of program, 19
HIGH-VALUE figurative
constant, 11l

HIGHLIGHT clause, 99

Index

I-O
see also
INDEXED files

SEQUENTIAL files

RELATIVE files
error handling, 143
option of OPEN, 196

I-O-CONTROL paragraph, 46
IDENTIFICATION DIVISION,

ou ary ios
IF statement, 180
Imperative-statement, 12,
140

Independent segments, 279
Index-data-item, 8, 67,
IQ 4229

Index-name, 8, 70, 229
INDEXED

file organization, 253
I-O, xviii

Input file, 196
INPUT-OUTPUT SECTION, 45

INSPECT statement, xvii,
185

INSTALLATION paragraph,

32
Inter-program communica-

CtGNn,. SVL S23
Internal decimal item,
67-68

INTO option, 245
INVALID KEY clause, 143,
256, 258-259, 261-263,
273-274, 276

JUST clause, 100

JUSTIFIED clause, 100

KEY IS clause, 260

KEY clause, 234

Key
file, INDEXED, 253
set control block, 253

- 2 =

Index

LABEL clause, 101

Leaf, 253
LEFT-JUSTIFY, 157-158

LENGTH-CHECK, 158-159

Level

77 %tems,. 22
88 items, 22

numbers, 4, 21
Library, xviii
Limitations of DATA
DIVISION, 73

LINAGE clause, 102

LINE SEQUENTIAL files,

43, 49
LINE clause, 94, 104

LINE NUMBER option, 3, 147

LINKAGE SECTION, 78, 225

Literal
constant, 9

figurative constants,
tie

non-numeric, 10
numeric, 9
quoted, 10
size, 130

LOCK suffix, 168
LOW-VALUE figurative
constant, 1l

Lowercase characters,
Hiti, xix

Main program, 225
MEMORY SIZE clause, 47

MERGE statement, 190
Mnemonic-names, 8

MOVE statement, 191

MS-COBOL, See COBOL
MS-SORT

ASSIGN clause, 40
FILE-CONTROL para-
graph, 43

I-O CONTROL paragraph,
48

SELECT clause, 49

MULTIPLE FILE TAPE

CONTAINS clause, xviii
MULTIPLY statement, 195

Names, 6

Nested IF statements, 291
Node, 253

Non-numeric literals, 10

Nucleus, xvi
Numeric

comparisons, 183
edited item, 66
item, 67, 110
literals, 9

receiving field, 154

OBJECT—-COMPUTER para-

Graph, 41, 47
OCCURS DEPENDING ON

Clause, xvi

OCCURS clause, 106

ON OVERFLOW clause, 218

OPEN statement, xviii,
196, 257

Operators, 15
Option, definition, 20
Order of evaluation, 15

ORGANIZATION clause, 51
Output file, 196
Overlays, 279

Packed decimal format,
67-68

Paragraph, definition, 21

PERFORM statement, 8, 198,
280

Phrase, definition, 20

PICTURE clause, xvi, 109
POINTER phrase, 212
PRINTER IS clause, 55

PROCEDURE DIVISION, 19,
137, 1435 220

Procedure-names, 8

PROGRAM COLLATING

SEQUENCE clause, 47

PROGRAM-ID paragraph, 33
Program

hierarchy, 19
Main, 225

Subprogram, 225
PROMPT option, 153,
158-159

Punctuation, xiii, 5

- 306 -

Qualification of names,

“vi, 8

QUOTE
figurative, 12
constant, ll

Quoted literals, 10

Range in PERFORM, 199
READ statement, 201, 244,

259, 2/12
READY TRACE statement,

xix, 144, 202
RECORD CONTAINS clause,

ae ae
RECORD KEY clause, 255
RECORD clause, 117
Record-description entry,

65
REDEFINES clause, 23, 108,

118
Region, definition, 21
RELATIVE KEY clause, 268,

272
RELATIVE files, 267

Relative
indexing, 230
I-O, xviii

RELEASE statement, 203

Remainders, xvii
RENAMES phrase, xvii
REPLACING clause, 187

Report
item, 66, lll
writer, xix

REQUIRED clause, 120

RESERVE INTEGER AREA(S)

clause, xviii
RESERVE clause, 52

Reserved words, xiii,

4-5, 297
RESET TRACE statement,

xix, 144, 202, 204
RETURN statement, 205

REWRITE statement, 206,

246, 261, 274
RIGHT-JUSTIFY phrase, 153,
157-158

ROUNDED option, 141

Index

SAME AREA clause, 46, 48

SCREEN SECTION, 9, 80,
164

Screen-name, 164
SEARCH ALL statement, 234
SEARCH statement, 207,

23a
Section, definition, 21
SECURE clause, 121
SECURITY paragraph, 34

Segmentation, xix, 279
SELECT OPTIONAL clause,

xviii
SELECT clause, 44, 49,

254, 268
Sentence, definition, 20

Separators, xiii, 5
SEQUENTIAL files

FILE-CONTROL, 43

organization, 239
PROCEDURE DIVISION

statements, 242

SELECT, 49
status report, 241
syntax, 240

SEQUENTIAL I-O, xvii

SET statement, 208, 229

SIGN clause, 122

Sign test, 184
Simple condition, 181
SIZE ERROR option, 141
SORT facility, See
MS-SORT

SORT statement, 209

SORT/MERGE verbs, xix
Source coding rules, 3
SOURCE-COMPUTER para-

graph, 41, 53
SPACE, figurative con-
stant, 11

SPACE-FILL option, 153,
157-158

Special characters, xiii
SPECIAL-NAMES paragraph
xvi, 41, 54

START statement, 210,

262, 275

sul =

Index

Statements

see also specific
statement

arithmetic, 13

compiler directing, 13
conditional, 13
eetinition, 327,' 36

imperative, 12
STOP statement, 211

STRING statement, 212
Structural hierarchy, 19
Subprogram, 225
Subscript, 107
SUBTRACT statement, 215
Switch, 292
SWITCH-n clause, 55

SYNCHRONIZED clause, 124
Syntax notation in for-
Mats, xiii

Tab stops, 4

Table handling, xvii
TALLYING clause, 187

Tape handling, xviii
THROUGH option, 129
THRU option, 129
TIME option, 147
FO clause, 97,:. 425,164
TRACE mode, 144

Trace-style debug, xviii
TRAILING-SIGN, 158

Tutorials, COBOL, xv, 15

UNSTRING statement, 216

UPDATE option, 153,
158-159

USAGE clause, 69, 126
USE statement, 13, 24,
419% 278

USING clause, 78, 97, 128,
164

Validation, 164

VALUE IS clause, 129

VALUE OF FILE-ID clause,
253

VALUE OF clause, 131
VARYING phrase, 231

WHEN clause, 234

WITH DEBUGGING MODE

clause, 3, 41, 53
WITH phrase, 157
WORK ING-STORAGE SECTION,
TF

WRITE statement, 220,

247, 263, 276

ZERO figurative con-
stant, 12

ZERO-FILL option, 153,
157-158

- 308. =

~ ~~

§

MICRSSOFT. Software
10700 Northup Way, Bellevue, WA 98004 Problem Report

Name

Street

City State Zip

Phone RE ee ee

Instructions
et einen enone sn

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category
eae ee ER ee eee ee

Documentation Problem

(Document#___C*ds

Other

Software Problem

Software Enhancement

Software Description
a

Microsoft Fi ee SE Le ee
Rev... sd Registration oie ES Se

Operating System eg

ee 2 Se DUT are

Other Software Used ae el ecient cnet eee aca

a a SUD DUO! ooo ae mee I

Hardware Description

Manufacturer Cree Memory. KB
Disk Size_______” ~Density: Sides:

Single Single

Double Double

Peripherals ee

Problem Description

Describe the problem. (Also describe how to reproduce it, and your

diagnosis and suggested correction.) Attach a listing if available.

Ree VX —

Routing Code ___

Report Number ___

Action Taken:

v

