
MICR@SOFT
COBOL
Compiler

&

ee

— Ee
——
———
EE —_—_<_£ ei

e

For MS-DOS

MICROSOFT LICENSE AGREEMENT

CAREFULLY READ ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT PRIOR TO
BREAKING THE DISKETTE SEAL. BREAKING THE DISKETTE SEAL INDICATES YOUR ACCEPTANCE OF
THESE TERMS AND CONDITIONS.

lf you do not agree to these terms and conditions, return the unopened diskette package and the
other components of this product to the place of purchase and your money will be refunded. No refunds will
be given for products which have opened diskette packages or missing components. ,

1. LICENSE: You have the non-exclusive right to use the enclosed program. This program can
only be used on a single computer. You may physically transfer the program from one computer to another
provided that the program is used on only one computer at a time. You may not electronically transfer the
program from one computer to another over a network. You may not distribute copies of the program or
documentation to others. You may not modify or translate the program or related documentation without the
prior written consent of Microsoft.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PROGRAM OR DOCUMENTATION, OR
ANY COPY EXCEPT AS EXPRESSLY PROVIDED IN THIS AGREEMENT.

: 2. BACK-UP AND TRANSFER: You may make one (1) copy of the program solely for back-up
purposes. You must reproduce and include the copyright notice on the back-up copy. You may transfer
and license the product to another party if the other party agrees to the terms and conditions of this
Agreement and completes and returns a Registration Card to Microsoft. If you transfer the program you must
at the same time transfer the documentation and back-up copy or transfer the documentation and destroy
the ee aoe

. COPYRIGHT: The program and its related documentation are copyrighted. You may not copy
the program or its documentation except as for back-up purposes and to load the program into the computer
= part of executing the program. All other copies of the program and its documentation are in violation of this
greement.

4. TERM: This license is effective until terminated. You may terminate it by destroying the
program and documentation and all copies thereof. This license will also terminate if you fail to comply with
any term or condition of this Agreement. You agree upon such termination to destroy all copies of the
program and documentation.

5. HARDWARE COMPONENTS: Microsoft product hardware components only include circuit
cards and the mechanical mouse.

6. LIMITED WARRANTY: THE PROGRAM IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS ASSUMED BY
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT MICROSOFT OR ITS DEALERS
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. FURTHER,
MICROSOFT DOES NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE
USE OF, OR THE RESULTS OF THE USE OF, THE PROGRAM IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, CURRENTNESS, OR OTHERWISE; AND YOU RELY ON THE PROGRAM AND RESULTS
SOLELY AT YOUR OWN RISK.

Microsoft does warrant to the original licensee that the diskette(s) on which the program is -
recorded be free from defects in materials and workmanship under normal use and service for a period of
ninety (90) days from the date of delivery as evidenced by a copy of your receipt. Microsoft warrants to the
original licensee that the hardware components included in this package are free from defects in materials
and workmanship for a period of one year from the date of delivery to you as evidenced by a copy of your
receipt. Microsoft's entire liability and your exclusive remedy shall be replacement of the diskette or
hardware component not meeting Microsoft's limited warranty and which is returned to Microsoft with a copy
of your receipt. If failure of the diskette‘or hardware component has resulted from accident, abuse or
misapplication of the product, then Microsoft shall have no responsibility to replace the diskette or hardware
component under this Limited Warranty. In the event of replacement of the hardware component the
a eagliball will be warranted for the remainder of the original one (1) year period or 30 days, whichever is
onger.

THE ABOVE IS THE ONLY WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE THAT IS MADE BY MICROSOFT ON THIS MICROSOFT PRODUCT. THIS WAR-
RANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY
FROM STATE TO STATE.

NEITHER MICROSOFT NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION,
PRODUCTION, OR DELIVERY OF THIS PROGRAM SHALL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES ARISING OUT OF THE USE, THE RESULTS OF USE, OR
INABILITY TO USE SUCH PRODUCT EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES OR CLAIM. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
poe al lai id OR INCIDENTAL DAMAGES SO THE ABOVE LIMITATION MAY NOT

7. UPDATE POLICY: In order to be able to obtain updates of the program, the licensee and
persons to whom the program is transferred in accordance with this Agreement must complete and return
the attached Registration Card to Microsoft. IF THIS REGISTRATION CARD HAS NOT BEEN RECEIVED BY
MICROSOFT, MICROSOFT IS UNDER NO OBLIGATION TO MAKE AVAILABLE TO YOU ANY UPDATES EVEN
THOUGH YOU HAVE MADE PAYMENT OF THE APPLICABLE UPDATE FEE. .

8. MISC.: This license agreement shall be governed by the laws of the State of Washington and
shall inure to the benefit of Microsoft Corporation, its successors, administrators, heirs and assigns. _-

9. ACKNOWLEDGEMENT: YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT,
UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE
THAT THIS AGREEMENT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF AGREEMENT BETWEEN
THE PARTIES AND SUPERCEDES ALL PROPOSALS OR PRIOR AGREEMENTS, VERBAL OR WRITTEN,
AND ANY OTHER COMMUNICATIONS BETWEEN THE PARTIES RELATING TO THE SUBJECT MATTER
OF THIS AGREEMENT.

Should you have any questions concerning this Agreement, please contact in writing Microsoft,
Customer Sales and Service, 10700 Northup Way, Bellevue, WA 98004.
- Microsoft is a registered trademark and SoftCard and RAMCard are trademarks of Microsoft
orporation.

()
ele

Microsoft.

® COBOL Compiler

for the MS.,.-DOS Operating System

User’s Guide

-

Microsoft Corporation

Information in this document is subject to change
without notice and does not represent a commitment on
the part of Microsoft Corporation. The software
described in this document is furnished under a license
agreement or nondisclosure agreement. The software may “A
be used or copied only in accordance with the terms of i
the agreement. It is against the law to copy Microsoft
COBOL on magnetic tape, disk, or any other medium for
any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1983

If you have comments about the software or this
documentation, please complete the Software Problem
Report at the back of this manual and return it to
Microsoft Corporation.

Microsoft and the Microsoft logo are registered ~
trademarks of Microsoft Corporation. =o

MS is a trademark of Microsoft Corporation.

COMPAQ is a trademark of COMPAQ Computer Corporation.

DEC is a registered trademark of Digital Equipment
Corporation.

Lear Siegler is a registered trademark and ADM 42
Ergonomic Terminal is a trademark of Lear Siegler, Inc.

Victor is a registered trademark and Sirius is a
trademark of Victor Technologies, Inc.

IQ is a trademark of Soroc Technology, Inc.

TeleVideo is a registered trademark of TeleVideo
Systems, Inc.

z-100 is a trademark of Zenith Data Systems. &

Document Number: 8302A-110-02

Part Number: 011-014-012

Microsoft COBOL User's Guide Update

USER'S GUIDE UPDATE NOTICE

The text file, README.DOC, is’ included
on one of your distribution disks.
README.DOC contains the most current

wy information concerning the enhancements
and extensions that have been made to

Microsoft COBOL since the last release.

Microsoft Corporation

CONTENTS

Figures vii

Tables viii

Introduction ix

Package Contents a
System Requirements xi
Royalty Information xii

wy How to Use This Manual Rin i
Syntax Notation xiv
Learning More About COBOL XV

1 Getting Started “

i Your Distribution Disks 3
2 Disk Backup 5
3 INSTALL Terminal Interface 5

4 The Compilation Process 6
5 Sample Session 8

2 Compiling Microsoft COBOL Programs ce

ee 3 Invoking the Compiler a
<2 Using Compiler Switches 19
eae The Source Listing File cn
4 Compiling Large Programs 2u

- ii -

Contents

3 Linking Microsoft COBOL Programs 23

Kms 8 Using MS-LINK 25
i age Linking Independent

Segments (Overlays) 30
3.3 Linking Program Modules 31 o)
3.4 Linking Large Programs a

4 Loading and Executing

Microsoft COBOL Programs 33

~ Batch Command Files 35

6 Data Input and Output s7

6.1 Using Disk Files 39
G.2 Using MS-DOS and Nondisk Files 42

7 The Interactive Debug Facility 43

ray f Using the Debug Facility 45

tae: Debugging Subprograms 49

Appendices a |

A INSTALL Terminal Interface 53

A.l Step l: Starting INSTALL--
Is Your Terminal Included? 58

A.2 Step 2: Defining Your Own Terminal 59
A.3 Step 3: Reviewing and Editing Answers 64
A.4 Step 4: Running the Terminal Tests 64
A.5 Terminals Included With INSTALL 65

B Interprogram Communication 85

B.1l Calling Microsoft COBOL Programs 88
B.2 Calling Assembly Language Subroutines 90
B.3 Chaining MS-COBOL Programs 93
B.4 Chaining Assembly Language Programs 95

_ iv -

Q

Contents

Customizations 97

C.1 Source Program Tab Stops 99
C.2 Compiler Listing Page Length 99

Compiler Phases 101

REBUILD: Indexed File Recovery Utility 103

E.1l Overview 105
E.2 Running REBUILD 106
E.3 Sample REBUILD Session it2Z

Demonstration Programs Lia

F.i- CREST Kiy

F.2 CENTER 117
F.3 MS-COBOL Demonstration System DI BS 4

Microsoft COBOL Error Messages Lek

G.1 Command Input and

Operating System I-O Errors 125
G.2 Program Syntax Errors 127
G.3 Runtime Errors 140
G.4 Program Load Errors 143
G.5 MS-LINK Errors 144

Index 147

Figure

Figure

Figure

Figure

Figure

FIGURES

Major Steps in Compiling and
Executing an MS-COBOL Program 7

INSTALL Program Steps a |

Contents of Stack

at Entry to a Routine 90

Memory Layout for Chained Programs

Control Flow Within REBUILD 108

- vii -

96

TABLES

Table A.l. Escape Codes 66

Table A.2. Default Terminal Interface 67

= Viil =

INTRODUCTION

Microsofts COBOL (MSm-COBOL) Compiler is an extensive
implementation of the COBOL language for
microcomputers. This compiler has been certified with
the Federal Compiler Testing Center at the Low
Intermediate level of compliance with the ANSI
X¥3.23-1974 Standard. MS-COBOL has many features that
are standard for higher levels of validation. It also

includes extensions to the Standard that are designed
to optimize use of the COBOL language in the
microcomputer environment.

Microsoft COBOL Compiler User's Guide

Package Contents

Your Microsoft COBOL Compiler package includes:

One to four floppy disks (see Section 1.1 of this
manual for a list of the files on each disk).° “y

One binder containing the following documentation:

Microsoft COBOL User's Guide

Contains the information that is specific to a
particular implementation or operating system.
This includes a list of system requirements and a
description of the contents of your disks. The
User's Guide also provides general instructions on
how to compile, link, load, and execute programs
On your operating system.

Microsoft COBOL Reference Manual

Contains detailed descriptions of the Microsoft
COBOL language. With the exceptions (if any)
noted in the User's Guide, the information in the
Reference Manual applies to all implementations of
Microsoft COBOL Compiler. ~

Microsoft COBOL Quick Reference Guide
———

Outlines the COBOL program structure and gives the
formats of individual statements.

Introduction

System Requirements

Your implementation of MS-COBOL requires:

128K bytes of memory, minimum:

MS-COBOL Compiler requires approximately 40K of

memory, and the MS-LINK Linker requires

approximately 41K. The exact amount of additional

memory needed for the user's programs depends on

the programs themselves--the amount of data
storage used, the length of the PROCEDURE

DIVISION, and the number of optional runtime

support modules used.

Note that a single MS-COBOL program module is

limited to 64K. The data for an MS-COBOL program
is also limited to 64K. A linked MS-COBOL program
and program modules, however, may be as large as
the available memory.

Two disk drives are recommended, although you can use

MS-COBOL with just one disk drive.

If your system does not meet these minimum

requirements, ask your computer dealer how to expand

es

Note

The INSTALL program will configure MS-COBOL to

your terminal's characteristics. The INSTALL data
file contains descriptions of several kinds of

terminals. If your terminal is listed in this

file, a simple one-step process will configure

MS-COBOL for your terminal. If your terminal is
not listed in the data file, INSTALL allows you to

define the characteristics of your own terminal.

For more information, see Section 1.3, "INSTALL
Terminal Interface," and Appendix A.

Microsoft COBOL Compiler User's Guide

Royalty Information

The policy for distribution of parts of the Microsoft
COBOL Compiler is as follows:

The COBRUN.EXE runtime module cannot be “Aa
distributed without first entering into a license
agreement with Microsoft Corporation for such
distribution. A copy of the license agreement can
be readily obtained by writing to Microsoft. In
addition, a copyright notice reading "PORTIONS
COPYRIGHTED BY MICROSOFT CORPORATION, 1982, 83"
must be displayed on the media.

All other software in your Microsoft COBOL
Compiler package cannot be duplicated, except for
purposes of backing up your software. Other
duplication of any of the software in the
Microsoft COBOL Compiler package is illegal.

- xii -

Introduction

How to Use This Manual

This manual provides information about compiling and
running MS-COBOL programs with the MS-COBOL Compiler.

Chapters 1 through 4 provide the information you need
to compile, link, load, and execute an MS-COBOL
program. Any information that is specific to your
MS-COBOL implementation is also contained in these
chapters. Chapter 5 tells you how to set up a batch
command file to "compile, link, and go."

Chapter 6 explains the four disk file organizations:
sequential, line sequential, relative, and indexed. It

also describes how to use disk input/output files and
other types of files.

Chapter 7 tells you how to use the Interactive Debug
Facility to correct program errors at runtime.

Appendix A tells you how to interface your terminal
with MS-COBOL (this must be done before compilation) ;
Appendix B explains interprogram communication with the
CALL and CHAIN statements. Appendix C shows you how to
customize some of the MS-COBOL features.

Appendix D gives an overview of the five phases of the
MS-COBOL Compiler. This appendix may be useful if your

program generates a "Compiler phase error."

Appendix E describes the REBUILD program, which allows

you to recover or restore information in indexed files.

Appendix F describes the demonstration programs that
are included with MS-COBOL Compiler. These include a
test program for the INSTALL terminal interface, a
Simple MS-COBOL program, and three programs that
demonstrate the MS-COBOL SCREEN capabilities.

Error messages are listed in Appendix G. They are
arranged alphabetically within five sections:

1. command input and operating system I-O errors

2. program syntax errors

3. runtime errors

4. program load errors

5. MS-LINK errors

—- xiii -

Microsoft COBOL Compiler User's Guide

Syntax Notation

The following notation is used throughout this manual
for descriptions of the MS-COBOL general format:

E 4 Square brackets indicate that the “
enclosed text is optional.

ci > Angle brackets indicate user entered

data. When the angle brackets enclose

lowercase text, the user must type in
an entry defined by the text; for
example, <filename> indicates that the
user must enter the name of a file.
When the angle brackets enclose

uppercase text, the user must press
the key named by the text; for
example, <RETURN> means press the
RETURN key.

ib Braces indicate that the user has a
choice between two or more entries.

At least one of the entries enclosed

in braces must be chosen unless the
entries are also enclosed in square
brackets.

Braces also delimit the portion of a *
statement that is referred to by an
ellipsis.

Vertical’ bars separate the choices
within braces. At least one of the
entries must be chosen unless the
entries are also enclosed in square
brackets.

ata Ellipses indicate that an entry may be
repeated as many times as needed or
desired.

CAPS Capital letters indicate portions of
statements or commands that must be

entered, exactly as shown. They are
also used for words that the computer
displays.

All other punctuation, such as commas, colons, slash “
marks, and equal signs, must be entered exactly as
shown.

- xiv -

Introduction

Learning More About COBOL

If you are new to COBOL programming, you will probably

want to learn more about writing proaqrams before uSing

the MS-COBOL Compiler. The following texts are COBOL
tutorials, written for the novice programmer:

Abel, Peter. COBOL Programming: A Structured
Approach. Reston, Virginia: Reston Publishing
Company, 1980.

McCracken, Daniel D. A Simplified Guide to
Structured COBOL Programming. New York: John
Wiley & Sons, Inc., 1976.

Parkin, Andrew. COBOL for Students. Beaverton,
Oregon: Edward Arnold, Ltd., 1978.

CHAPTER 1

GETTING STARTED

ce Your Distribution Disks 2

Se Disk Backup a

Lae INSTALL Terminal Interface 5

1.4 The Compilation Process 6

isd Sample Session 8

Getting Started

The purpose of this User's Guide is to help you get a
Microsoft COBOL program up and running on your
computer. To do this, you need to perform some
one-time tasks, and you need an understanding of the
Major steps involved in using MS-COBOL. This chapter

wy begins by listing the contents of your disks and by
telling you how to perform disk backup and terminal
configuration, which normally only have to be done
once. Then it presents an overview of the compilation
process and a sample program development session.

1.1 Your Distribution Disks

You receive one to four MS-COBOL distribution disks.
If your system has a floppy disk drive with a capacity
larger than 160K bytes, you may receive all the files

on one to three disks. Most distribution disks are
organized in the following manner:

Disk 1 files

The MS-COBOL Compiler and Rebuild Utility

wo COBOL .COM -- the main compiler program

COBOL1.OVR -- overlay 1l

COBOL2.OVR -- overlay 2

COBOL3.OVR -- overlay 3

COBOL4.OVR -- overlay 4

REBUILD.EXE -- the utility for recovering
damaged indexed files

Disk 2 files

The Runtime System and Linker

COBOL1.LIB -- the runtime library of optional
routines

COBOL2.LIB -- the runtime library containing
the routines necessary for
loading COBRUN.EXE

Microsoft COBOL Compiler User's Guide

COBRUN .EXE

COBDBG .OBJ

LINK.EXE

Disk 3 files

Utility Software

INSTALL .COM

INSTALL .MSG

INSTALL.OVD

INSTALL.OVL
INSTALL.SPC

INSTALL .DAT

Disk 4 files

the common runtime executor

the interactive debug facility

the MS-DOS linker

a program that performs terminal
interface

four files needed by

the INSTALL program

terminal data file for the
INSTALL program

Demonstration Programs

CRTEST .COB

CENTER.COB --

a test program for the terminal
interface, as customized by
INSTALL

a test program for the MS-—COBOL

Compiler and runtime system

The MS-COBOL Demonstration System

DEMO .COB

DEMO .CPY

BUILD.COB

UPDATE .COB

DEMO .EXE

a program to: demonstrate the
MS-COBOL screen section, to call
the subprogram BUILD, and to
chain to the program UPDATE

a file used by the COPY verb
in DEMO.COB

a program to create an indexed
(ISAM) file of names, addresses,
and telephone numbers

a program to list or update the
ISAM file created by BUILD

an executable version of DEMO
already linked with BUILD

Getting Started

UPDATE.EXE -- an executable version of UPDATE,

already linked

DEMO 01.O0VL-- an overlay file generated by
linking DEMO

CLDEMO.BAT -- a batch command file for

compiling and linking the
Demonstration System

1.2 Disk Backup

The first thing you should do when you receive your

disk(s) is make copies to work with, saving the

original disk(s) as backups. Do this by using the COPY

utility supplied on your operating system disk.

Having made backup copies, check your copy of the

compiler and runtime system by compiling, linking, and

executing the test program CENTER.COB. To do this,

refer to the sample program development session in

Section 1.5, "Sample Session."

Finally, if your programs use the interactive ACCEPT

and DISPLAY facility in MS-COBOL, you must use the

INSTALL program to modify the MS-COBOL Compiler so that

it is compatible with your terminal. You must also run

INSTALL before you can use the MS-COBOL Demonstration

System. See Section 1.3 and Appendix A for discussions

of INSTALL.

1.3 INSTALL Terminal Interface

INSTALL is a program that makes MS-COBOL compatible

with the screen and graphics features of your terminal.

You need to run this program before compiling any of

your source programs if you want to use Microsoft

extensions to the COBOL interactive screen functions,

ACCEPT and DISPLAY. INSTALL is run only once, unless

you want to change some of your terminal's functions.

When you run INSTALL, information about your terminal's

functions is placed in the common runtime executor,

COBRUN.EXE. This information comes from an INSTALL

data file (INSTALL.DAT). The data file contains

descriptions of several kinds of terminals. If your

terminal is already listed in this file, when you run

a. 2

Microsoft COBOL Compiler User's Guide

INSTALL, the information is automatically transferred.
If you have a serial-mapped terminal that is not
listed in the data file, you can respond to a series of
questions, and your answers will then be put into the
common runtime system. ny

Appendix A tells you how to run INSTALL.

1.4 The Compilation Process

The three major steps in compiling and executing an
MS-COBOL program are:

1. compiling

2. Lanking

3. loading and executing

Consult Figure 1.1 as you read the following
descriptions of these steps.

lL. Compiling

The MS-COBOL Compiler consists of the main a“
software module (COBOL.COM) and four phases or
overlays (COBOL1.OVR through COBOL4.OVR). The
routines contained in the compiler analyze
your COBOL program and produce an object code
file. This file will have a file-name
extension of .OBJ.

Compilation is performed in two passes. The
first pass creates an intermediate version of
the program, which is stored in a binary work
file called COBIBF.TMP. The second pass
creates the final version of the object code.

2. Linking

The object code produced by the compiler is

not executable machine code. The Microsoft
Linker (MS-LINK) is responsible for producing
the machine executable code, which will be
placed in a file with an .EXE extension. “

Getting Started

MS-LINK performs the following tasks:

a. combines separately produced object files

b. searches library files for definitions of
wy unresolved external references

ae resolves external cross-references

d. produces a printable listing of symbols

e. produces the executable program

3. Loading and executing

The runtime system (COBRUN.EXE) "runs" the
executable program.

MS-COBOL Compiler (COBOL.COM plus COBOL1.OVR
through COBOL4.OVR)

ow Object code

MS-LINK (LINK.EXE plus COBOL1.LIB and COBOL2.LIB

Executable code

Figure 1.1. Major Steps in Compiling
and Executing an MS-COBOL Program

Runtime executor or system (COBRUN.EXE)

Microsoft COBOL Compiler User's Guide

1.5 Sample Session

The compilation, linking, and loading/execution of an
MS-COBOL program are described in detail in Chapters 2,
3, and 4 of this manual. To give you an overview of
the MS-COBOL system, however, the following sample
session is provided. We recommend that you work
through the sample session and then read Chapters 2

through 4 of this User's Guide before beginning to
compile your own programs.

The examples in this sample session are designed for
systems with two disk drives of 160K to 240K capacity.
The program development steps themselves, however, are
appropriate for all implementations of MS-COBOL.

1. Organize Your Disks

Organize the files on your disks to minimize
disk-swapping and "Disk full" errors during
program development. Usually MS-COBOL program

development will require three working disks:
one for your source and object programs; one
for the MS-COBOL Compiler; and the other for
MS-LINK, the runtime executor, the runtime
libraries, the text editor, and any other
necessary utilities. For example, your three
working disks might contain the following
files:

a. Program disk

Your MS-COBOL program (source, object, and

executable files will be placed on this
disk).

b. Compiler disk

COBOL .COM
COBOL1.OVR

COBOL2.OVR
COBOL3.OVR
COBOL4.OVR

c. Utiiity disk

EDLIN.COM
LINK .EXE
COBOL1.LIB

COBOL2.LIB
COBRUN . EXE

Getting Started

Your "program" disk contains your MS-—COBOL
source program, object, and executable files.

The compiler disk should be copied from the
distribution disk (see Section 1.1). It
should contain only the compiler.

During development, the program disk will be
kept in drive B, and either the compiler disk
or the utility disk will be in drive A,

depending on which disk is required at the
time.

Drive B should be selected as the default
drive (the one where new files are placed
unless specified otherwise in the command).

This arrangement simplifies access to the
program files by placing them all on the same
disk. Use of the programs on the utility or
compiler disk will then require an explicit
drive specification (e.g., A:EDLIN or
A:COBOL).

Create the Source Program

In this sample session, we'll use the sample
program CENTER.COB for the source program.
CENTER asks you to enter a line of text and

lets you choose whether to center the text or
align it at the left or right margin. (CENTER

can be easily converted into a subroutine for
your own use later.)

Transfer the sample MS-COBOL program
CENTER.COB from the MS-COBOL distribution disk
to your program disk. Then perform part "a"
in the following list. You will not have to
ago parts "bh" and “e."

However, you can use EDLIN to create your own

source program, also called CENTER.COB,
instead of using the CENTER.COB program

provided on your distribution disk. If you
choose to create your own file, do parts "a,"
"Db; * and "oc" if She folowing List.

Microsoft COBOL Compiler User's Guide

a. After booting the system as usual, place
your utility disk in drive A. Then place
the program disk in drive B and select B
as the default drive by typing:

B3

b. Type the command

A:EDLIN CENTER.COB

to run the EDLIN editor program so you can
write your MS-COBOL program.

c. When you have finished writing the
program, use the EDLIN "E" command to
place the file CENTER.COB on your program
disk and exit to the operating system.

Check Program Syntax With Trial Compilation

Before you go on, you can check your program

for syntax errors with a "quick" compilation.
This is done by compiling the program and
displaying the error listing on the screen.
No object or listing files are created, so
compilation is faster than usual.

a. Remove the utility disk and place the
compiler disk in drive A.

b. To compile CENTER.COB and display a list
of errors on the terminal, use the

following command:

A:COBOL CENTER,NUL;

(See Section 2.1 for a discussion of MS-COBOL
Compiler commands.)

If you get errors during the trial
compilation, go back to Step 2 and correct the
source file (with the utility disk in drive
A). See Appendix G for a list of error
messages and explanations. When the trial
compilation is completed without errors, you
are ready to proceed to Step 4.

Getting Started

Compile the Source Program

Now the program is ready to be compiled.

Compilation produces the object file. First,
make sure the compiler disk is in drive A and
you are logged on to drive B. The compiler
looks for the overlay phases (COBOL1.OVR -

COBOL4.OVR) first on the default drive (drive
B in this example) and then on drive A. With
the disks arranged as in our example, the
overlay phases will be found on drive A.

To compile the program so that an object file
(named CENTER.OBJ) is produced, enter one of

the following commands:

A:COBOL CENTER; produces just the

object file

A:COBOL CENTER, ,PRN produces an object file
and printed listing

A:COBOL CENTER, ,CENTER produces an object file
and a list file
(named CENTER.LST)

When compilation is successfully completed,
the message "No Errors or Warnings" is
displayed, and the compiler exits to the
operating system.

Link and Save the Executable Program

Put the utility disk in drive A. Note that
the linker expects to find the MS-—-COBOL common
runtime libraries (COBOL1.LIB and COBOL2.LIB
from the utility disk) on the default drive
(drive B in this case). If the libraries are
not there, you will be prompted to specify the
drive on which they are located, unless you
instruct MS-LINK to look elsewhere. In this

example, we will do just that by specifying
drive A in the following link command.

Now type the command:

A:LINK CENTER,,,A:;

This command links the object file with the

runtime system, producing the executable file.
The "A:" at the end of the command line tells

Pie: i es

Microsoft COBOL Compiler User's Guide

MS-LINK to look on drive A for the MS—-COBOL

libraries. (See Chapter 3 for a discussion of
MS-LINK commands.) The executable file (called
CENTER.EXE) is saved on the disk in drive B.

Your program disk now contains the following
files: CENTER.COB, CENTER.OBJ, CENTER.EXE,

CENTER.DBG, CENTER.MAP, and, if you requested
a list file, CENTER.LST. The DBG and MAP
files will not be used in this session, and

may be deleted.

Load and Execute the Program

To run a program, you need the executable file

(CENTER.EXE) and the common runtime executor
(COBRUN.EXE). COBRUN.EXE may be in either
drive. The compiler will search for it first
on the default drive, then on drive A.

In this example, CENTER.EXE is on the program
disk and COBRUN is on the utility disk on
drive A. Since we are keeping the program
disk in drive B, and drive B is selected as
the default drive, type just the name of the
executable file (the .EXE is not required):

CENTER

Even though you've been very careful to remove
all compile time errors, you may still get
runtime errors when the program is run. Error
messages are described in Appendix G of this
manual. If you get runtime errors, return to
Step 2 and edit the program to correct the
errors.

CHAPTER 2

COMPILING MICROSOFT COBOL PROGRAMS

a Invoking the Compiler 15

Dies & Compiler Responses 17

fake Partial Command Strings 18

a Using Compiler Switches 19

+ The Source Listing File Le

2.4 Compiling Large Programs 21

Compiling Microsoft COBOL Programs

As in Chapter 1, the sample commands in this chapter

assume that: the Microsoft COBOL Compiler disk is in
drive A, your program disk is in drive B, and drive B
has been selected as the default drive.

wy In the following examples, the file CENTER.DBG will be
produced in addition to the files specified. Files
with a .DBG extension are used by the Interactive Debug
Facility. (See Chapter 7 for more information on the
Interactive Debug Facility.) Use the /D switch to
suppress DBG files. However, the DBG file assists in
debugging, and we therefore recommend that you produce
it during program development.

2.1 Invoking the Compiler

The MS-COBOL Compiler may be invoked in one of the two
ways listed below. Note that the discussions in
Sections 2.1.1 and 2.1.2 apply to both these methods.
Therefore, read both these sections before you begin to
compile your own programs.

wy 1. You may invoke the compiler by entering the
command

A:COBOL

The drive specification is necessary because
the compiler is not in the default drive.

Then reply to the following prompts.
(File-names are discussed in Section 2.1.1.)

Source file-name [.COB]:

Name of your source program. A file-name must
be specified. If no extension is specified,
-COB will be appended by default.

Object file-name [<source file-name>.OBJ]:

Name of the object file to be created. The
source file-name is the default file-name.

wy The extension .OBJ is the default extension.

Microsoft COBOL Compiler User's Guide

Source listing [NUL.LST]:

Name of the file to which the program listing
is to be written.

Tf a file-name is entered, its default

extension is .LST. If a file-name is not

entered, the default is NUL (no list). See
Section 2.3 for further discussion of the list
file.

Example: The following series of responses
compiles the source file CENTER.COB, producing
the object file CENTER.OBJ and a listing file
CENTER.LST on the default drive:

A:COBOL
Source file-name [.COB]: CENTER
Object file-name [CENTER.OBJ]: <RETURN>

Source listing [NUL.LST]: CENTER

The compiler can also be invoked by entering

A:COBOL <command string>

where the command string contains

<source file-name>,<object file-name>
,<source listing>

as explained above and in Section 2.1.1.

The separator character is the comma (,). No

Spaces are allowed.

When compilation has finished, you will be notified of
any errors. If errors exist, you must locate and
correct
program
errors,

No

and you
Chapter

them in the source program and recompile the
before linking it. If the compiler detected no
you will be told

Errors or Warnings

may proceed with linking (as described in
Be

Compiling Microsoft COBOL Programs

2.1.1 Compiler Responses

When you use either of the above methods to invoke the
compiler, each of your responses can be the name of a
disk file and/or system device. The format is:

<device><file-name><extension>

<device> is the name of a system device. This can be a
disk drive, terminal, line printer, or other device
Supported by the operating system. If the device is a
disk drive, the file-name must also be given, unless a
default file-name is available (see final example in
Section 2.1.2). If the device is not a disk drive,
only the device name is required. The device may be
followed by a colon (:) for readability (it is required
Only for disk drives). MS-COBOL recognizes the
following device names:

NUL Do not create

CON or USER Display on terminal
Wt. er. Be a sa Disk drive (colon required)
PRN or LPT1L Printer

LPTs. As Additional printer (s)
AUX or COMI RS 232

<file-name> is the name of the file on disk. If the
File-name is specified without a device, the default
disk drive is assumed as the device. Maximum length of
the file-name is eight characters.

<extension> is a period (.) followed by a
three-character suffix to the file-name. If an
extension is not specified, the following defaults are
assumed:

-COB for the source program file
-OBJI for the object file
- LST for the list file

Microsoft COBOL Compiler User's Guide

2.1.2 Partial Command Strings

You may also enter a partial command string when
invoking the compiler. Note that the default object
file-name may be specified by entering only the comma
which normally follows the file-name. Also note that “A
if the comma which follows the object file-name is
entered, the source listing file-name defaults to the
source file-name. You will be prompted for any files
not specified in the command string. For example, the

command

A:COBOL CENTER,,

would (1) prompt you for the source listing file-name
(with the default name CENTER.LST), (2) compile the
source from CENTER.COB, and (3) produce the object file

CENTER.OBJ.

Each prompt displays its default, which you may accept
by pressing <RETURN> or override by entering another
file-name or device name.

If you enter an incomplete command string followed by a
semicolon (;), default entries will be assumed for the

unspecified files.

The following examples assume the compiler is in drive A
A and that drive B has been selected as the default
drive:

1. A:COBOL CENTER;

Compiles the source from CENTER.COB and
produces the object file CENTER.OBJ. No
listing file is produced.

2. A:COBOL CENTER, ;

Does exactly the same thing as the previous

example.

3. A:COBOL CENTER, ,;

Compiles the source from CENTER.COB and
produces the files CENTER.OBJ and CENTER.LST.
(The second comma (,) tells the compiler to
use the source file-name as the default list a)
file-name.)

Compiling Microsoft COBOL Programs

4. A:COBOL CENTER, ,CON

Compiles the source from CENTER.COB and places
the source listing file on the terminal. The
object program is CENTER.OBJ.

ow 5. A:COBOL CENTER,CENTOBJ , PRN

Compiles the source from CENTER.COB, sends the

list file to the printer, and places the
object in CENTOBJ.OBJ.

6. A:COBOL A:CENTER,CENTOBJ ,A:;

Compiles CENTER.COB from disk A, places the
object into CENTOBJ.OBJ on drive B, and places
the listing into CENTER.LST on drive A.

2.2 Using Compiler Switches

You can add one or more switches to the compiler
command string or at the end of any interactive
response. A switch is indicated by a slash (/). The

wy Switches and their effects are described below.

The format for a command string with switch(es) is:

<drive>:COBOL <command string>/<switch (es) >

Switches

/C Ordinarily, the compiler looks for the four
overlay files (COBOL1.OVR through COBOL4.OVR)
first on the default drive, then on drive A. To
Override the default drive, use the /C switch

with the letter of the drive you want. (The
colon is not required in the switch.)

Example: A:COBOL CENTER, ,/CB

In this example, the compiler looks for the
overlay files on drive B.

fr The compiler puts its intermediate file
wy COBIBF.TMP on the default drive unless you use

the /T switch followed by the desired drive
designation. The disk in the drive you specify
must not be write vrotected.

Peli: See

Microsoft COBOL Compiler User's Guide

/P

/D

/Fn

This option is particularly helpful for compiling

very large programs on systems with more than two
drives (see Section 2.4).

Example: A:COBOL CENTER, ,A:CENTERLIST/TA “ny

In this example, the intermediate file is placed
on drive A. (The colon is not required in the
Switch.)

Each /P allocates an extra 100 bytes of stack
space for the compiler's use. Use /P if stack
overflow errors occur during compilation.

Example: A:COBOL CENTER/P/P/P;

In this example, 300 extra bytes of stack space

are allocated.

This switch suppresses both generation of the
debug information file (with a .DBG extension)
and source line numbers, which are normally
placed in the object file. The result is
PROCEDURE DIVISION code that is about 16 percent
shorter. However, when this switch is used, the

runtime system will not be able to note the line
number at which an error occurs. (See Chapter 7 ~

for a discussion of the debug information file.)

Example: A:COBOL CENTER/D;

In this example, the object file will not contain
source line numbers and CENTER.DBG will not be
produced.

Fn (FIPS) flagging lets you tell the compiler to
output a warning for each COBOL statement above
the Federal Information Processing Standard level
(n). The n must be a digit from 0 through 4 (4
is the default):

0 Flag everything above low level.

1 Flag everything above low intermediate

level.

2 Flag everything above high intermediate
level.

3 Flag everything above high level.

4 No flagging.

ox DG tin

Compiling Microsoft COBOL Programs

Example: A:COBOL CENTER/F1;

In this example, the compiler will
display a warning for each COBOL
statement above low intermediate level.
If you create a source listing file, the
warning will be included with the error
messages.

2.3 The Source Listing File

The source listing file is a line-by-line account of
the source file(s) with page headings and error
messages. Each source line is preceded by a four-digit
decimal number. This number will be referenced by any
error messages pertaining to that source line.

Files which are included in the compilation via COPY
statements in the source file are also included in the

Pisting.

Compiler error messages are shown at the end of the

listing file (as well as being displayed on the
terminal). See Appendix G for a listing and
explanation of error messages.

2.4 Compiling Large Programs

Occasionally, an MS-COBOL program may be too large to
compile in the available memory space or may exhaust
the available disk space. There are several ways to
take care of this problem:

1. Use the /D switch in your command string (see

Section 2.2) to prevent generation of a debug
information file and to suppress generation of
line numbers in the object file.

2. Use the /T switch in your command string (see
Section 2.2) to place the intermediate file
(COBIBF.TMP) on a Separate disk.

Microsoft COBOL Compiler User's Guide

3. Place the MS-COBOL Compiler (COBOL.COM) and

its overlays (COBOL1.OVR - COBOL4.OVR) on two
separate disks. Then load each portion into
memory only as it is needed:

a. With the program disk in drive B, place “A
the COBOL.COM disk in drive A and invoke
the compiler by typing "A:COBOL".

b. When you receive the first prompt "Source
file-name [.COB]:", take out the COBOL.COM
disk and place the overlay disk in drive
A. Then respond to the compiler prompts
as usual.

This method allows the space normally used by

COBOL.COM to be available for the intermediate
file COBIBF.TMP.

4. Break the program into several program
modules. These modules can be separately
compiled and then combined into one program by
the linker. See Appendix B, "Interprogram
Communication," for information on using
program modules.

5. Break the large program into several smaller “~
programs which are chained. These programs
are separately compiled and linked. See
Appendix B, "Interprogram Communication," for
information on chaining programs.

Note

If you want to check the contents of your disk to
make sure that COBIBF.TMP has been deleted after
compilation is completed, use the DIR operating
system command. Then, to make sure the space has
been released, use the CHKDSK program supplied

with your operating system. CHKDSK reclaims
available space from unclosed files and tells you
the total amount of available space on the disk.

ae

CHAPTER 3

LINKING MICROSOFT COBOL PROGRAMS

Using MS-LINK 25

Linking Independent
Segments (Overlays) 30

Linking Program Modules ca

Linking Large Programs 34

Linking Microsoft COBOL Programs

As in previous chapters, this discussion assumes that:
the utility disk is in drive A, the program disk is in
drive B, and drive B has been selected as the default

drive.

The Microsoft linker (MS-LINK) converts the compiled

object version of your program (the object file) into a
version that is executable (the run file). To do so,

it searches the disk in the default drive for the
MS-COBOL runtime libraries COBOL1.LIB and COBOL2.LIB,

which make up part of the common runtime system
(described in Chapter 4). COBOL1.LIB is a library of
optional routines that may be required for running the
program, and COBOL2.LIB contains the routines that are
always necessary for running the program. The routines
you need are then linked to the object version of your
MS-COBOL program. The routines you need depends on

which MS-COBOL language features you used in the
program and program modules.

MS-LINK can also be used to combine separately compiled
program modules into one program. The modules may be
specified individually or extracted from a library.
They may be written in MS-COBOL or in Microsoft Macro
Assembler language (MS-Macro Assembler). See Section
3.3 for details on linking program modules.

3.1 Using MS-LINK

Files that are to be linked or which will contain

linker output can be specified in one of three ways:

1. interactively

2. aS part of the command line

3. as a command file

To invoke the linker, use one of these procedures which
are described in more detail in the following pages.

To specify files interactively, enter

A:LINK

Microsoft COBOL Compiler User's Guide

(The device specification is necessary because MS-LINK
is not in the default drive.) Then reply to the
following prompts:

Object Modules[.OBJ]:

Name(s) of object file(s). If no extension is
specified, .OBJ will be used. If multiple object files
are linked, they must be separated by a plus (+).

Files that are to be linked must be in object format.
(If they were compiled with MS-COBOL or generated by
MS-Macro Assembler, they will already be in object
format.)

Run File[<object file-name>.EXE]:

Name of file to contain executable code. The object
file-name is the default file-name. The extension .EXE
Cannot be overridden.

List File[NUL.MAP]:

Name of list file. Defaults work much the same way as
in the compiler. The default is no list file, unless
the run file is followed by a comma (see discussion of

partial command strings, below). If the run file is
followed by a comma, the default list file-name is the
object file-name, with the default extension .MAP.

Libraries[.LIB]:

"Libraries" refers to the runtime routines that

MS-COBOL may need to run your program. All these
routines are included in COBOL1.LIB and COBOL2.LIB.

Normally, you only have to press <RETURN> in response

to this prompt. The names of the libraries are
supplied to the linker by the MS-COBOL object file. If
you wish however, you may specify your own libraries
(see your MS-DOS manual), which will be searched before
the MS-COBOL libraries.

MS-LINK assumes that the MS-COBOL libraries are in the
default drive. If they are not in the default drive,
you must enter a drive specification, regardless of
which drive has been selected as the default drive.

Linking Microsoft COBOL Programs

In all of our examples, the libraries are on drive A
and not the default drive. Therefore, you need to

indicate the drive specification for the libraries. If

you do not, MS-LINK will prompt you for the drive on

which the libraries are located.

File-names are specified in the same way as they are

for the compiler (see Chapter 2), except that the
default extension is always .EXE for the run file

produced by the linker.

Example: The following series of responses links the
files CENTER.OBJ and MYOBJ.OBJ and searches your
library MYLIB1.LIB before searching COBOL1.LIB and

COBOL2.LIB. The linker produces the executable file
MYRUN.EXE and the source listing file MYLIST.MAP.

A:LINK

Object Modules[.OBJ]: CENTER+MYOBJ

Run File [CENTER.EXE]: MYRUN

List File [NUL.MAP]: MYLIST

Libraries[.LIB]: MYLIB1+
A:COBOL1+A:COBOL2

To use a command string, enter

A:LINK <command string>

where the command string contains

<objfile(s)>,<runfile>,<listfile>,<libfile(s)>

as defined in the preceding example.

Microsoft COBOL Compiler User's Guide

An object file-name must be specified. For the other
files, a default file-name may be selected in the
command string by entering only the comma which would
normally follow the file-name (see the following
examples).

As with the MS-COBOL Compiler, you may enter a partial
command string or the entire string. If you specify an
entry for all four files, or if an incomplete command
String ends with a semicolon (;), linking will proceed
without further prompting. Otherwise, the linker
prompts for the remaining unspecified files. Each
prompt displays its default, which you may either
accept (by pressing <RETURN>) or override (by entering
another file-name or device name).

Examples: (In these examples, the utility disk is in
drive A, default drive is B.) Since the MS-COBOL
libraries are in drive A, and the default drive is
drive B, MS-LINK will not find the libraries unless you
specify the drive for the libraries or respond with "A"
to the MS-LINK prompts. In these examples, we have
Specified the library on drive A, unless indicated
otherwise.

1. A:LINK CENTER;

Links CENTER.OBJ and puts the runfile into
CENTER.EXE. No list file is produced. If
CENTER.OBJ was produced by the MS-COBOL
Compiler, MS-LINK prompts for the drive on
which COBOL1.LIB and COBOL2.LIB are found.
Type "A" in response to the prompt.

2. A:LINK CENTER,,,A:;

Same as first example, except that a listing
is produced in CENTER.MAP. (The second comma
(,) indicates that the object file-name is to
be used as the default list file-name.) The
"A:" at the end of the command line tells
MS-LINK to find the MS-COBOL libraries on

drive A instead of the default drive.

Linking Microsoft COBOL Programs

3. A:LINK CENTER+SUBFILE1+SUBFILE2,,,A:;

Same as previous example, except that
SUBFILE1.OBJ and SUBFILE2.OBJ will be linked
with CENTER.

You can also set up one or more command files which

contain responses to the linker prompts. Command files
are created by the user. They are especially useful
when you are linking a number of object modules more
than once (during debugging, for example), or when you
are developing variations of a program. See Chapter 5
of this manual or the MS-DOS manual.

To specify this option on the command line, use the

command:

A:LINK @<file-name>

<file-name> is the name of your command file. You must
include the drive if the file is not on the default
drive. You may also specify a file extension.

Example: A:LINK @RESFIL.CMD

After the command line is entered, the linker starts.
If the linker needs more memory space to link your
program than is in the computer, it will create a file
called VM.TMP on the disk in the default drive and will
display a message to that effect. Do not remove this
disk during linking. If the additional space in VM.TMP
is used up, or if the disk containing VM.TMP is removed
before linking is completed, the linker will abort.

When the linker has finished, VM.TMP will be erased
from the disk, and any errors that occur during linking
will be displayed. The run file will be stored (with
the extension .EXE) on the disk in the default drive or
on the specified drive.

Microsoft COBOL Compiler User's Guide

Note

If you want to check the contents of your disk to
make sure that VM.TMP has been deleted after the
linker aborts, use the DIR operating system
command. Then, to make sure the space has been
released, use the CHKDSK program supplied with
your operating system. CHKDSK will reclaim
available space from unclosed files and tell you
the total amount of available space on the disk.

3.2 Linking Independent Segments (Overlays)

The MS-COBOL segmentation facility lets you run
programs that are larger than the computer's central
memory. Segmented programs have overlays that are
referenced by MS-COBOL section numbers greater than 49

(see the chapter on "Segmentation," in the Microsoft
COBOL Reference Manual). Each section is an
independent segment.

No special commands are required for linking a
segmented program. The linker creates a file for each
independent segment of the program, with the file-names
in the format:

PROGIDnn.OVL

PROGID is the PROGRAM-ID which you defined in the

IDENTIFICATION DIVISION. If the PROGRAM-ID is less

than six characters, MS-COBOL extends it to six

characters by adding underlines (_) to the end.

nn is a two-digit hexadecimal number that is computed
by subtracting 49 (decimal) from the program segment
number (decimal).

Example: If the PROGRAM-ID is "SAMPLE" and the program
contains segment number 99 (decimal), an overlay
segment will be produced with the name SAMPLE32.OVL.

Linking Microsoft COBOL Programs

3.3 Linking Program Modules

If you have developed your program as separately
compiled program modules, the linker can combine the
modules into one program.

Before linking, compile or assemble all modules so that
you have an object version of each. Then start the
linker, specifying in the command string each module
you want to link.

Example: A:LINK CENTER+SUBFILE1+SUBFILE2,,,A:;

See Appendix B, "Interprogram Communication," for more

information about linking program modules.

3.4 Linking Large Programs

This discussion assumes that your files are arranged on
three disks as in the "Sample Session" in Chapter 1.

If your system's disk space will not hold all the
object files, required libraries, the run file, the
linker, and the list (.MAP) file, you will need to

separate the files. One or a combination of the
following space-saving procedures should take care of
this problem.

1. Do not request a list file (.MAP)--i.e.,
accept the no list default (.NUL).

2. Send the list file (.MAP) to the terminal

(CON) or printer (PRN).

3. Transfer the runtime executor (COBRUN.EXE)

from the program disk to a separate disk.
Perform the link. Then copy the run file to
the disk containing COBRUN.EXE, insert the
disk (in either drive), and begin execution as

usual.

Microsoft COBOL Compiler User's Guide

Note

4. Transfer the runtime libraries COBOL1.LIB and
COBOL2.LIB from the utility disk to a separate
disk. Invoke the linker with the LINK command
and no command string. After the linker has
been loaded, place the disk containing the
runtime libraries in drive A and the program
disk in drive B. Then answer the linker
prompts, specifying that the run file should
go to drive A.

5. Break the program into several programs which

are chained. Compile and link each program
separately. Note that the common runtime
System works very efficiently with CHAIN; it
Only needs to be loaded once, rather than once
for each program in the chain. See Appendix
B, "Interprogram Communication," for more
information on chaining.

6. Break the program into program modules
connected by CALL statements. Compile the
modules separately and link them together
using the linker. This procedure is similar
to CHAIN, except that the called program
contains a return statement. See Appendix B,
"Interprogram Communication," for instructions
on linking program modules.

If you want to check the contents of your disk to
make sure that VM.TMP has been properly deleted
after the linker aborts, use the DIR operating
system command. Then, to make sure the space has
been released, use the CHKDSK program supplied
with your operating system. CHKDSK will reclaim
available space from unclosed files and tell you
the total amount of available space on the disk.

Pe ts ee

CHAPTER 4

LOADING AND EXECUTING MICROSOFT COBOL PROGRAMS

After your Microsoft COBOL program has been compiled

and linked successfully, the final step is loading and
execution. These functions are performed by specifying
the name of the executable file to the operating
system, as explained below.

Your runtime executor (COBRUN.EXE) is loaded

automatically at the beginning of execution. When you
begin execution, COBRUN.EXE must be in either the
default drive or drive A.

To run your program, just enter the name of your run
file, without the .EXE file-name extension. For
example, type:

CENTER

Execution of CENTER.EXE should begin immediately.

CHAPTER 5

BATCH COMMAND FILES

The MS-DOS operating system allows you to create a
batch file for executing a series of commands. This
file must have the extension .BAT. It should be kept
on either the program disk or the utility disk.

As shown in the example below, the batch file may
contain symbols that refer to parameters in its
invocation line. The symbol %1 refers to the first
parameter on the line, %2 to the second parameter, etc.

The limit is 9. In the example which follows, %1l
refers to the parameter <sourcefile>.

The batch file may also pause, display a prompt
(defined by the user), and wait for the user or

operator to continue. The PAUSE command, followed by

the user-defined text of the prompt, performs this
function.

If your program is already debugged and you are making
only minor changes to it, you can speed up the
compilation process by creating a batch file that
issues the compile, link, and run commands.

For example, use the EDLIN editor to create the batch

file CLGO.BAT (named for "compile, link, and go"). The
text of the file might be:

AzCOB0L ._$1;,%2

PAUSE ...Insert runtime libraries disk in drive A:
A:LINK €1,,;&:%

$1

Microsoft COBOL Compiler User's Guide

To execute this file, type

CLGO <sourcefile>

<sourcefile> is the name of the source program you want
to compile, link, and run. The first line of the batch “
file compiles the program; the second causes a pause
followed by a prompt telling you to insert the runtime
libraries disk; the third line links the object file;
and the fourth runs the executable file.

Note

A BAT file is only executed if there is neither a
COM file or EXE file with the same name.

For more information about batch command files,
see your MS-DOS manual.

CHAPTER 6

DATA INPUT AND OUTPUT

ae | Using Disk Files 39

6.2 Using MS-DOS and Nondisk Files 42

Data Input and Output

A Microsoft COBOL program can read or write data to
files on disk or to other MS-DOS devices. The
instructions for creating and using these files are
entered as part of the MS-COBOL source program. This
section explains disk files and other types of files,
and tells you how to use them with your MS-COBOL
programs. See the Microsoft COBOL Reference Manual for
more information.

6.1 Using Disk Files

To specify that a disk file is to be used in a program,
include the ASSIGN TO DISK clause in the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION.

The file-name of the disk file must be declared in the
VALUE OF FILE-ID clause in an FD paragraph, in the FILE
SECTION of the DATA DIVISION. The FD paragraph must
also include the clause LABEL RECORDS ARE STANDARD.

BLOCK clauses are checked for syntax, but they have no
effect on any file type. The FILE-ID clause should not
be specified with a name that is an MS-DOS device name.

(See Section 6.2 for a list of MS-DOS device names.)
Giving the FILE-ID clause an MS-DOS device name would
cause the file to appear on the specified MS-DOS device
rather than on a disk drive.

There are four types of disk file organization:

SEQUENTIAL
LINE SEQUENTIAL

RELATIVE
INDEXED

When an MS-COBOL program reads from or writes to a disk
file, the ORGANIZATION clause in the FILE-CONTROL

paragraph of the program's ENVIRONMENT DIVISION must
specify the file organization of the disk file, unless
it is SEQUENTIAL. Disk files are assumed to be
SEQUENTIAL unless they are declared otherwise.

Note also that only LINE SEQUENTIAL files can be
created with an editor. All others must be created by
an MS-COBOL program or assembly language program. See
the Microsoft COBOL Reference Manual or one of the
tutorials recommended in “Learning More About COBOL,"
in the introduction to this manual, for more
information about creating disk files.

Microsoft COBOL Compiler User's Guide

The four types of disk files are described below. (All
formats are subject to change without notice.)

1. SEQUENTIAL files have a two-byte count of the
record length followed by the actual record,
for as many records as are in the file. “Aa

2. In LINE SEQUENTIAL files, the record is
followed by a carriage return/line feed
delimiter, for as many records as are in the
file. No COMP-0O or COMP-3 fields should be
written into a LINE SEQUENTIAL file because
these data items may contain the same binary
codes used for carriage return and line feed
which therefore would cause a problem when
subsequently reading the file.

Both SEQUENTIAL and LINE SEQUENTIAL

Organizations pad any remaining space in the
last physical block with one or two Control-Z

characters (indicating end-of-file), followed
by binary zeros. To make maximum use of disk
space, records are packed together with no
unnecessary bytes in between.

Warning “

Files created by line editors and
non-COBOL programs are often in LINE

SEQUENTIAL format. If you wish to use
such a file as input to an MS-COBOL
program, you must include the
ORGANIZATION IS LINE SEQUENTIAL clause in

its FILE-CONTROL paragraph. If the
clause is not included, MS-COBOL assumes
the file is in SEQUENTIAL format, and
stops with a runtime error when the LINE
SEQUENTIAL file is input.

3. RELATIVE files always have fixed length
records of the size of the largest record
defined for the file. Since no delimiter is
needed, none is provided. Deleted records are “
filled with hex value "00". Additionally, six
bytes are reserved at the beginning of the
file to contain system bookkeeping
information.

Data Input and Output

4. Each INDEXED file declared in an MS-COBOL
program will generate two disk files: a key
file and a data file. The file specification
in the VALUE OF FILE-ID clause specifies a
file containing data only. The file-name

wy included in the file specification is
concatenated with an extension .KEY to form
the file specification of the key file.

The "key file" contains keys, pointers to
keys, and pointers to data. The format of

this file is very complicated, but follows the
guidelines for a prefix B+ tree.f

A key file is divided into 256-byte units,
called "granules." There are five possible
granule types. A type indicator is located in
the first byte of each granule. The granule
type indicators have the following values:

Value Type Indicator

Data Set Control Block

Key Set Control Block
Node

Leaf
Deleted granule Om WNe

The key file will have only one Data Set

Control Block in the first granule, one Key

Set Control Block for the primary file key,
and additional Key Set Control Blocks for
alternate keys.

Each Data Set Control Block and Key Set
Control Block contains, in the fourth byte, a
"damaged" flag which notifies you when the
last file use was not terminated properly.
The runtime executor sets these flags to
nonzero values when the file is opened for
updating and restores them to zero when the
file is closed.

+See Comer, Douglas. "The Ubiquitous B-Tree."
Computing Surveys of the ACM. Vol. 11, no. 2 (June
1979), pp. izi-137.

Microsoft COBOL Compiler User's Guide

The "data file" consists of data records.
Each data record is preceded by a two-byte
Field and a one-byte "reference count" that
indicates whether a record has been deleted.
The data file is terminated by a control
record with a length field containing a 2,
followed by two bytes of high values.

6.2 Using MS-DOS and Nondisk Files

Files that will only be output need not be placed ona
disk, but should be considered as a stream of
characters going to a printer or other device. No
permanent file is created. Records should be defined
as the fields to appear on the output device. No extra
characters are needed in the record for carriage
control. Carriage return, line feed, and form feed are
sent to the output device between lines. Note,
however, that blank characters (spaces) on the end of a
print line are truncated to make printing faster.

To send an output file to the printer, use the SELECT
<file-name> ASSIGN TO PRINTER clause. Then, in an
associated FD, specify the clause LABEL RECORD IS
OMITTED. Do not specify the VALUE OF FILE-ID clause.

MS-DOS provides special device names for character
devices. Data may be sent to or read from the
following devices:

CON or USER display on terminal
AUX or COM1 serial port (RS232)
PRN or LPT1 printer

oy ye additional printer (s)

If you assign these names to the VALUE OF FILE-ID
clause, MS-COBOL treats the files as if they were disk
Files (see Section 6.1). That is, you assign the files
to disk with the SELECT clause, but the operating
System uses the designated device instead of a disk
drive.

CHAPTER 7

THE INTERACTIVE DEBUG FACILITY

hee Using the Debug Facility 45

fey Debugging Subprograms 49

The Interactive Debug Facility

The MS-COBOL Interactive Debug Facility allows you to

control the execution of a program and to examine or

change data items in an MS-COBOL program. When a

program is compiled, a "debug information file" is

created along with the object file. The information

file contains line numbers and data-names from the DATA

DIVISION and PROCEDURE DIVISION of your MS-COBOL
program. The debug commands listed below can use these

Line numbers and data-names to affect data-items and

program execution in a number of ways.

The compiler will create the debug information file
with the file-name of the MS-COBOL source file, but
with the extension .DBG. For example, compilation of a
source file named MYFILE would produce MYFILE.OBJ
(object file) and MYFILE.DBG (debug information file).

To suppress creation of a debug information file, use
the /D compiler switch (see Section 2.2).

7.1 Using the Debug Facility

To use the debug facility, include the file COBDBG.OBJ

in the command line when you link your program. For

example,

LINK MYFILE+COBDBG;

enables the debug facility. When you issue the command
to execute your program (MYFILE, in this example), the

following message will be displayed:

MS-COBOL Interactive Debug Facility v. xxx

Program: MYFILE

Type help for list of commands
*

The asterisk prompt (*) indicates that the debug
facility is ready to accept any of the debug commands
Listed below. The debug information file should be on
the current disk. If is it not, the message

**No debug information file found

will follow the messages already displayed.

Note that without a debug information file, limited
debugging is possible. By simply including COBDGB.OBJ
in the linker command line, you can enable the debug
facility and execute any of the debug commands listed

Po

Microsoft COBOL Compiler User's Guide

at the end of this section except Change, Exhibit, and
Goto <line-number>. However, without the debug
information file, the debug facility cannot verify that
line numbers specified in the breakpoint command are
valid PROCEDURE DIVISION line numbers that contain
statements, or section or paragraph names.

Debug commands may be typed in full or may be
abbreviated to the first letter of the command name
(the abbreviations are shown by the underlined
Characters in the following list). Uppercase and
lowercase characters are equivalent. Arguments to the
commands (line numbers, data-names, ALL, OFF) must be

given in full. Though spaces are shown below,
arguments can be separated from commands by any
nonalphabetic character. When a numeric argument is
expected, the debug facility will scan until the first
digit on the line is found. For example, the following
list of commands are all equivalent (i.e., set a
breakpoint at line 100):

Breakpoint 100
BREAK @ 100
b100
break for me at line 100, if you would please

Pressing your terminal's interrupt key suspends program
execution at the next statement, as if a breakpoint had
been set at the next line. The key used as the
interrupt key may vary according to your type of
terminal, but is usually Control-C, ALT-C, or
CTRL-BREAK.

The Interactive Debug Facility

The following functions are available with the debug

facility:

Function Description

Address <data-name> Displays absolute address

(hexadecimal) of a data-item
in memory.

Breakpoints Lists all breakpoints.
(A breakpoint is a point at

which execution is

interrupted so that you can
insert a debug command.)

Breakpoint <line-num> Sets breakpoint at <line-num>.
You may have up to 8
breakpoints set at any given
time. Debug verifies that
<line-num> is a PROCEDURE
DIVISION line that
contains a statement or
paragraph name.

Change <data-name> Displays the contents of
<data-name> and allows

a new value to be entered.

Change cannot be used on
index-names or on
subscripted or qualified
variables.

Dump [<addrl>[<addr2>]] Displays memory addresses
(hexadecimal equivalents)
from <addrl> through
<addr2>.

Both addresses are optional.
If <addr2> is omitted,
128 bytes are dumped,
Stactindg at <addril>.
If both addresses are
omitted, 128 bytes are
dumped, starting at the
last address dumped.

Microsoft COBOL Compiler User's Guide

Exhibit <data-name>

Goto <line-num>

Dump uses addresses, not

data-names, as arguments.
Addresses must start with a

digit, even if it is zero

(e.g., OAO2 is valid,
but AO2 is not).

Displays contents of

<data-name>.

Data-items of less than 77
characters are displayed
within brackets. For
data-items greater than
77 characters, the field
length of the contents is
displayed without brackets.

Group names may be displayed,
although some components
may not be displayable

(e.g., binary characters).

Exhibit cannot be used on
index-names or on
subscripted or qualified
variables.

Resumes execution from the
last breakpoint or current
program position until a
breakpoint or end of program
is encountered.

Begins execution at

<line-num>; continues until

breakpoint or end of program
is encountered.

This command may be used to
branch anywhere within a
program, even from one
overlay segment to another.

If a PERFORM is active when
Goto is issued, the debug
session may abort.

ae

The Interactive Debug Facility

Help Displays the list of debug
commands.

Kill <line-num> Removes the breakpoint at
ey <line-num>.

Kill ALL Removes all breakpoints from
the breakpoint list.

Line Displays the <line-num> of the

current line.

Quit Terminates the program
(closing all open files).

Step [<count>] Executes one or <count>
statements.

Trace Sets trace mode. When trace

is set, the line number of

ow each line will be displayed
as the line is executed.

Trace OFF Turns off trace mode.
(See description of Trace.)

7.2 Debugging Subprograms

The interactive debug facility allows you to debug
systems of programs consisting of a main program and
any number of subprograms. However, there are some

limitations on what can be debugged in such a system:

1. Assembly language subroutines may be called,

but none of the debugging features will be in
effect while the subprogram is executing. For
example, no breakpoints can be set in an

S assembly language subroutine.

2. If subroutines are nested to more than five
levels, without a return to an earlier
subprogram, the debug facility will not open
the debug files for any subprograms beyond the

~. 2 =

Microsoft COBOL Compiler User's Guide

fifth. If this is attempted, the message "No
debug information file found" will be
generated, even though the information file
may actually be present. You may still set
breakpoints and use the trace mode at these
deeper levels of nesting, but you may not “a
examine or change variables. On return to

subprograms nested less than five levels deep,
the full debug facilities will again be
available.

This limitation does not hold for systems

where a program calls a large number of
subprograms but returns to the main program
before calling each subprogram.

APPENDICES

INSTALL Terminal Interface 53

Interprogram Communication 85

Customizations 97

Compiler Phases 101

REBUILD: Indexed File Recovery Utility £03

Demonstration Programs 5

SR at Mie) = Ns <li SM” Microsoft COBOL Error Messages 121

APPENDIX A

INSTALL TERMINAL INTERFACE

A.l Step l: Starting INSTALL--

Is Your Terminal Included? 58

A.2 Step 2: Defining Your Own Terminal 59

Aeeed Hints on Defining Key Assignments 62

Aw2 2 Screen Attributes 63

A.3 Step 3: Reviewing and Editing Answers 64

ey A.4 Step 4: Running the Terminal Tests 64

A.5 Terminals Included With INSTALL 65

INSTALL Terminal Interface

Terminal input/output is performed by the ACCEPT and

DISPLAY statements. For the SCREEN SECTION feature and
Microsoft extensions to the interactive ACCEPT and
DISPLAY statements to run correctly on your terminal,

the MS-COBOL runtime system needs to be configured to
the characteristics of the terminal. INSTALL is a

program that gives MS-COBOL information about your
terminal.

Chapter 6 in the Microsoft COBOL Reference Manual
describes the use of ACCEPT and DISPLAY statements.
The following discussion pertains to Format 1, 3, and 4
ACCEPT statements and DISPLAY statements which have
positioning or SCREEN specifications.

When you run the INSTALL program, it shows a list of

terminal types that are already defined in the
INSTALL.DAT file. If your terminal type is on the
list, you can quickly modify MS-COBOL through a

one-step process of selecting your terminal type from

the list. INSTALL then automatically loads and saves
the information from your selection. When INSTALL is
finished, you are ready to run MS-COBOL.

If your terminal is not included on the list, INSTALL

provides you with a list of questions for defining your
Own terminal type. You will need the technical manual
for your terminal to answer most of the questions.
Your answers are then collected into the INSTALL.DAT
file. This is a file that contains the terminal
characteristics you define. INSTALL.DAT can be edited
later if some answers are incorrect or unsatisfactory.

Warning

Don't attempt to define your terminal if it is a
memory-mapped terminal.

You can only define your terminal if it is a
serial-mapped terminal.

Throughout the program, INSTALL displays explanatory

text to help you complete the answer file.

mm Be ae

Microsoft COBOL Compiler User's Guide

To run INSTALL, you need the files contained on the

MS-COBOL distribution disks:

INSTALL .COM The INSTALL program file.

INSTALL.MSG Four files needed by the
INSTALL.OVD INSTALL program.
INSTALL.OVL

INSTALL.SPC

INSTALL.DAT The file that contains
descriptions of common
terminals. If INSTALL
lists your terminal,

INSTALL.DAT contains a
description of your
terminal.

The MS-COBOL file to be modified is COBRUN.EXE (common

runtime executor).

INSTALL consists of the steps shown in Figure A.1l.
Specifically, these steps are:

: Ee Step l

Starting INSTALL and determining if a
description of your terminal is included.

Step 2

Answering questions about your terminal if it
is not included in INSTALL.

Step 3

Reviewing and editing your answers to the
questions in Step 2.

Step 4

Running the terminal tests.

Each of the steps outlined in the preceding list is
described more fully in Sections A.1 through A.4.

INSTALL Terminal Interface

Is your Select
terminal no <> “define your .
included? own terminal”

yes

Define your
own terminal

Select terminal

Do you
want to edit?

Run

terminal tests

no

yes

Exit and panne aS Ee
start MS-COBOL

Figure A.1l. INSTALL Program Steps

Microsoft COBOL Compiler User's Guide

A.1l Step 1: Starting INSTALL--
Is Your Terminal Included?

Before starting the INSTALL program, make sure that
MS-DOS is up and running. Then, put your program disk
containing the INSTALL files in drive A and copy
COBRUN.EXE onto the disk.

To start the INSTALL program, type

INSTALL

and then press <RETURN>. Once the INSTALL program and
the necessary files are loaded into memory, the screen
gives instructions about using the basic keys you will
need. These basic keys are:

Ls. <CERL-C>

to abort the INSTALL program at any time

2. <BACKSPACE>

to correct your answers

3. <RETURN>

pressed after typing in each answer (to go on

with the INSTALL program at any time, whether
Or not you type an answer to a question, press
<RETURN>)

When you have read the initial instructions, press
<RETURN> and INSTALL displays a list of terminals. The
terminals listed are the ones for which INSTALL already
has data. INSTALL then asks you if your terminal is
listed.

If your terminal is listed, enter the number
corresponding to your terminal and press <RETURN>.
INSTALL finishes the program automatically, adding the
description of your terminal to the COBRUN.EXE file.
When INSTALL is finished, it displays the message
"Install complete." At this point, you can copy the
"installed" COBRUN.EXE file to your utility disk, and
skip Steps 2, 3 and 4. (Steps 2, 3 and 4 are for
defining a terminal which is not on the list.) Then,

you can begin running your MS-COBOL programs. The
demonstration program CRTEST may now be compiled,

INSTALL Terminal Interface

linked, and run. (See Appendix F for information on

CRTEST, and Section 1.5, “Sample Session," for
instructions on compiling.) CRTEST tests several of the
screen features established by INSTALL.

If your terminal is not listed, press <l> and <RETURN>.
This starts Step 2, in which you define your own
terminal. Step 2 is applicable only if you have a
serial-mapped terminal.

Note that some terminals "waste" or use up a character

for turning on and off screen attributes. (For

example, the terminal fills a character position on the

screen with a special marker, which appears as a space
on the screen when turning on or off a screen
attribute.) Some terminals of this type, such as the
TeleVideowo, are predefined in the INSTALL data file.
For these terminals, the INSTALL program does not use
the screen attributes such as blink, underline,
highlight, and reverse-video, to avoid confusing the
compiler's internal mapping of what is on the screen.
However, some MS-COBOL programs may use these screen

attributes despite the wasted characters. If you are
Sure that your programs will run with this condition,
you may want to try the "Define your own terminal"
selection (number 1 on the menu). This allows you to
use your terminal's screen attributes rather than using
those in the INSTALL data file.

A.2 Step 2: Defining Your Own Terminal

This step is applicable only if you have a
serial-mapped terminal.

When you press <l> and <RETURN>, INSTALL displays:

Would you like to redefine this terminal (Y/N?)

If you press <N> (for no) INSTALL automatically

finishes the program and loads the default terminal
characteristics into the COBRUN.EXE file.

Important

The initial default values (see Table A.2) in the
INSTALL.DAT file are for a general purpose
terminal and probably do not apply to your
terminal. Consult your terminal's technical
manual for the correct values.

son PA fe

Microsoft COBOL Compiler User's Guide

If you press <Y> (for yes) INSTALL will ask if you want

to go through the questions sequentially or if you want
to use the shorter menu form of the questions. Both
forms provide default answers.

The sequential questions are displayed one at a time,

with their default answers. If you are using INSTALL
for the first time, we recommend you use the sequential
form to reduce the chance of skipping an important
question.

The menu form is for reviewing and selecting individual
questions. It displays some of the questions by
groups. For example, it displays the "MS-COBOL
function keys" as a group instead of showing all the
individual function keys. Once you choose the function
key selection, INSTALL will display all of the function

key questions sequentially.

The questions INSTALL asks are about key assignments

and terminal characteristics. Key assignment questions
ask which keys are assigned to the different MS-—COBOL
functions such as character delete, forward space,
Function 1, etc. Terminal characteristic questions
pertain to the character sequences needed to perform
such functions as clearing the screen, initializing the
terminal, etc.

When INSTALL asks you a question, the default answer is
displayed under the question. To accept the default
answer, simply press <RETURN>. If you want to change
the answer, backspace over the default answer and enter
the new answer. Note that when INSTALL asks you a
question, it will prompt you for the type of answer you

should enter. The prompt characters are:

Es (I) Integer

Use only number keys for this type of answer.

ve (Y/N) Yes or No

Answer with Y or N (either uppercase or

lowercase).

x (S) Character string

Enter a sequence of characters. Special keys
can be coded with one of the two prefix
characters: ~*~ and &.

The ~ is a prefix for coding control
characters. (Example: INSTALL asks "What

se Oi

INSTALL Terminal Interface

sequence(s) of characters (S) represent
DELETE?" If the answer is CONTROL-U, type
w “y" :)

The & is a prefix for coding the characters
shown in the following menu. These characters
may be typed in lowercase or uppercase.
(Example: INSTALL asks "What sequence of
characters (S) start high intensity?" If the
answer is ESCAPE-P, type "&EP".)

When you see the "S" prompt, you can type "&M"
to display a menu of special keys and
character sequences that are coded with the &
prefix character. The menu will read:

&E - escape &R - return &* -— *
&N - newline &T - tab && — &
&F — formfeed &B -—- backspace
&,- ,» &+ — + &X — rubout

&DxXxx - 3-digit decimal (less than 256)
&OxxXx - 3-digit octal (less than 0400)
&Hxx - 2-digit hex
& P&Hxx - pause xx (hex) milliseconds
&Iy&Dxxx - pad character ‘'y', xxx times
&Y - used to code a Y after a control-cC

Note

On some terminals, certain commands take
longer to execute than others. To
compensate for this difference, it may be
necessary to make the computer's central
processing unit (CPU) wait until the
terminal has finished executing the
command. By inserting a pause of xx
milliseconds, you can tell the CPU how
long it must wait. With most terminals,
the pause is not needed. If it is, your
terminal's technical manual will tell you
SO.

The millisecond timing of a pause is for
an 8 MHz clock. If you have a 4 MHz
clock, divide the value by 2. If you
have a 2 MHz clock, divide the value by
4. For example, for a 40 millisecond
pause (with a 8 MHz clock), enter 40. To
get the same 40 millisecond pause from a
4 MHz clock, enter 20.

ow Se

Microsoft COBOL Compiler User's Guide

A.2.1 Hints on Defining Key Assignments

To use all of your terminal capabilities, you should

understand how INSTALL recognizes character sequences.

All keystrokes send character values to the MS-COBOL “a

program. Some keys, such as <cursor up>, send a

multiple character sequence (&E[A). On the other hand,

CONTROL-<key> and SHIFT-<key> are considered single

keystrokes. Pressing either CONTROL or SHIFT by itself

signifies nothing to the program, but when combined

with another key, the combination will send a single

character. MS-COBOL recognizes both single and

multiple-character sequences as well as multiple-key

sequences such as "“R+°E" (page up), and multiple-key,

multiple-character sequences such as "“R+&E(A".

To take advantage of the MS-COBOL ability to recognize

the different types of character sequences, use the

following guidelines:

1. Functions that require a multiple-key sequence

are separated with the "+" character between

each key character sequence. This tells

MS-COBOL to expect more than one keystroke for

a given function. For example, if you want to

use the key sequence "CONTROL-R CONTROL-E",)
you would enter "“R+*E".

2. The first keystroke of a multiple-key sequence

cannot be defined as a key sequence of its

own. For example, if the character sequence

"sE[OM" is a value for a single key, then,

"sE[OM+*P" cannot be used as a multiple-key

sequence.

The reason for this rule is that MS-COBOL does

not know if it has received the whole command

or if it is waiting for another character to

finish the command. For example, if a portion

of a multiple character sequence is typed as

input to an interactive ACCEPT statement, the
MS-COBOL program waits for the sequence to be

completed before continuing processing.

3. Keys in a multiple-key sequence can consist of

multiple characters. For example, the "page

up" sequence for certain terminals is
"SE[11~+&E[A". “a

4. When setting up new input key definitions to

convert a character or character sequence to

the appropriate sequence for your terminal,

oe ee

INSTALL Terminal Interface

make sure that the changes do not result in
conflicting sequences. If there is a
conflict, INSTALL will display the message
"Your input keys are ambiguous. No two
functions may share the same string" when you
try to exit INSTALL. If you get this message,
check your work and try again.

A.2.2 Screen Attributes

Screen attributes have a hierarchy of use: blink,
underline, highlight, and reverse-video. If the
terminal doesn't support the attribute requested, it
will try the next attribute in the hierarchy. For
example, if you request the underline attribute and
your terminal doesn't support it, INSTALL uses the next
attribute (highlight) instead. If highlight isn't
available, reverse-video is used. If reverse-video
isn't available, normal video is used.

In order for MS-COBOL to put a character on the screen,
it must know the cursor position. On some terminals, a
character is used to turn on and off a screen
attribute. By using a character to turn on the
attribute, the terminal moves the cursor over one
position. The same is true for turning off the
attribute. Unfortunately, this characteristic is
usually not documented in the terminal's technical
manual. "Standouts" are the character or characters to
which a screen attribute has been applied. If you
notice spaces before standouts, your terminal probably
has this characteristic. If it does, disable the
Screen attributes by entering "blank" answers for the
questions about blink, underline, highlight, and
reverse-video. (A "blank" answer is an empty string.)
If the default answer to the question is "blank,"
Simply press <RETURN>. If there is a character
sequence for the default answer, backspace over the
answer, and press <RETURN>.

When you have seen and answered all questions, you are
ready to begin Step 3, reviewing and editing your
answers.

Microsoft COBOL Compiler User's Guide

A.3 Step 3: Reviewing and Editing Answers

INSTALL allows you to review and edit all answers

before saving the terminal characteristics in the

INSTALL.DAT file. Before saving the answers, INSTALL

will display a menu of the terminal characteristics “a

with either the default answer (from the previous

session) or the answer you supply during this session.

To change an answer on the menu, select the number of

the terminal characteristic and press <RETURN>.

INSTALL will then display the question again. When it

appears, backspace over the old answer and enter the

new answer. Then, press <RETURN> to keep the answer.

When you have reviewed all of the selected
characteristics, you can review them again, if you
want. You may continue reviewing and editing the
characteristics until you are satisfied that everything

is correct. When you are through reviewing the

answers, press <D> and <RETURN>. You are now ready to

run the terminal tests.

A.4 Step 4: Running the Terminal Tests -

The terminal tests let you test the terminal

characteristics before you run your programs. The

tests aren't mandatory, but we recommend running them

to verify your selections. INSTALL offers the terminal

tests shown in the following list. Three of the test

selections, ("initialization," "graphics characters,"

and "all of above") are not applicable to MS-COBOL.

During the tests, pressing <CONTROL-C> will return you

to the editing menu.

If you don't want to run any of the tests, press <D>

and <RETURN> when you see the test list. INSTALL will

Save your answers and exit automatically.

Note

The answers you save become the default answers

for the next time you run the INSTALL program. A

INSTALL Terminal Interface

The tests are:

1. cursor positioning

2. clearing the screen

3. initialization

4. function keys

5. screen attributes: blink, underline,
highlight, reverse-video

6. cursor and keyclick options

7. sounding the bell

8. graphics characters

9. all of the above

If the terminal tests that you select end successfully,

INSTALL adds the description of your terminal to
MS-COBOL. Then it displays the message "Install
complete." You are now ready to run MS-COBOL.

If any of the tests fail, press <CONTROL-C>. INSTALL
will return to Step 2, again asking you questions about
your terminal. Check your terminal manual and change
any incorrect responses.

A.5 Terminals Included With INSTALL

This section lists functions, ASCII key names, and
escape codes for the INSTALL general purpose default
terminal and for the terminals included in the
INSTALL.DAT file. If your terminal is not one of those
listed, check your terminal's technical manual for the
appropriate values.

Microsoft COBOL Compiler User's Guide

Table A.1l lists the escape codes which apply to all the

terminals described in this section, including the
default terminal.

Table A.l. Escape Codes -

TERMINATOR KEYS

Backtab 99

Escape O1
Tab 00

Carriage Return 00
Line Feed 00

FUNCTION KEYS

Function 1 02
Function 2 03

Function 3 04
Function 4 05
Function 5 06
Function 6 07
Function 7 08 ~

Function 8 09
Function 9 10

Function 10 jf

INSTALL Terminal Interface

Table A.2 lists the characteristics applied by INSTALL
to the general purpose "default" terminal. These
default values probably do not apply to your terminal.
See your terminal's technical manual for the applicable
values.

Table A.2. Default Terminal Interface

Functions ASCII Key Name

EDITING KEYS

Delete Line CTRL-U
Delete Character DEL

Forward Space CTRL-F
Back Space CTRL-H
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESCAPE

Back Tab CTRL-B

Tab CTRL-I or TAB

Carriage Return RETURN
wy Line Feed LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1

Function 2 CTRL-E 2

Function 3 CTRL-E 3

Function 4 CTRL-E 4

Function 5 CTRL-E 5

Function 6 CTRL-E 6

Function 7 CTRL-E 7

Function 8 CTRL-E 8

Function 9 CTRL-E 9

Function 10 CTRL-E 0

ae Se

Microsoft COBOL Compiler User's Guide

The following output functions are not provided with a

default interface in INSTALL.

Set Cursor Position

Backspace Cursor

Cursor On “ys

Cursor Off

Erase to End of Screen
Erase to End of Line
Sound Bell
Start High Intensity
End Highlight
Start Blink

End Blink
Start Reverse-Video
End Reverse-Video

The default terminal interface features listed below

have the default values indicated:

Screen Format 24 lines by 80 columns
Terminal Name Undefined
Terminal Initialization Undefined
Reset COBOL Undefined

The remainder of this appendix contains a list of

terminals included in the INSTALL data file and shows ~
the special key assignments for those terminals.

INSTALL Terminal Interface

COMPAQ ™m

EDITING KEYS

ey Delete Line CTRL-U or CTRL-End or CTRL-X
Delete Character DEL key or backspace key
Forward Space CTRL-F or right arrow key
Back Space CTRL-H or left arrow key
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESC

Back Tab CTRL-B or SHIFT TAB or up arrow key
Tab CTRL-I or TAB or down arrow key
Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1 or Fl or SHIFT Fl

Function 2 CTRL-E 2 or F2 or SHIFT F2
Function 3 CTRL-E 3 or F3 or SHIFT F3

Function 4 CTRL-E 4 or F4 or SHIFT F4
ey Function 5 CTRL-E 5 or F5 or SHIFT FS

Function 6 CTRL-E 6 or F6 or SHIFT F6

Function 7 CTRL-E 7 or F7 or SHIFT F7
Function 8 CTRL-E 8 or F8 or SHIFT F8
Function 9 CTRL-E 9 or F9 or SHIFT F9
Function 10 CTRL-E O or F10 or SHIFT F10

Microsoft COBOL Compiler User's Guide

DEC® VT-52

EDITING KEYS

Delete Line CTRL-U ,CTRL-X
Delete Character DEL key “A
Forward Space CTRL-F or right arrow key
Back Space CTRL-H or left arrow key
Plus Sign +
Minus Sign ~

TERMINATOR KEYS

Escape ESC

Back Tab CTRL-B or up arrow key
Tab CTRL-I or TAB or down arrow key
Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1

Function 2 CTRL-E 2

Function 3 CTRL-E 3
Function 4 CTRL-E 4

Function 5 CTRL-E 5

Function 6 CTRL-E 6 ~
Function 7 CTRL-E 7

Function 8 CTRL-E 8
Function 9 CTRL-E 9
Function 10 CTRL-E 0

INSTALL Terminal Interface

DEC® VT-100 (ANSI mode)

EDITING KEYS

Delete Line CTRL-U, CTRL-X
wy Delete Character DEL key

Forward Space CTRL-F or right arrow key
Back Space CTRL-H or left arrow key
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESC

Back Tab CTRL-B Or up arrow key
Tab CTRL-I or TAB or down arrow key
Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1
Function 2 CTRL-E 2

Function 3 CTRL-E 3
Function 4 CTRL-E 4

Function 5 CTRL-E 5
wy Function 6 CTRL-E 6

Function 7 CTRL-E 7

Function 8 CTRL-E 8

Function 9 CTRL-E 9
Function 10 CTRL-E 0

Microsoft COBOL Compiler User's Guide

Dynalogic Hyperion

EDITING KEYS

Delete Line CTRL-U, CTRL-X
Delete Character DEL “a
Forward Space CTRL-F or right arrow key
Back Space CTRL-H or left arrow key
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESCAPE

Back Tab CTRL-B or up arrow key
Tab CTRL-I or TAB or down arrow key
Carriage Return RETURN
Line Feed LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1

Function 2 CTRL-E 2

Function 3 CTRL-E 3
Function 4 CTRL-E 4

Function 5 CTRL-E 5
Function 6 CTRL-E 6 ~
Function 7 CTRL-E 7

Function 8 CTRL-E 8

Function 9 CTRL-E 9
Function 10 CTRL-E 0

Heath / Zenith 19

EDITING KEYS

Delete Line

Delete Character
Forward Space
Back Space

CTRL-U,

delete

CTRL-F

CTRL-H

CTRL-X

key

INSTALL Terminal Interface

or right arrow key
or left arrow key

Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESC

Back Tab CTRL-B or up arrow key
Tab CTRL-I or TAB or down arrow key

CTRL-M or RETURN

CTRL-J or LINEFEED

Carriage Return
Line Feed

FUNCTION KEYS

Function 1 CTRL-E 1 or Fl key
Function 2 CTRL-E 2 or F2 key
Function 3 CTRL-E 3 or F3 key
Function 4 CTRL-E 4 or F4 key
Function 5 CTRL-E 5 or FS key

ow Function 6 CTRL-E 6 or ERASE key
Function 7 CTRL-E 7 or blue key
Function 8 CTRL-E 8 or red key
Function 9 CTRL-E 9 or white key
Function 10 CTRL-E O or SHIFT-ERASE key

Note

The key pad is enabled in unshifted mode. Use
SHIFT-2 for down arrow,
SHIFT-6 for right arrow,

SHIFT-4 for left arrow,
and SHIFT-8 for up arrow.

Microsoft COBOL Compiler User's Guide

IBM Display Writer

EDITING KEYS

Delete Line CODE-U or CODE-End or CODE-X
Delete Character DEL key or backspace key
Forward Space CODE-F or right arrow key
Back Space CODE-H or left arrow key
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESC

Back Tab CODE-B or SHIFT TAB or up arrow key
Tab CODE-I or TAB or down arrow key
Carriage Return CODE-M or RETURN
Line Feed CODE-J or LINEFEED

FUNCTION KEYS

Function 1 CODE-E 1 or Fl or SHIFT Fl

Function 2 CODE-E 2 or F2 or SHIFT F2
Function 3 CODE-E 3 or F3 or SHIFT F3

Function 4 CODE-E 4 or F4 or SHIFT F4
Function 5 CODE-E 5 or F5 or SHIFT F5

Function 6 CODE-E 6 or F6 or SHIFT F6
Function 7 CODE-E 7 or F7 or SHIFT F7

Function 8 CODE-E 8 or F8 or SHIFT F8
Function 9 CODE-E 9 or F9 or SHIFT F9
Function 10 CODE-E O or F10 or SHIFT FLO

INSTALL Terminal Interface

IBM PC

EDITING KEYS

Delete Line CTRL-U or CTRL-End or CTRL-X

ey Delete Character DEL key or backspace key
Forward Space CTRL-F or right arrow key
Back Space CTRL-H or left arrow key
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESC

Back Tab CTRL-B or SHIFT TAB or up arrow key
Tab CTRL-I or TAB or down arrow key

Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1 or Fl or SHIFT Fl

Function 2 CTRL-E 2 or F2 or SHIFT F2
Function 3 CTRL-E 3 or F3 or SHIFT F3
Function 4 CTRL-E 4 or F4 or SHIFT F4

Function 5 CTRL-E 5 or F5 or SHIFT F5
we Function 6 CTRL-E 6 or F6 or SHIFT F6

Function 7 CTRL-E 7 or F7 or SHIFT F?7
Function 8 CTRL-E 8 or F8 or SHIFT F8
Function 9 CTRL-E 9 or FY or SHIFT F9
Function 10 CTRL-E O or F10O or SHIFT F10

Microsoft COBOL Compiler User's Guide

Lear Siegler® ADM 42 Ergonomic Terminalw Video Display

EDITING KEYS

Delete Line CTRL-U or delete line key
Delete Character DEL key or delete char key “a
Forward Space CTRL-F or right arrow key
Back Space CTRL-H or left arrow key
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESC

Back Tab CTRL-B Or up arrow key
Tab CTRL-I or TAB or down arrow key
Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1 or Fl key
Function 2 CTRL-E 2 or F2 key
Function 3 CTRL-E 3 or F3 key
Function 4 CTRL-E 4 or F4 key
Function 5 CTRL-E 5 or F5 key
Function 6 CTRL-E 6 or F6 key ~
Function 7 CTRL-E 7 or F7 key
Function 8 CTRL-E 8 or F8 key
Function 9 CTRL-E 9 or FY key
Function 10 CTRL-E O or F10 key

INSTALL Terminal Interface

Microsoft MS-DOS 2.x ANSI Device Driver

EDITING KEYS

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

TERMINATOR KEYS

Escape
Back Tab
Tab
Carriage Return
Line Feed

FUNCTION KEYS

Function

Function

Function
Function

Function

Function
Function

Function
Function
Function PODNNHAM WN EH

CTRL-U,

DEL key
CTRL-F

CTRL~H

CTRL-X

or TAB

Or RETURN

or LINEFEED

OODNDNU &WN FE

Microsoft COBOL Compiler User's Guide

Victors 9000 and Sirius 1 Formats

EDITING KEYS

Delete Line ALT-U, ALT-X

Delete Character DEL key “A
Forward Space ALT-F or right arrow key
Back Space ALT-H or left arrow key
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape CLR HOME

Back Tab ALT-B or Alt-Tab or up arrow key
Tab ALT-I or TAB or down arrow key
Carriage Return ALT-M or RETURN
Line Feed ALT-J or LINEFEED

FUNCTION KEYS

Function 1 ALT-E 1 or Fl

Function 2 ALT-E 2 or F2
Function 3 ALT-E 3 or F3
Function 4 ALT-E 4 or F4
Function 5 ALT=E 5 or FS5

Function 6 ALT-E 6 or F6 “a
Function 7 ALT-E 7 or F7
Function 8 ALT-E 8
Function 9 ALT-E 9
Function 10 ALT-E 0

INSTALL Terminal Interface

Soroc IQm120

EDITING KEYS

Delete Line CTRL-U, CTRL-X
wy Delete Character DEL key

Forward Space CTRL-F or right arrow key

Back Space CTRL-H or left arrow key

Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESC

Back Tab CTRL-B or up arrow key
Tab CTRL-I or TAB or down arrow key
Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1
Function 2 CTRL-E 2

Function 3 CTRL-E 3
Function 4 CTRL-E 4

Function 5 CTRL-E 5
ey Function 6 CTRL-E 6

Function 7 CTRL-E 7

Function 8 CTRL-E 8

Function 9 CTRL-E 9
Function 10 CTRL-E 0

Microsoft COBOL Compiler User's Guide

TeleVideo 925/950

EDITING KEYS

Delete Line CTRL-U, CTRL-X

Delete Character DEL key
Forward Space CTRL-F or right arrow key
Back Space CTRL-H or left arrow key
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESC

Back Tab CTRL-B Or up arrow key
Tab CTRL-I or TAB or down arrow key
Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1 or Fl key

Function 2 CTRL-E 2 or F2 key
Function 3 CTRL-E 3 or F3 key
Function 4 CTRL-E 4 or F4 key
Function 5 CTRL-E 5 or FS5 key
Function 6 CTRL-E 6 or F6 key
Function 7 CTRL-E 7 or F7 key
Function 8 CTRL-E 8 or F8 key
Function 9 CTRL-E 9 or FY key
Function 10 CTRL-E O or F10 key

INSTALL Terminal Interface

Texas Instruments Professional Computer

EDITING KEYS

Delete Line CTRL-U, CTRL-X

ey Delete Character DEL key or backspace key

Forward Space CTRL-F or right arrow key
Back Space CTRL-H or left arrow key
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESC

Back Tab CTRL-B or backtab or up arrow key
Tab CTRL-I or TAB or down arrow key
Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1 or Fl or SHIFT Fl
Function 2 CTRL-E 2 or F2 or SHIFT F2
Function 3 CTRL-E 3 or F3 or SHIFT F3

Function 4 CTRL-E 4 or F4 or SHIFT F4

Function 5 CTRL-E 5 or F5 or SHIFT F5

wy Function 6 CTRL-E 6 or F6 or SHIFT F6
Function 7 CYRL-B 7 Or F7 or SHIFT F7

Function 8 CTRL-E 8 or F8 or SHIFT F8

Function 9 CTRL-E 9 or F9 or SHIFT F9

Function 10 CTRL-E O or F10O or SHIFT F110

Microsoft COBOL Compiler User's Guide

Wang Professional Computer

EDITING KEYS

Delete Line CTRL-U, CTRL-X

Delete Character DEL “A
Forward Space CTRL-F

Back Space CTRL-H
Plus Sign +
Minus Sign -

TERMINATOR KEYS

Escape ESCAPE

Back Tab CTRL-B
Tab CTRL-I or TAB
Carriage Return RETURN
Line Feed LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1

Function 2 CTRL-E 2

Function 3 CTRL-E 3
Function 4 CTRL-E 4
Function 5 CTRL-E 5

Function 6 CTRL-E 6 ~
Function 7 CTRL-E 7

Function 8 CTRL-E 8
Function 9 CTRL-E 9
Function 10 CTRL-E 0

INSTALL Terminal Interface

zenith Data Systems z-100™

EDITING KEYS

Delete Line CTRL-U, CTRL-X

ey Delete Character DEL key
Forward Space CTRL-F or right arrow key
Back Space CTRL-H or left arrow key
Plus Sign 4
Minus Sign -

TERMINATOR KEYS

Escape ESC
Back Tab CTRL-B or up arrow key
Tab CTRL-I or TAB or down arrow key
Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

FUNCTION KEYS

Function 1 CTRL-E 1 or Fl key

Function 2 CTRL-E 2 or F2 key
Function 3 CTRL-E 3 or F3 key
Function 4 CTRL-E 4 or F4 key
Function 5 CTRL-E 5 or F5 key

ew Function 6 CTRL-E 6 or F6 key
Function 7 CTRL-E 7 or F7 key
Function 8 CTRL-E 8 or F8 key
Function 9 CTRL-E 9 or FY key
Function 10 CTRL-E O or F10 key

oa: a

APPENDIX B

INTERPROGRAM COMMUNICATION

ie Calling Microsoft COBOL Programs 88

Bac Calling Assembly Language Subroutines

B.3 Chaining MS-COBOL Programs 93

B.4 Chaining Assembly Language Programs

=

95

90

Interprogram Communication

Interprogram communication is accomplished by using the

CALL or CHAIN statements. CALL temporarily transfers

control to another program or assembly language
subroutine, and CHAIN permanently transfers control to

another program. In linking, the calling and called

programs or subroutines are linked together, while

chained programs are linked separately. The various

communications possible with CALL and CHAIN are:

1. Temporary transfer of control from one
MS-COBOL program to another (CALL).

2. Temporary transfer of control from an MS-COBOL
program to an assembly language subroutine

(CALL).

. Permanent transfer of control from one

MS-COBOL program to another (CHAIN).

4. Permanent transfer of control from an MS-COBOL
program to an assembly language program

(CHAIN).

In addition to transferring program control, these

statements can transfer data between programs. This is
done with the USING and CHAINING clauses. In a CALL
statement, the USING clause lists parameters which give
the addresses of data to be acted on within the called
program. These data are specified in a corresponding
USING clause in the PROCEDURE DIVISION statement of the
called program. The called program makes any necessary
changes and then returns control to the calling
program.

When a program is chained, the USING clause of the
CHAIN statement also contains parameters, but in this
case the actual values of the parameters in the
chaining program are substituted for those of the
chained program. This happens because the runtime
system copies the data values listed in the chaining
program to high memory, loads the chained program into
memory, and copies the data values into their
corresponding parameters in the chained program. These
parameters are specified by a CHAINING clause in the
PROCEDURE DIVISION statement of the chained program.

Note that MS-COBOL programs are limited to passing 12
parameters, and the maximum number of files that may be
open in one run unit (a program linked together with
other programs or subroutines) may be limited. See the
Microsoft COBOL Reference Manual for more information

on space limitations.

Microsoft COBOL Compiler User's Guide

B.1 Calling Microsoft COBOL Programs

The CALL statement is used to temporarily transfer
control to another MS-COBOL program. The two programs
are compiled separately and are then linked together
(see Chapter 3). Control will be returned to the
calling program by an EXIT PROGRAM statement in the
called program.

The format of the CALL statement is:

CALL literal-1 [USING data-name-1 [, data-name-2] ...]

<literal> is the PROGRAM-ID defined in the
IDENTIFICATION DIVISION of a COBOL program. The
literal must be non-numeric and enclosed in
quotation marks.

<data-name(s)> are references whose addresses are

passed to the called program. Data-names are
discussed below.

The USING clause specifies data-items in the calling
program (that can be used by the called program.) For
example, a program that needed inventory totals could
CALL another program to calculate the totals and place
them into designated data-names in the calling program.
When this clause is used, the following requirements
must be met:

1. Within the calling program:

The data-names listed in the USING clause must

be declared in the WORKING-STORAGE SECTION of
the DATA DIVISION.

2. Within the called program:

The data-names corresponding to those in the

USING clause of the calling program must be
declared in the LINKAGE SECTION of the DATA
DIVISION and in a USING clause after the

PROCEDURE DIVISION header. The names in the

LINKAGE SECTION and in the PROCEDURE DIVISION

header must be in the same order.

Control is returned to the calling program by
an EXIT PROGRAM statement in the PROCEDURE
DIVISION.

The programmer must make sure that the data-items
listed in the calling program and in the called program

art ae

Interprogram Communication

are equivalent. See the Microsoft COBOL Reference

Manual for more detailed information on data-items.

Example:

Calling Program

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATA-NAME PIC 99.

PROCEDURE DIVISION.

CALL PROG2 USING DATA-NAME.

Called Program

ey IDENTIFICATION DIVISION.
PROGRAM-ID. PROG2.

DATA DIVISION.
LINKAGE SECTION.
01 LOCAL-REFERENCE PIC 99.

PROCEDURE DIVISION USING LOCAL—-REFERENCE.

EXIT PROGRAM.

Microsoft COBOL Compiler User's Guide

B.2 Calling Assembly Language Subroutines

An MS-COBOL program may call assembler subroutines.
(See your MS-DOS manual for instructions on writing
assembly language programs.) The runtime system
transfers execution to a subroutine by means of a
machine language FAR CALL instruction. Execution
should return via the MS-Macro Assembler RET
instruction.

Parameters are passed by reference (i.e., by passing
the address of the parameter). Parameter addresses are
passed on the stack (see Figure B.1).

Parameter 1

Return address
Return segment

Figure B.1. Contents of Stack at Entry to a Routine

Main Program Stack | High memory

Program Module Stack

sP —_> Intersegment return vector

The called routine must preserve the BP register
contents and remove the parameter addresses from the
stack before returning.

The subroutine can expect only as many parameters as

are passed, and the calling program is responsible for
passing the correct number of parameters. It is up to
the user to determine that the type and length of
arguments passed by the calling program are acceptable
to the called subroutine; neither the compiler nor the
common runtime system checks for the correct number of
parameters. Numeric values to be passed should be
declared as binary (i.e., USAGE IS COMP-0O in the

es ee

Interprogram Communication

WORKING-STORAGE SECTION of the calling program).

Because the stack space used by an MS-COBOL program is

contained within the program boundaries, assembler

programs that use the stack must not overflow or

underflow the stack. The best way to assure safety is

to save the MS-COBOL stackpointer upon entering the

routine and to set the stackpointer to another stack

area. The assembler routine must then restore the

saved MS-COBOL stackpointer before returning to the

main program.

To call an assembler program module, use the name of

the module in the CALL statement. The name of an
assembler program module is defined by a PUBLIC
directive and is declared as PROC FAR. Compile and/or
assemble the program(s) and assembly language
subroutine(s). Then link the called program module to
the calling program using MS-LINK, as described in
Chapter 3 in this manual and in your MS-DOS manual.

Microsoft COBOL Compiler User's Guide

Example:

COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE. “

*DEMONSTRATE CALLING AN ASSEMBLY LANGUAGE PROGRAM
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PARM1L PIC 99 COMP-0O VALUE 50.
77 PARM2 PIC 99 COMP-0 VALUE 45.
77 PARM3 PIC 99 COMP-0 VALUE 0.
77 PARI PIC 99.
77 PAR2 FIC 99.
77 PAR3-DIF PIC 99.
PROCEDURE DIVISION.
MAIN.

CALL 'SUBIT' USING PARM1, PARM2, PARM3.
MOVE PARM1 to PARI.

MOVE PARM2 to PAR2.
MOVE PARM3 to PAR3-DIF.

DISPLAY PARI] ' -— ' PAR2 ' = ' PAR3-DIF.
STOP RUN.

Assembly Language Program

assume cs:codeseg =)
parm struc ;Stack definition
Savebp dw ? ;saved caller's bp

dw ? ;caller's ip reg
dw ? ;caller's cs reg

parm3 dw ? ;addr 3rd parameter
parm2 dw z ;addr 2nd parameter
parml dw ? ;addr lst parameter

parm ends

codeseg segment para

public subit ;entry point
subit proc far s;iong call

push bp ;Save bp of caller
mov bp,sp ;set up stack frame
mov bx, [bp] .parml ;get addr of parml
mov ax, [bx] ;put value in ax
mov bx, [bp] .parm2 ;get addr of parm2
sub ax, [bx] ;sub values

mov di, [bp] .parm3 ;get addr of parm3
Mov [di] ,ax ;put result into parm3 “A
pop bp ;restore caller's bp
ret 6 s;restore stack

subit endp
codeseg ends

end

—

Interprogram Communication

B.3 Chaining MS-COBOL Programs

The CHAIN statement is used to permanently transfer
control to a separately compiled and separately linked
program, which is loaded into memory and executed. The
chained program can issue its own CHAIN statement or
may even issue a CHAIN statement to its original
chaining program, but it cannot issue an actual return
to the original program.

The format of the CHAIN statement is:

CHAIN tide } [USING identifier-2 ...]
identifier-1

<literal> or <identifier-l> is the file-name of an

executable program. The only difference between
them is that the literal must be enclosed in
quotation marks, while the identifier does not use

quotation marks. Both must be alphanumeric.
<identifier-l> must contain a terminating space.

<identifier-2> is a data-item identified in the

WORKING-STORAGE SECTION of the chaining program.

For more details about CHAIN format, see the Microsoft

COBOL Reference Manual.

If the USING clause is included, the values of the
data-items listed there will be copied to high memory,
and when the chained program is loaded and run, they

will be substituted for the equivalent values in the
chained program. This allows the user to run a new
program using values established in an earlier program.
When this clause is used, the following requirements
must be met:

1. Chaining Program

The data-items listed in the USING clause must

be declared in the WORKING-STORAGE SECTION of

the DATA DIVISION.

2. Within the Chained Program

The data-items corresponding to those in the
USING clause of the chaining program must be
declared in the WORKING-STORAGE SECTION of the
DATA DIVISION and in a CHAINING clause after
the PROCEDURE DIVISION.

Microsoft COBOL Compiler User's Guide

Example:

Chaining Program

DATA DIVISION.

WORKING-STORAGE SECTION.

O01 DATA-ITEM PIC 99.

PROCEDURE DIVISION.

CHAIN PROG2 USING DATA-ITEM.

Chained Program

DATA DIVISION.

WORKING-STORAGE SECTION.
01 LOCAL—-REFERENCE PIC 99.

PROCEDURE DIVISION CHAINING LOCAL-—-REFERENCE.

—— 7

Interprogram Communication

B.4 Chaining Assembly Language Programs

Assembly language programs are chained the same way as

MS-COBOL programs (see Section B.3). The following

additional information will be useful when you are

writing assembly language programs that will be

chained.

When the USING clause is included in the CHAIN

statement, the parameters passed between programs are

stored at the highest available memory address. This

address is determined from byte 2 of the program header
(see your MS-DOS manual for more information).

The memory layout is as follows, starting at the
highest available address and proceeding toward
location zero (see Figure B.2):

1. 256 bytes are reserved for stack space.

2. The first parameter in the USING list follows,
preceded by its length in bytes. The
parameter length is stored in two bytes,
high-order byte first. The parameter itself
is stored as a string of bytes in the same
order as the bytes were stored in the DATA
DIVISION, beginning at the address of the
length minus the length itself (see Figure
Reels

3. Each parameter in the USING list follows in
order, each preceded by its length in bytes.

The chained program must expect the same number and

format of parameters as were passed. No checking will
be done by the compiler or the common runtime system.

Microsoft COBOL Compiler User's Guide

+———-_ Highest memory location

Stack space
256 bytes

re @2

+#———-_ Length of parameter 1 (high byte) “a

<#———_-_ Length of parameter 1 (low byte)

—-__ Last byte of parameter 1

ge zy

+ First byte of parameter 1

+#———___ Length of parameter 2 (high byte)

+———__ Length of parameter 2 (low byte)

+ _ Last byte of parameter 2

Figure B.2. Memory Layout for Chained Programs ~

APPENDIX C

CUSTOMIZATIONS

ad Source Program Tab Stops 99

CVe Compiler Listing Page Length 99

Customizations

This appendix is intended for those who are proficient
with a debugger and/or assembly language and would like
to change some of the built-in parameters of Microsoft
COBOL.

C.1 Source Program Tab Stops

If tab characters (hex 09) are used in the MS-COBOL

source program, the compiler converts them into enough
Spaces to reach the next tab stop as defined in its
internal TAB table. The table originally defines ten

stops at the following columns (counting from column
1):

S,-12,. 20, 28, 36, 44, S285 Se; and 73

These may be changed by patching the table. The
address is 15 bytes from the start of COBOL.COM. There
is one byte in the table for each tab stop. You may
Supply any values you like, provided that:

1. the numbers are in ascending order

2. no more than 10 stops are defined

3. the last tab stop is 73

C.2 Compiler Listing Page Length

One byte in the compiler defines the page length of the
listing as 55 (hex 37) lines. Its location is 14 bytes
from the start of COBOL.COM, and it may be patched to
any value between 1 and 255.

ee en

APPENDIX D

COMPILER PHASES

Microsoft COBOL Compiler creates an object code program
from your source program. This is done in five
"phases," consisting of the root portion of the
compiler, COBOL.COM, and four overlays, COBOL1.OVR
through COBOL4.OVR. These are the phases referenced by
an error message such as "?Compiler error in phase n."

Compilation is performed in two passes:

The first pass creates an intermediate version of the
program, which is

COBIBF.TMP. This

Phase O (the
compiles the
DIVISIONS of

stored in a binary file called
is done in three steps:

root portion of the compiler)
IDENTIFICATION and ENVIRONMENT

the source program.

Phase 1 (COBOL1.OVR) compiles the DATA DIVISION of
the source program.

Phase 2 (COBOL2.OVR) compiles the PROCEDURE

DIVISION of the source program.

The compiler's second pass reads the intermediate file

and creates the object code:

Phase 3 (COBOL3.OVR) reads the intermediate file

and creates the object code.

Phase 4 (COBOL4.OVR) allocates file control blocks
and finalizes the object code.

APPENDIX E

REBUILD: INDEXED FILE RECOVERY UTILITY

El Overview 105

E.2z Running REBUILD 106

E.3 Sample REBUILD Session tig

- 103 -

REBUILD: Indexed File Recovery Utility

The Indexed File Recovery Utility (REBUILD) can be used
to recover or restore information contained within
indexed files. The indexed files that are compatible
with this utility are those that have been created by a
program compiled under MS-COBOL Version 1.00 or later.

E.l Overview

REBUILD works by reading the data file portion of an
indexed file and generating new key and data files for
that indexed file. The new indexed file has the same
structure as the old one. The utility will skip over
all deleted records and any other control records
within the data file.

Use of REBUILD is recommended in the following
Situations:

1. When space is exhausted during a WRITE
operation to the disk on which the indexed
file resides.

2. When electrical power to the computer system

is interrupted or the operating system is
rebooted while an indexed file is open in I-O
Or OUTPUT mode.

3. When the data file portion of the indexed file
contains large areas of unused space, usually
as a result of numerous record DELETE and
REWRITE operations, and especially when
records within the file have varying lengths.

Situation 1 (in the preceding list) occurs when WRITE
produces a boundary error (file status "24"),

indicating that the disk is full. When this happens,
you should perform a CLOSE in order to write as much
information as possible to disk. It is likely,

however, that the CLOSE will also return with a
boundary error. As in the case of a system failure
during the addition of records, the last 256 bytes of
information will not be present within the data file,
and is therefore not recoverable by REBUILD.

Recovery from situation 2 (in the preceding list) may
also be limited, because without a transaction file to
rebuild the indexed file, recovery from some types of
system failure is problematic. Because of the high

- 105 +

Microsoft COBOL Compiler User's Guide

degree of disk file buffering in memory, a system
failure may leave the data file with partially written
data records. This may cause REBUILD to fail to
completely recover an indexed file for two reasons:

1. Because a good deal of information is kept in a

memory, if the system failure occurred during
a file update job, the file may contain
records with both original and new
information. The recovery utility cannot
determine which part of the data was written
during the aborted job, and therefore cannot
exclude the new, incomplete data from the

rebuilt file. Adding a current date field to
data records may help discriminate between
Original and new data.

2. If the system failure occurred while records

were being added to the indexed file, the last
256 bytes of data will not be written to disk.
The recovery utility will detect that
information is misSing from the end of the
file but cannot add it to the recovered file.

E.2 Running REBUILD

REBUILD is itself an MS-COBOL program. Therefore, when
you are running REBUILD, COBRUN.EXE must be present on

a disk in the default drive or drive A.

Invoke the recovery utility by entering:

REBUILD

in response to the operating system prompt.

- 106 -

REBUILD: Indexed File Recovery Utility

The utility will respond with the following header
information:

REBUILD by Microsoft Corporation
Indexed File Recovery Utility

oy Ve. XXX

Use this utility to recover indexed files when
they are damaged, or to reorganize indexed files
by removing unused space.
Compatible indexed files are those generated by
MS-COBOL (C) for versions 1.00 and later.

The recovery utility will then ask a series of

questions. Your answers will provide the information
necessary for rebuilding a new indexed file from the
Original data file. The flow of control within the
recovery utility, as it relates to the operator, is
diagrammed in Figure E.1. Following the diagram are
detailed descriptions of the individual recovery steps
and a sample REBUILD session.

-~ 107 -

Microsoft COBOL Compiler User's Guide

Display title

Input key length <RETURN> —» Terminate run

valid

Input key position

<RETURN> valid

Input source filename =

<RETURN> valid -——— notfound

Input target filename aa:

<RETURN> valid ~<—_ no- soace

Recover files

Figure E.1. Control Flow Within REBUILD

- 108 -

REBUILD: Indexed File Recovery Utility

Input Key Length

Enter the key length in reply to the prompt:

Input the key length (in bytes) or

<RETURN> to terminate program ---->

Enter a key length or press <RETURN> to

immediately terminate the program. (Note
that, on some terminals, <RETURN> is labelled
aS NEWLINE or ENTER.) If you enter a key
length, the program will proceed to the next
prompt.

The key length should be a positive integer

that represents the number of bytes contained
in the item specified by the RECORD KEY clause
of an MS-COBOL program. Failure to enter the
correct key length may not hamper the

execution of REBUILD, but programs will not be
able to access the generated indexed file.

Input Key Position

Enter the key position in reply to the prompt:

Input the byte position of the key field,
Starting at 1, or <RETURN> to return to
the Key Length prompt ---->

Enter the position of the key data item within
the record; or press <RETURN> to move back to

the Input Key Length prompt in order to

correct information or terminate the program.
If you enter a key position, the program will
proceed to the next prompt.

The key position should be a positive integer
that represents the position within the record
of the data item specified by the RECORD KEY
clause of an MS-COBOL program. As with the
key length, REBUILD does not check whether an
incorrect response has been entered; but the
result of an incorrect response will be that
programs will not be able to access the
generated indexed file.

=~ 2 =

Microsoft COBOL Compiler User's Guide

ak Input Source File-name

Enter the file-name of the source file in

reply to the prompt:

Input the file-name of the source data “a

file (should not have extension of .KEY)

or <RETURN> to return to the Key Length
Pprosps. «<-->

Enter a file-name; or press <RETURN> to move

back to the Input Key Length prompt so that
you can correct and re-enter previous

information or terminate the program.

The source file-name should be the name that
is used in the VALUE OF FILE-ID clause in
MS-COBOL programs that refer to the indexed
file. The file-name used here should be the
name of the data file. The key file, which
has the same name but an extension of .KEY,
will not be used in the recovery operation and
should not be entered in response to this

prompt.

The source file-name may contain a drive
specifier. ~

After the source file-name is entered, REBUILD

will check for the presence of the file. If
it is not present, the following message will

be displayed:

***kSource file not found

and the Input Source File-name prompt will be

redisplayed.

Input Target File-name

Enter the file-name of the indexed file to be

generated in reply to the prompt:

Input the file-name of the target data

file
(should not have extension of .KEY)
or <RETURN> to return to the Key Length
Prom. <<<=>

Enter a file-name or press <RETURN>. AS

usual, <RETURN> moves you back to the Input

- 110 -

REBUILD: Indexed File Recovery Utility

Key Length prompt so that you can re-enter

information or terminate the program.

As with the source file, this name is the name

of the data file. Do not enter the key file,
ey which has the same name but the .KEY

extension.

The target file-name should be unique within a
directory. Therefore, if you wish to use a
name identical to the source file-name, you
should send the target file to a different
disk by including a drive specifier in the
file-name. The target file can be generated
on the same disk as the source file, but you
will have to use a different name. Once the
recovery operation is complete, you can then
rename the target file-name to the source
file-name.

If the recovery utility cannot successfully

Create a new indexed file, either because the
disk directory is full or because of
insufficient space on the disk, the program
will display the message:

le *** No space for target file

and will redisplay the Input Target File-name
prompt.

5. Recover File

After you have answered all questions, the

recovery utility will display:

Now reading <source-file>
and creating <target-file>

The program will begin building the new
indexed file from the old data file. When
this process is finished, the following
message will be displayed:

Conversion successfully completed.
Source records read: XXX ,XXX
Target records read: KEK, RKX

The record counts should match. If they do

not, some type of input-output error occurred

during the recovery operation.

- lll -

Microsoft COBOL Compiler User's Guide

Regardless of whether the record counts match,

REBUILD will then display another Input Key

Length prompt. You can begin another file
recovery operation (or redo the one that had
an input-output error) or terminate the

program. “

E.3 Sample REBUILD Session

The following program fragment accesses the indexed

file IXFILE.DAT:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONT ROL

SELECT IX-FILE
ASSIGN TO DISK
ORGANIZATION INDEXED
ACCESS DYNAMIC
RECORD KEY IX-KEY
FILE STATUS IX-STAT.

DATA DIVISION. ~
FILE SECTION.
FD IX-FILE

LABEL RECORD STANDARD
VALUE OF FILE-ID "IXFILE.DAT"
RECORD CONTAINS 75 CHARACTERS
DATA RECORD IX-REC.

O01 IX-REC.
05 IX-DATE PIC X(6).
05 IX-TIME PIC X(6).
05 IX-KEY.

10 IX-STATE PIC XX.
LO IxX-Cisz PIC X(20).
10 IX-STREET PIC X(30).

05 IX-2iP PIC .X(5) «
05 IX-ZONE PIC X(6).

~ 112. =

REBUILD: Indexed File Recovery Utility

For this program fragment, the responses to the REBUILD
utility would be:

Input Key Length: 52

os Input Key Position: 13

Input Source File-name: IXFILE.DAT

Input Target File-name: NEWIX .DAT

The result of the recovery operation would be to
generate a new indexed file with the key file-name
NEWIX.KEY and the data file-name NEWIX.DAT.

-~ 113 =

APPENDIX F

DEMONSTRATION PROGRAMS

CRTEST Be

CENTER bs i

MS-COBOL Demonstration System

=i ts =

Bad

Demonstration Programs

The following demonstration programs are included with
MS-COBOL Compiler.

F.1 CRTEST

CRTEST is a test program for the terminal interface, as
modified by the INSTALL utility program. CRTEST must
be compiled and linked before it can be run. (Follow
directions for compiling and linking in Section 1.5,
"Sample Session.") When you run the program, it will
prompt you for input.

F.2 CENTER

CENTER is a program that centers a line of text or

aligns it with the left or right margin. It is a
Simple MS-COBOL program that does not use sophisticated
screen handling features. Like CRTEST, it must be
compiled and linked before execution. It will also
prompt you for input.

F.3 MS-COBOL Demonstration System

The MS-COBOL demonstration system consists of three
MS-COBOL programs:

DEMO .COB
BUILD.COB

UPDATE .COB

Linked versions of these programs are also included on

your disks (DEMO.EXE, DEMO 01.OVL, UPDATE.EXE), so you
can run the demonstration system immediately after
running INSTALL.

DEMO is the executive program of the system. It asks
if you would like a demonstration of the MS—COBOL
SCREEN SECTION, or whether you would like to create or
update an indexed (ISAM) file of names, addresses, and
phone numbers.

- 117 -

Microsoft COBOL Compiler User's Guide

Use the following procedure to run DEMO.

1. Run INSTALL.

2. Either copy COBRUN.EXE onto the disk

containing the files DEMO.EXE, UPDATE.EXE and “a
DEMO 01.OVL; or insert a disk containing

COBRUN.EXE into drive A.

3. Insert the disk containing the files DEMO.EXE,

DEMO 01.0VL, and UPDATE.EXE into drive B.

4. Type

Bs

to make drive B the default drive.

5. Now type:

DEMO

When DEMO has been loaded, it will ask you if
INSTALL has been run. If INSTALL hasn't been
run, cancel the job. (If you continue, you
will have to restart the system to exit from
DEMO.) ~

If INSTALL has been run, DEMO will prompt you
for input by providing menus and information
screens to guide you through the
demonstration.

The COBOL source files for DEMO, BUILD, and UPDATE are

included to allow you to see the code that produces
screens and system files. To recreate the system from
the source files, perform the following steps:

1. Insert a disk containing the compiler
(COBOL.COM) and COBOL overlays (COBOL1.OVR
-COBOL4.OVR) into drive A. Insert the disk
containing DEMO.COB, DEMO.CPY, BUILD.COB, and
UPDATE.COB into drive B. We recommend that
you copy these files onto a blank disk to
allow room for object (OBJ) and executable
(EXE) files on the disk.

Make drive B the default drive by typing: a)

Bs

- 118 -

2.

-

3.

4.

~
ro

6.

Demonstration Programs

Now type:

A:COBOL DEMO, ,CON;

This compiles DEMO.COB and produces DEMO.OBJ.
The use of CON in the command line directs the
compiler listing to the terminal screen
(console); this allows you to watch the
program compile. You should receive the
message, "No errors or warnings" when the
compilation process is finished.

Type

A:COBOL BUILD, ,CON;

to compile BUILD.COB.

When the compilation process is finished, type

A:COBOL UPDATE, ,CON;

to compile UPDATE.COB. When that compilation
process is finished, type

<DIR *.OBJ>

You should find the files DEMO.OBJ, BUILD.OBJ,
and UPDATE in the directory listing.

Replace the disk in drive A with your utility
disk containing LINK.EXE, COBOL1.LIB,
COBOL2.LIB, and COBRUN.EXE. The file
COBRUN.EXE must already have been through the
INSTALL process.

Link DEMO.OBJ and BUILD.OBJ together by
typing:

A:LINK DEMO+BUILD,,,A:;

Note that both DEMO.EXE and DEMO 01.OVL are
produced.

Link UPDATE.OBJ by typing:

A:LINK UPDATE,,,A:;

“oie =

Microsoft COBOL Compiler User's Guide

Command file CLDEMO.BAT will compile and link these
programs as a batch process. This file uses the /D
(debug) compiler switch, so the .DBG files, used by the
debug facility, will not be produced.

This completes the demonstration programs.

- 120 =

APPENDIX G

MICROSOFT COBOL ERROR MESSAGES

Command Input and

Operating System I-O Errors i25

Program Syntax Errors Rey

Runtime Errors 140

Program Load Errors 143

MS-LINK Errors 144

Microsoft COBOL Error Messages

This appendix lists all the error messages you may
encounter while compiling and executing a Microsoft
COBOL program. Errors fall into the categories
described in the following paragraphs.

Compile Time Errors

Compile

=

time errors can be:

Command input errors and operating system

input/output errors. These errors will be
displayed as the errors occur during
compilation. When you receive one of these

messages, correct the problem and recompile.

Program syntax errors in the MS-COBOL source
program. These messages are placed at the end
of the listing file and are also shown on the
terminal. They consist of:

The source program line number, which is
four digits followed by a colon (:).

An explanation of the error. If the
explanation begins with an /F/
(inconsistent file usage) or a /W/

(warning), then the message is only a
warning; if not, the error is severe
enough to prevent you from linking and
executing the object file.

Whether or not a listing has been requested,
the syntax error messages will always be
listed on your terminal at the end of
compilation. A message displaying the total
number of errors or warnings is also
displayed. This feature allows you to make a
Simple change to a program, recompile it
without a listing, and still receive any error
messages at your terminal.

Program syntax error messages in this manual

are listed in alphabetical order, with /F/ and

/W/ warnings placed at the end of the list.
The number included with an /F/ warning
represents the order in which files are
entered in the FILE SECTION of the MS-—COBOL
program.

- 123 -

Microsoft COBOL Compiler User's Guide

Runtime Errors

Runtime errors can be:

1. MS-COBOL execution errors

Some programming errors cannot be detected by >

the compiler but cause the program to end
prematurely during execution. These runtime

errors are displayed in the format:

**RUN-TIME ERR:

reason
line number ?t
program-id

2. MS-COBOL program load errors

Chained programs, independent segments (1.e.,

overlays), and the common runtime executor
need to be loaded by the MS-COBOL runtime
system. During the loading process, the
normal mechanism for reporting runtime errors
may have been overlayed by the new program.
Therefore, the MS-COBOL loader generates its

own error messages. The format is:

**COBOL: problem ~

MS-LINK Errors

A list of MS-LINK error messages may be found in the

manuals that are supplied with your MS-DOS software.
For your convenience, we have also listed them in
Section G-5.

All linker errors cause the link session to abort.

After the cause has been found and corrected, MS-LINK

must be rerun.

+See the compiler switch /D, in Section 2.2.

- 124 -

Microsoft COBOL Error Messages

G.1 Command Input and Operating System I-O Errors

?Bad filename

A filename is not constructed according to the rules
of the operating system.

?Bad switch: /X

You have entered a switch parameter that the
compiler does not recognize.

?Can't create file

An output file cannot be opened. For example, the
output disk is write-protected.

?Command error:'X'!

You have an invalid character (X) in the command
line. For example, a file-name contains an @.

?Compiler error in Phase n at address

Usually caused by a damaged source program or

damaged compiler or overlay file. In the latter
case, try your backup copy.

If this does not work, you can sometimes determine
the cause of the error by compiling increasingly
larger portions of the program, starting with only a
few lines, until the error recurs.

See Appendix D for a discussion of compiler phases.

?Disk X full

The disk in the specified drive is full. If x is
blank, it refers to the default drive.

?File not found

You have specified a file-name for input that does
not exist.

Microsoft COBOL Compiler User's Guide

?Memory full

Occurs when there is insufficient memory for all the

symbols and other information obtained from the

source program. It indicates that the program is

too large and must be decreased in size or split “a

into modules and compiled separately.

The symbol table of data-names and procedure-names

is usually the largest user of space during

compilation. All names require as many bytes as

there are characters in the name, with an overhead

requirement of about 10 bytes per data-name and 2

bytes per procedure-name. On the average, each line

in the DATA DIVISION uses about 14 bytes of memory
during compilation, and each line in the PROCEDURE
DIVISION uses about 3 1/4 bytes.

?O0verlay n not found

One of the MS-COBOL Compiler overlay files

(COBOLnN.OVR) is not on the disk. It may have been
written to another disk or destroyed. Recompiling
and relinking may eliminate the problem.

- 126. -

Microsoft COBOL Error Messages

G.2 Program Syntax Errors

A FILE-ID NAME IS UNDEFINED.

A data-name specified in a VALUE OF FILE-ID clause
es is not defined.

A PARAGRAPH DECLARATION IS REQUIRED HERE.

An EXIT statement is not followed by a section or
paragraph header.

AREA A NOT BLANK IN CONTINUATION LINE.

A character was encountered in Area A.

AREA-A VIOLATION; RESUMPTION AT NEXT

PARAGRAPH/SECTION/DIVISION/VERB.

The entry starting in one of columns 8-12 cannot be
interpreted as a division header, section name,
paragraph name, file description indicator, or 01 or
77 level number.

CLAUSES OTHER THAN VALUE DELETED.

The data-description of a level 88 item includes a
descriptive clause other than VALUE IS.

ELEMENT LENGTH ERROR.

The length of the quoted literal is over 120
characters; or the numeric literal is over 18
digits; or the identifier/name is over 30
characters.

ERRONEOUS FILENAME IS IGNORED.

An entry which has not been declared as a filename
appears where a filename is required.

ww ERRONEOUS QUALIFICATION; LAST DECLARATION USED.

The qualifiers used with a data-name are incorrect
Or are not unique.

~ Lai o=

Microsoft COBOL Compiler User's Guide

ERRONEOUS SUBSCRIPTING; STATEMENT DELETED.

Too few or too many subscripts are provided for a
data-name.

EXCESSIVE LITERAL POOL OR DISPLAY STRING LENGTH.

The total length of the literals contained within a

single paragraph is greater than 4096 bytes.

EXCESSIVE NUMBER OF FILES/4KB WORKING-STORAGE BLOCKS.

The sum of (number of files declared) + (size of

WORKING-STORAGE divided by 4KB and rounded up) +
(number of level O01 and level 77 entries in the
LINKAGE SECTION) is greater than 14.

EXCESSIVE OCCURS NESTING IS IGNORED.

OCCURS clauses are nested more than three deep.

EXCESSIVE SEGMENT NUMBER.

A section header contains a section number greater

than 99.

EXCESSIVE SEGMENT NUMBER IN DECLARATIVES.

A section header in the DECLARATIVES region contains

a section number greater than 49.

FILE NOT SELECTED; ENTRY BYPASSED.

An FD is given for a file-name which does not appear

in any SELECT sentence.

FILL CHARACTER CONFLICT.

In a Format 3 ACCEPT statement, SPACE-FILL and

ZERO-FILL are both specified.

— 12a =

Microsoft COBOL Error Messages

FRACTIONAL EXPONENT OR NEGATIVE SCALED BASE (99P).

In a COMPUTE statement, an exponent is a numeric

literal with a decimal point or a numeric data-item
described with a digit to the right of an assumed

ley decimal point; or the PICTURE of an exponentiation
base (entry preceding **) contains the character P
as the rightmost digit.

GROUP ITEM, THEREFORE PIC/JUST/BLANK/SYNC IS IGNORED.

A phrase which is only allowed for elementary
data-items is used in the description of an item
that is followed immediately by an item of a higher
level number.

GROUP SIZE GREATER THAN 4095; LENGTH SET TO 1.

The size of an item at a level other than 01 is
declared to be greater than 4095 bytes.

ILLEGAL CHARACTER.

ey An invalid character has been encountered.

ILLEGAL COPY FILENAME.

The filename for the copy file is invalid.

ILLEGAL MOVE OR COMPARISON IS DELETED.

The operands of a MOVE statement or relational
condition are incompatible.

IMPERATIVE STATEMENT REQUIRED. STATEMENT DELETED.

A conditional statement is contained within a

conditional statement other than IF.

IMPROPER CHARACTER IN COLUMN 7.

wy An invalid character in column 7 has been
encountered.

~- 129 =

Microsoft COBOL Compiler User's Guide

IMPROPER PICTURE. PIC X ASSUMED.

An invalid PICTURE clause has been encountered.

IMPROPER PUNCTUATION. -

Incorrect punctuation has been encountered. For

instance, a comma or period must be followed by a

space.

IMPROPER REDEFINITION IGNORED.

The data-name specified in a REDEFINES clause is not

at the same level as the current data-name, or it is

separated from it by an item with a lower level

number.

IMPROPERLY FORMED ELEMENT.

Incorrect syntax for an item has been encountered.

For instance, you may have ended a word with a
hyphen or used multiple decimal points in a numeric

literal.

INCOMPLETE (OR TOO LONG) STATEMENT DELETED.

A verb immediately follows a partial statement form,

Or an otherwise acceptable statement is too large

for the compiler to read.

INDEXED/RELATIVE REQUIRES DISK ASSIGNMENT.

A file assigned to PRINTER is described as having
indexed or relative organization.

INVALID KEY SPECIFICATION.

The key item for a relative or indexed file should

not be subscripted, or it is inconsistent with the
file organization in class or USAGE. This message
is issued when the OPEN statement is processed.

INVALID QUOTED LITERAL.

A literal of zero length, improper construction, or

missing end quotes has occurred.

= 130 =

Microsoft COBOL Error Messages

INVALID SELECT-SENTENCE.

The syntax of a SELECT sentence in the FILE-CONTROL
paragraph is incorrect.

INVALID VALUE IGNORED.

The value specified in a VALUE IS phrase is not a
properly formed literal.

JUSTIFICATION CONFLICT.

In a Format 3 ACCEPT statement, LEFT-JUSTIFY and
RIGHT-JUSTIFY are both specified.

KEY DECLARATION OF THIS FILE IS NOT CORRECT.

The RELATIVE KEY clause is missing for a relative
file, or the RECORD KEY clause is missing for an
indexed file.

KEYS MAY ONLY APPLY TO AN INDEXED/RELATIVE FILE.

A RECORD KEY or RELATIVE KEY clause was specified
for a file with sequential or line sequential
Organization.

LITERAL TRUNCATED TO SIZE OF ITEM.

The literal specified in a VALUE IS phrase is larger
than the data-item being declared.

MISORDERED/REDUNDANT SECTION PROCESSED AS IS.

A section in the IDENTIFICATION, ENVIRONMENT, or
DATA DIVISION is out of order or repeated.

NAME OMITTED; ENTRY BYPASSED.

The data-name is missing in a data description
entry.

“13s. =

Microsoft COBOL Compiler User's Guide

NON-CONTIGUOUS SEGMENT DISALLOWED.

Two sections with the same number, larger than 49,

are separated by one or more sections with a

different number.

NO PICTURE; ELEMENTARY ITEM ASSUMED TO BE BINARY.

No PICTURE is given for an elementary data-item.

OCCURS DISALLOWED AT LEVEL 01/77, OR COUNT TOO HIGH.

An OCCURS clause appears in a data-description entry

at level 01 or 77; or the number of occurrences

specified is greater than 1023.

OMITTED WORD 'SECTION' IS ASSUMED HERE.

The required word SECTION is missing from the header

of a section in the DATA DIVISION.

PROCEDURE-NAME IS UNRESOLVABLE.

A reference to a section name or procedure-name is

not sufficiently qualified or is not unique.

PROCEDURE RANGE NOT IN CURRENT SEGMENT.

A PERFORM statement in .a section with a number

greater than 49 refers to a procedure in a section
with a different number greater than 49.

PROCEDURE RANGE SPANS SEGMENTS.

A procedure range (procedure-name-1l THRU
procedure-name-2) mentioned in a PERFORM statement
contains paragraphs in sections with different
section numbers greater than 49, or in sections

numbered both less than or equal to 49 and greater

than 49.

* 132°

Microsoft COBOL Error Messages

REDUNDANT FD PROCESSED AS IS.

The same file-name appears in more than one file
description.

os REWRITE VALID ONLY FOR A DISK FILE.

The file-name entry in a REWRITE statement is a file
assigned to PRINTER.

SEMANTICAL ERROR IN SCREEN DESCRIPTION.

This message can be caused in five different ways:

The SCREEN SECTION does not begin with a level
01 screen item description.

A level 01 screen item description does not
include a screen name.

A group screen item is described with a clause

which is allowed only for elementary items.

An elementary screen item description is missing
es FROM, TO, USING, or VALUE clauses.

A screen item description contains inconsistent

clauses (such as USING and VALUE).

SIGN CLAUSE IGNORED FOR UNSIGNED ITEM.

The PICTURE of a numeric item with USAGE IS DISPLAY
describes it as unsigned, but a SIGN IS clause is
present.

SINGLE-SPACING ASSUMED DUE TO IMPROPER ADVANCING COUNT.

The operand of the BEFORE or AFTER phrase of a WRITE

statement is not numeric, or it is outside the range
0-120.

wy SOURCE BYPASSED UNTIL NEXT FD/SECTION.

An error in a file description prevents further
analysis.

= 433. >

Microsoft COBOL Compiler User's Guide

STATEMENT DELETED BECAUSE INTEGRAL ITEM IS REQUIRED.

A numeric data-item whose PICTURE specifies digits

to the right of the decimal point is used where an
integer is required.

STATEMENT DELETED BECAUSE OPERAND IS NOT A FILENAME.

A name appearing where a filename is required has

not been declared as a filename.

STATEMENT DELETED DUE TO ERRONEOUS SYNTAX.

A syntax error, to which no more specific message
applies, is present.

STATEMENT DELETED DUE TO NON-NUMERIC OPERAND.

An alphanumeric or alphanumeric-edited item is used
as an operand of an arithmetic statement; a
numeric-edited item is used as an operand other than
the result; or a number is longer than 18 digits.

SUBSCRIPT O OR OVER MAX. NO. OCCURRENCES; 1 USED.

A literal used as a subscript is inconsistent with
the range defined by the associated OCCURS clause.

SUBSCRIPT OR INDEX-NAME IS NOT UNIQUE.

A name which requires qualification is used as a

subscript.

SYNTAX ERROR IN SCREEN DESCRIPTION.

A screen item description contains a clause which is
unrecognizable, improperly constructed, or
redundant.

UNRECOGNIZABLE ELEMENT IS IGNORED.

A required keyword is missing, or a data-name or

procedure name is unidentified.

- 134 -

Microsoft COBOL Error Messages

USING-LIST ITEM LEVEL MUST BE 01/77.

A name used in the PROCEDURE DIVISION header USING
list is not declared at level 01 or level 77.

VALUE DISALLOWED--OCCURS/REDEFINES/TYPE/SIZE CONFLICT.

The VALUE IS clause is specified for a data-item
described with (or included within an item described
with) an OCCURS or REDEFINES clause; or the literal
given in a VALUE IS clause is not compatible with
the PICTURE of the declared item.

VALUE OF FILE-ID REQUIRED.

The VALUE OF FILE-ID clause is not specified in the
file description of a file assigned to DISK.

VARYING ITEM MAY NOT BE SUBSCRIPTED.

The data-item controlled by the VARYING phrase of a
PERFORM statement is subscripted.

= 135 =

Microsoft COBOL Compiler User's Guide

File Usage Errors

/¥F/ FILE NEVER CLOSED.

No CLOSE statement is present for the file.

/F/ FILE NEVER OPENED.

No OPEN statement is present for the file.

/F/ INCONSISTENT READ USAGE.

An OPEN INPUT statement is present for a file, but
no READ statement; or vice versa.

/F/ INCONSISTENT WRITE USAGE.

An OPEN OUTPUT statement is present for a file, but

no WRITE statement; or vice versa.

- 136 -

Microsoft COBOL Error Messages

Warning Errors

/W/ BLANK WHEN ZERO IS DISALLOWED.

The BLANK WHEN ZERO phrase appears in the
description of an alphanumeric or
alphanumeric-edited item.

/W/ DATA DIVISION ASSUMED HERE.

The DATA DIVISION header is missing.

/W/ DATA RECORDS CLAUSE WAS INACCURATE.

The record-name(s) given in a DATA RECORDS clause

are not consistent with the record descriptions
following the file description.

/W/ ERRONEOUS RERUN-ENTRY IS IGNORED.

A RERUN clause of the I-O-CONTROL paragraph contains
a syntax error.

/W/ FD-VALUE IGNORED SINCE LABELS ARE OMITTED.

The VALUE OF FILE-ID clause is used in the
description of a file which is assigned to PRINTER.

/W/ FILE SECTION ASSUMED HERE.

The FILE SECTION header is missing.

/W/ INVALID BLOCKING IS IGNORED.

The BLOCK clause of an FD contains an error.

/W/ INVALID RECORD SIZE(S) IGNORED.

The RECORD clause of an FD contains an error.

~- ios =

Microsoft COBOL Compiler User's Guide

/W/ ‘LABEL RECORD STANDARD' REQUIRED.

The LABEL RECORD(S) STANDARD phrase is not present
in the FD of a file assigned to DISK.

/W/ LABEL RECORDS OMITTED ASSUMED FOR PRINTER FILE. “

The LABEL RECORDS OMITTED clause is missing in the
file description of a file assigned to PRINTER.

/W/ LEVEL 01 ASSUMED.

A record-description begins with a level number

other than Ol.

/W/ PERIOD ASSUMED AFTER PROCEDURE-NAME DEFINITION.

A section or paragraph header does not end with a
period.

/W/ PICTURE IGNORED FOR INDEX ITEM.

A data-item described with USAGE IS INDEX phrase ~

also has a PICTURE phrase.

/W/ PROCEDURE DIVISION ASSUMED HERE.

The PROCEDURE DIVISION header is missing.

/W/ RECORD MAX DISAGREES WITH RECORD CONTAINS; LATTER

SIZES PREVAIL.

The record size specified in the RECORD CONTAINS
clause of an FD is inconsistent with the sizes of
the associated record-descriptions.

/W/ REDUNDANT CLAUSE IGNORED.

The same clause is specified more than once ina

file description.

/W/ RIGHT PARENTHESIS REQUIRED AFTER SUBSCRIPTS.

The closing parenthesis for a subscript is missing.

=~ 138..-

Microsoft COBOL Error Messages

/W/ TERMINAL PERIOD ASSUMED ABOVE.

A data-description entry or paragraph does not end
with a period.

oy /W/ WORKING-STORAGE ASSUMED HERE.

The WORKING-STORAGE header is missing.

-~ ta) =

Microsoft COBOL Compiler User's Guide

G.3 Runtime Errors

CURSOR POSITION

You tried to position the cursor beyond the line or
column limits of the screen. A format 3 or 4 ACCEPT
statement or a DISPLAY statement with a
position-spec or screen-name is the statement
responsible for the error. If a screen has been
displayed or accepted, one or more fields within the
screen have starting positions outside the maximum

screen line or column.

DATA UNAVAILABLE.

You tried to reference data in a record of a file

that is not open or has reached the AT END
condition.

DELETE; NO READ.

You tried to DELETE a record of a sequential access
mode file when the last operation was not a
successful READ.

FILE LOCKED.

You tried to OPEN after an earlier CLOSE WITH LOCK.

GO TO (NOT SET).

You tried to execute a null GO TO statement which

has never been altered to refer to a destination.

ILLEGAL DELETE.

Relative or indexed file not opened for I-O.

ILLEGAL READ.

You tried to READ a file that is not open in the

INPUT or I-O mode.

- 140 -

Microsoft COBOL Error Messages

ILLEGAL REWRITE.

You tried to REWRITE a record in a file not open in
the I-O mode.

ILLEGAL START.

File not opened for INPUT or I-O.

ILLEGAL WRITE.

You tried to WRITE to a file that is not open in the
OUTPUT mode for sequential access files, or in the
OUTPUT or I-O mode for random or dynamic access
files.

INPUT/OUTPUT.

Unrecoverable I-O error, with no provision in the
user's MS-COBOL program for acting upon the
Situation by way of an AT END clause, INVALID KEY
clause, FILE STATUS item, or DECLARATIVES SECTION.

NEED MORE MEMORY.

The indexed file manager has ended abnormally
because of insufficient dynamically allocatable
memory.

NON-NUMERIC DATA.

Whenever the content of a numeric item does not

conform to the given PICTURE, this condition may
arise. Always check input data, if it is subject to
error (because input editing has not yet been done)
by using the NUMERIC test.

OBJ. CODE ERROR.

An undefined object program instruction has been
encountered. This should occur only if the absolute
version of the program has been damaged in memory or
on the disk file.

- 141 -

Microsoft COBOL Compiler User's Guide

PERFORM OVERLAP.

An illegal sequence of PERFORMS, as, for example,
when paragraph A is performed and another PERFORM A
is initiated prior to exiting from the first. ~

REDUNDANT OPEN.

You tried to open a file that is already open.

REWRITE; NO READ.

You tried to REWRITE a record of a sequential access

mode file when the last operation was not a
successful READ.

SEG nn LOAD ERR.

An error occurred while you were attempting to load

an overlayed segment. nn is 31 hex (49 decimal)
less than your overlay segment number.

SUBSCRIPT FAULT.

A subscript has an illegal value. This error may be
caused by an index reference whose value is less
than l.

- 142 -

Microsoft COBOL Error Messages

G.4 Program Load Errors

**COBOL: Attempt to use non-updated runtime module

(COBRUN . EXE)

This message appears when the version number in the

runtime libraries is not the same as that in the

runtime interpreter (COBRUN.EXE).

**COBOL: ERROR IN EXE FILE.

Error in loading chained or common runtime EXE file.

**COBOL: FILE 'filename' NOT FOUND. ENTER NEW DRIVE

LETTER. .

The chained file, segment file, or common runtime

file could not be found.

**COBOL: PROGRAM TOO BIG TO FIT IN MEMORY.

There is not enough memory available to load a

chained program or common runtime file.

- 143 -

Microsoft COBOL Compiler User's Guide

G.5 MS-LINK Errors

The following error messages are displayed by MS-LINK.

Attempt to access data outside of segment bounds, a
possibly bad object module

There is probably a bad object file.

Bad numeric parameter

Numeric value is not in digits.

Cannot open temporary file

MS-LINK is unable to create the file VM.TMP because

the disk directory is full. Insert a new disk. Do
not remove the disk that will receive the LIST.MAP
file.

Error: dup record too complex

DUP record in assembly language module is too ~
complex. Simplify DUP record in assembly language
program.

Error: fixup offset exceeds field width

An assembly language instruction refers to an

address with a short instruction instead of a long
instruction. Edit assembly language source and
reassemble.

Input file read error

There is probably a bad object file.

Invalid object module

An object module(s) is incorrectly formed or

incomplete (as when assembly is stopped in the “a
middle). Check for errors and recompile the module.

- 144 -

Microsoft COBOL Error Messages

Symbol defined more than once

MS-LINK found two or more modules that define a

Single symbol name.

Program size or number of segments exceeds capacity of
linker

The total size may not exceed 384K bytes and the
number of segments may not exceed 255.

Requested stack size exceeds 64K

Specify a size greater than or equal to 64K bytes
with the STACK switch.

Segment size exceeds 64K

64K bytes is the addressing system limit.

Symbol table capacity exceeded

Very many and/or very long names were entered,

exceeding the limit of approximately 25K bytes.

Too many external symbols in one module

The limit is 256 external symbols per module.

Too many groups

The limit is 10 groups.

Too many libraries specified

The limit is 8 libraries.

Too many PUBLIC symbols

The limit is 1024 PUBLIC symbols

- 145 -

Microsoft COBOL Compiler User's Guide

Too many segments or classes

The limit is 256 (segments and classes taken
together).

Unresolved externals: <list>

The external symbols listed have no defining module

among the modules of library files specified.

VM read error

This is a disk error; it is not caused by MS-LINK.

Warning: No stack segment

None of the object modules specified contains a
statement allocating stack space, but the user typed
the STACK switch.

Warning: Segment of absolute or unknown type

There is a bad object module or an attempt has been
made to link modules that MS-LINK cannot handle
(e.g., an absolute object module).

Write error in TMP file

No more disk space remains to expand VM.TMP file.

Write error on run file

Usually, there is not enough disk space for the run
file.

- 146 -

ACCEPT statement, 5

Assembly language sub-

routines, 90
Address function, 47

ASSIGN TO DISK clause, 39

ASSIGN TO PRINTER

clause, 42

> Sane Bt Stem

B+ tree, 41

Batch command files, 35
BAT file, 36

Bibliography, xv
BLOCK clauses, 39
Breakpoints function, 47

BP register, 90

BUILD.COB, 4

CALL statement, 32, ° 85
CENTER, il17
CENTER. COB, -4,° 97 103 ce
CENTER.DBG, 12

CENTER eae, a2

CENTER.LST, 11-12

CENTER.MAP, 12
CENTER.OBJ, 12

CENTER.PRN, ll

CHAIN statement, 32, 87,

93

CHAINING clause, 87

Change function, 47
CHeDSEK,. 22, 30, 32
CLDEMO.BAT, 5

COBDBG.OBJ, 4, 45

INDEX

COBIBF.TMP, 6, 19

COBOL commands, ll

COBOL .COM, 3, 6, .8,. 99
COSOL1 LIB, 35 Te 8%
25-26, 32

COBOL) .OVR, 3, 65: 7
COBOL2.LIB, 3, 8, 25-26,
32

COBOLZ.OVR, 35. Ts

COBOL3~OVR,; 3, 7s
COBOL4.OVR, 3, 7,
COBRUN.EXE, 4, 7, 8, 31+

56
COM1; At; 42

Command file, 29
Common runtime system, 90

COMP-0, 40

COMP-3, 40
COMPAQ, 69

Compilation process, 6
Compile time errors, 123
Compiler disk, 8-9
Compiler switches, 19-21
Compiling the source
program, ll

Coa ls 42
COPY utility, 5
Creating the source
program, 9

CREST, L117

CRTEST.COB, 4

Customizations, 99

Index

Damaged flags, 41

DATA DIVISION, 39, 45,
93-95

Data file, 42
Data Set Control

Biock, 41
Debug information
fite, 45

Debugging subprograms, 49
DEC VT-52, 70

DEC VT-100, 71
Defining your own
terminal, 59

Deleted granule, 41
DEMO.COB, 4

DEMO.CPY, 4

DEMO.EXE, 4

DEMO 0O1.OVL, 5

Demonstration
programs, 4, 117-120

Device, 17
DIR, 30, 32

Disk backup, 5
Disk file
Organization, 39

Disk files, 39
DISPLAY statement, 5

Distribution disks, 3
Dump function, 47

Dynalogic Hyperion, 72

EDLIN, 10
EDLIN.COM, 8

ENVIRONMENT DIVISION, 39

Error messages, 123-146
command input,

125-126
compile time, 123
file usage, 136

MS-LINK, 124,

144-146
operating system-
dependent I-O,

125-126
program load, 143
program syntax,

127-135
runtime, 124,
140-142

warning, 137-139

EXE file, 26

Executable file, 11

EXIT PROGRAM statement, 88
Exhibit function, 48
Extensions

«COB. “G7
LST, 27
Gait, 27

FAR CALL, 90

FD, 42
FD paragraph, 39
FILE-ID clause, 39
FILE SECTION, 39

FILE-CONTROL paragraph, 39
File-name

conventions, 17
extension, 17

FIPS flagging, 20

Granules, 41

Go function, 48

Goto function, 48

Help function, 49
Heath/Zenith 19, 73

IBM Display Writer, 74
IBM PC, 75

Indexed File Recovery
Utility, See REBUILD

INDEXED files, 41

INSTALL, 5

INSTALL program

steps, 58-65

INSTALL terminal

interface, 5, 53

INSTALL.COM, 4, 56
INSTALL.DAT, 4, 55-56
INSTALL.MSG, 4, 56

INSTALL.OVD, 4, 56

INSTALL.OVL, 4, 56
INSTALL.SPC, 4, 56
Interactive Debug
Facility, 45
Intermediate version, 6
Interprogram commun-

ication, 87

148 -

Key file, 41

Key Set Control Block, 41

Kill function, 49
Kill ALL function, 49

LABEL RECORD IS OMITTED

clause, 42

LABEL RECORDS ARE
STANDARD clause, 39

Leaf, 41
Lear Siegler ADM 42, 76
Libfile(s), 27
Libraries[.LIB]:, 26

Line function, 49
LINE SEQUENTIAL files, 40

LINK.EXE, 4, 8

LINKAGE SECTION, 88

Linking
large programs, 31

overlays, 30
program modules, 3l

Rist £116, 52), 28, 31

List File[NUL.MAP]:, 26
Listing page length, 99
Loading and executing
COBOL programs, 33

Bert, Li, 42
tete, LT, 42

MAP file, 26

Memor y-mapped
terminals, 55

MS-COBOL demonstration

system, 117
Me—TiINh. 6514. 239 os
MS-Macro Assembler, 90

Node, 41

Nondisk files, 42
NUL, L7

Object code, 6
Object Modules[.OBJ]:, 26

Objfile(s), 27
ORGANIZATION clause, 39
Organizing disks, 8

Output files, 42
Overlay files, 3, 5, 6,

Index

Page length, 99

PRN, 17, 42

PROC FAR, 91
PROCEDURE DIVISION, 45-46

PROCEDURE DIVISION Header
in called programs, 88
in chained programs,
88

PROGID, 30
PROGIDnn.OVL, 30
Program development, 8
Program disk, 8-9
Program load errors, 143
Program modules, 25, 32

assembly language, 25

COBOL, 25
Linking. 259. 32

Program syntax errors,

L27=535
PROGRAM-ID, 30

PUBLIC directive, 91

Quit function, 49

REBUILD, 105-106
REBUILD.EXE, 3

RELATIVE files, 40

RET, 90
RGOZ32, L7 5 42

Run file, 28, 31

Run File[.EXE]:, 26

Running terminal tests, 64

Runtime errors, 140-142

Runtime executor, 31, 33

Runtime system, 4, 7

Sample session, 8
Screen attributes, 63

Segmentation, 30
SELECT clause, 42

Serial-mapped
terminals, 55, 59

SEQUENTIAL files, 40

Sorec IO 120, 79

Stack contents, at entry
to subroutine, 90

Stackpointer, 91
Step function, 49

149 -

Index

Switches

fA Sg Ya
/D, 20-21, 45
/Fn, 20-21
TEs 20
ft; 19-20, 23

Syntax notation, xiv
System requirements, xi

Tab stops, 99

TeleVideo 925/950, 80
Terminals

memory-mapped, 55

serial-mapped, 55, 59
Texas Instruments

Professional Computer, 81
Trace function, 49
Trace OFF function, 49
Trial compilation, 10

UPDATE.COB, 4

UPDATE.EXE, 5

USAGE IS COMP-O, 90

USER, 17, 42
USING clause, 88, 93, 95
Using disk files, 39
USING list, 95
HEe2c ity diak, &
Utility software, 4

ode? 1? MEE

VALUE OF FILE-ID clause,

41-42

VALUE OF FILE-ID
paragraph, 39

Victor 9000 and
Sirius, 76

VM.TMP, 29

Wang Professional

Computer, 82

WORKING-STORAGE

SECTION, 88, 93

Zenith Data Systems
z~100, 83

Py

