
Microsoft®
COBOL Compiler

('

for the MStm-DOS Operating System

User’s Guide

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corporation.
The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms, of the agreement. It is
against the law to copy Microsoft COBOL on magnetic tape, disk, or
any other medium for any purpose other than the purchaser’s personal
use.

© Copyright Microsoft Corporation, 1983, 1984

If you have comments about the software or this documentation,
please complete the Software Problem Report at the back of this
manual and return it to Microsoft Corporation.

Microsoft and the Microsoft logo are registered trademarks, and MS is a trade
mark of Microsoft Corporation.
AT&T is a registered trademark of American Telephone and Telegraph.
COMPAQ is a trademark of COMPAQ Computer Corporation.
DEC is a registered trademark and RAINBOW and VT are trademarks of
Digital Equipment Corporation.
Hyperion is a trademark of Comterm Corporation.
IBM is a registered trademark of IBM Corporation.
IQ is a registered trademark of SOROC Technology, Inc.
Lear Ziegler is a registered trademark, and ADM 42 Ergonomic Terminal is a
trademark of Lear Ziegler, Inc.
Tele Video is a registered trademark of TeleVideo Systems, Inc.
Victor is a registered trademark, and Sirius is a trademark of Victor Technolo
gies, Inc.
Zenith and Heath are registered trademarks, and z-100, z-100-PC and z-150
are trademarks of Zenith Data Systems.

Document Number 8302A-200-03
Part Number 011-014-020

Contents

1 Introduction to the
Microsoft COBOL Compiler 1

1.1 Features and Benefits 4
1.2 How to Use This Manual 5
1.3 Notational Conventions 8
1.4 Learning More About COBOL 9

2 Getting Started 11

2.1 Microsoft COBOL System Software 13
2.2 Disk Backup 16
2.3 Compilation and Execution 16
2.4 Sample Session 17

3 Compiling
Microsoft COBOL Programs 23

3.1 Invoking the Compiler 25
3.2 The Source Listing File 33
3.3 Compiling Large Programs 33

4 Loading and Executing
Microsoft COBOL Programs 35

4.1 Finding .INT Files 37
4.2 Using Runtime Switches 38

5 Batch Command Files 39

iii

Contents

6 COPY Files and Libraries 41

6.1 Drive Designators and Paths 43
6.2 Specifying Paths to COPY Files 44
6.3 Library-Names as Paths to COPY Files 47

7 Data Input and Output 49

7.1 Using Disk Files 51
7.2 Disk File Organization 52
7.3 Using MS-DOS and Nondisk Files 54

Interactive Debug Facility 558

9

65

69

9.1
9.2

8.1
8.2
8.3

Using the Debug Facility
Debugging Commands
Debugging Subprograms

75
76

Overview of INSTALL
Starting INSTALL:

Is Your Terminal Included? (Step 1)
Defining a Terminal (Step 2) 70
Reviewing and Editing Answers (Step 3)
Running the Terminal Tests (Step 4)

INSTALL Program 63

9.3
9.4
9.5

57
58

61

10 Interprogram Communication 79

10.1 PROCEDURE DIVISION
Deader With CALL and CHAIN 82

10.2 Calling Microsoft COBOL Programs 82
10.3 Canceling the Called Program 86
10.4 Chaining MS-COBOL Programs 86
10.5 Calling MS-COBOL

Extension Subroutines 90
10.6 Calling Non-COBOL Subroutines 94
10.7 Chaining Non-COBOL Programs 105

Contents

11 REBUILD Utility Version 2.0 107

11.1 Invoking REBUILD 110
11.2 Definitions of

the Command Line Arguments 111
11.3 Using REBUILD as a Tool 114
11.4 Data Loss After a System Crash 118
11.5 Adding and Deleting Indexes 119
11.6 Creating and Using

a dd (ASCII) Text File 125
11.7 Data Dictionary 129
11.8 ASCII Version of

a Data Dictionary 130

Appendices 133

A Differences: Microsoft COBOL
2.0 and Previous Versions 135

B Compiler Phases 139

C Tab Stop Customization 141

D INSTALL Terminal Database 145

E Guide to the MS COBOL
Demonstration Programs 175

E.l CRTEST 177
E.2 CENTER 177
E.3 MS-COBOL Demonstration System 177

V

Contents

F Error Messages 179

F.l Compile Time Error Messages 181
F. 2 Runtime Error Messages 196

G Loading
the Indexed File Handler 201

G. l Loading ISAM 203
G.2 Using ISAM With Batch Files 204
G.3 Error Handling 204

Index 207

Runtime Licensing Information

The distribution policy for parts of the Microsoft COBOL Com
piler is as follows:

Neither the RUNCOB.EXE runtime module, nor the
REBUILD or INSTALL Utility can be distributed without
first entering into a license agreement with Microsoft Cor
poration for such distribution. A copy of the license agree
ment can be readily obtained by writing to Microsoft. In
addition, a copyright notice reading “PORTIONS COPY
RIGHTED BY MICROSOFT CORPORATION, 1984” must
be displayed on the media.
No other software in your Microsoft COBOL Compiler
package can be duplicated, except for purposes of backing
up your software. Other duplication of any of the software
in the Microsoft COBOL Compiler package is illegal.

System Requirements

Microsoft COBOL requires a minimum of 192K bytes of
memory. Additional memory may be required to run large pro
grams. Each MS-COBOL program is limited to 64K of code.
An MS-COBOL system consisting of a main program and one
or more subprograms may contain more than 64K of code, but
each program is limited to 64K of code. The entire system is
limited to approximately 60K of working storage data.

Two disk drives are recommended, although you can use
MS-COBOL with just one double-sided disk drive.

MS-DOS 2.0 or higher is required.

An MS-DOS CONFIG.SYS file should be present, and the
FILES command should specify FILES = 10 or more files.

vii

About These Manuals

The following manuals document Microsoft COBOL:

Microsoft COBOL Compiler Users Guide

Provides information on a particular implementation or operat
ing system. Included is a list of system requirements and a
description of disk contents. The User’s Guide also provides
general instructions on compiling, loading, and executing pro
grams on your operating system.

Microsoft COBOL Reference Manual

Contains detailed descriptions of the Microsoft COBOL
language. Information in the Reference Manual applies to
most implementations of the Microsoft COBOL Compiler.
(Exceptions are noted in the User’s Guide.)

Microsoft COBOL Quick Reference Guide

Outlines the COBOL program structure and gives the formats
of individual statements.

Chapter 1
Introduction to the
Microsoft COBOL Compiler

1.1 Features and Benefits 4
1.2 How to Use This Manual 5
1.3 Notational Conventions 8
1.4 Learning More About COBOL 9

1

Introduction to the Microsoft COBOL Compiler

The Microsoft® COBOL Compiler (MS™-COBOL), version 2.0,
runs under versions 2.0 and later of the Microsoft Disk Operat
ing System (MS-DOS), and accepts programs written in the
language defined in the Microsoft COBOL Reference Manual.
The Microsoft COBOL language conforms to the ANSI X3.23-
1974 COBOL requirements.

Thousands of existing COBOL applications written for larger
computers can be adapted and transported to Microsoft
COBOL. Through the INSTALL Utility you can configure MS-
COBOL to a large number of terminals, and take advantage of
MS-COBOL’s advanced interactive screen-handling features.

The Microsoft COBOL Compiler gives you COBOL’s high-level
programming language advantages, as well as many exten
sions to the full language standard COBOL. The purpose of
this User's Guide is to help you get a Microsoft COBOL pro
gram up and running on your computer.

Two important features of this version of COBOL are the abil
ity to run programs configured for a particular terminal, and
the ability to run programs that make use of indexed (ISAM)
files. Compiled programs that use either of these features
require special consideration before they will run.

In the case of a program that depends on a particular terminal
configuration, you will need to first run the INSTALL program
to configure the MS-COBOL Runtime Executor. For more
information, see Chapter 9, "INSTALL Program.”

For a program that manipulates ISAM files, you will need to
first load the Microsoft Multi-Key ISAM Facility, before the
given program is executed, because the MS-COBOL Runtime
Executor expects to find Microsoft ISAM resident in main
memory at runtime. For more information about loading
Microsoft-ISAM, see Appendix G, "Loading the Indexed File
Handler.”

3

Microsoft COBOL Compiler User’s Guide

1.1 Features and Benefits

1. Microsoft COBOL can define entire interactive termi
nal screens, and permits single-statement data entry
and display. MS-COBOL supports interactive data
entry with:
a. automatic cursor positioning
b. automatic numeric field editing
c. data field screen attributes such as REVERSE

VIDEO and HIGHLIGHT
These capabilities come from Microsoft extensions to
the DATA DIVISION (SCREEN SECTION) and the
PROCEDURE DIVISION (ACCEPT and DISPLAY
statements). (See Section 6.4.4, "SCREEN SECTION,”
and Formats 1, 3, and 4 of the ACCEPT and Format 3
of the DISPLAY statement in Chapter 7, "PRO
CEDURE DIVISION,” in the Microsoft COBOL Refer
ence Manual.)

2. COMP-O, COMP-3, and COMP-4 data formats are
available. COMP-O and COMP-4 are two- and four-byte
binary integers, respectively. COMP-3 format packs
numeric data two digits per byte. All three data types
can be used to reduce DATA DIVISION memory
requirements, reduce data-file storage requirements,
and increase the execution speed of certain operations.

3. Lowercase characters are treated as upper case, unless
they are part of a non-numeric (quoted) literal.

4. The dynamic debugging statements READY TRACE,
RESET TRACE, and EXHIBIT allow the display of pro
cedure names or data-items during program execution.
The Interactive Debug Facility, a standard COBOL
feature, provides extensive runtime debugging func
tions.

5. The SELECT clause of the ENVIRONMENT DIVISION
supports a split-key option with both the RECORD
KEY and the ALTERNATE RECORD KEY clauses.

6. A CHAIN statement and a CHAINING phrase extend
the scope of interprogram communication and allow
any program to be loaded into memory and executed.

4

Introduction to the Microsoft COBOL Compiler

7. A file sharing construct supports file processing in
multi-user/multi-tasking systems. The new syntax
applies in the OPEN, READ, START, and UNLOCK
statements, and the SELECT clause. This syntax is
supported by the MS-COBOL Compiler, but record lock
ing is not supported at runtime under MS-DOS version
2.xx.

8. Sort file-status reporting is implemented through the
SORT STATUS clause in the FILE-CONTROL entry
for a sort file.

9. The built-in extension subroutines, EXIST, RENAME,
REMOVE, COMMAND, UPCASE, LOCASE and
EXCODE, described in Chapter 10, “Interprogram
Communication,” provide additional facilities not nor
mally available to COBOL programs.

Microsoft COBOL supports four file types: Sequential, Line
Sequential, Relative, and Indexed. A Microsoft COBOL
Indexed file is created by the Microsoft ISAM Facility and
restored by the Rebuild Utility. The Microsoft ISAM Facility,
which is included with Microsoft COBOL, provides fast, ran
dom retrieval of Indexed data records. Refer to Appendix G,
“Loading the Indexed File Handler,” for more information on
the ISAM facility.

1.2 How to Use This Manual

This manual provides information on compiling Microsoft
COBOL source programs with the MS-COBOL Compiler, and
executing the generated code with the runtime executor,
RUNCOB.EXE.

Chapter 1 describes the capabilities of the Microsoft COBOL
Compiler.

Chapters 2 through 4 explain how to compile, load, and execute
an MS-COBOL program. These chapters also contain informa
tion specific to your MS-COBOL implementation.

5

Microsoft COBOL Compiler User’s Guide

Chapter 5 tells you how to set up a batch command file to
"compile, load, and go.”

Chapter 6 explains the definition of search paths for COPY
files. This discussion includes the use of library-names in the
COPY statement, and the compiler command line /S switch
with full pathnames.

Chapter 7 explains the four disk file organizations: Sequential,
Line Sequential, Relative, and Indexed. It also describes how
to use disk input/ output files and other types of files.

Chapter 8 tells you how to use the Interactive Debug Facility
to correct program errors at runtime.

Chapter 9 tells you how to configure MS-COBOL to your termi
nal (required before executing compiled programs that use
MS-COBOL interactive screen extensions).

Chapter 10 explains interprogram communication with the
CALL and CHAIN statements. Included in this discussion is an
explanation of MS-COBOL’s Extension Subroutines.

Chapter 11 describes the Rebuild Utility, which allows you to
recover or restore Indexed file information.

Appendix A explains the differences between the Microsoft
COBOL Compiler 2.0 and previous versions.

Appendix B describes the five phases of the MS-COBOL Com
piler. This appendix may be useful if your program generates
a "Compiler Phase Error.”

Appendix C shows you how to modify MS-COBOL’s tab stops.

Appendix D lists key assignments for special functions that
apply to your terminal. It also contains a list of terminals sup
ported by the INSTALL Utility.

Appendix E describes the demonstration programs included
with the MS-COBOL Compiler: a test program for the
INSTALL terminal interface, a simple MS-COBOL program,
and three programs that demonstrate the MS-COBOL screen
and Indexed file-handling capabilities.

6

Introduction to the Microsoft COBOL Compiler

Appendix F lists the compiler and runtime error messages.
Compiler error messages are arranged alphabetically within
four sections: command input and operating system 1-0 errors,
program syntax errors, file usage errors, and warnings. Run
time errors are in a separate alphabetical list.

Appendix G describes how to load and use the Microsoft Multi
Key ISAM facility (ISAM). ISAM performs Indexed file input
and output.

7

Microsoft COBOL Compiler User’s Guide

1.3 Notational Conventions

The following textual conventions are used throughout this
manual to represent elements of programming syntax.
Microsoft COBOL syntax requirements for individual language
elements can
Manual.

be found in the Microsoft COBOL Reference

[] Square brackets indicate that the
enclosed text is optional.

{}

1

Braces indicate that the user has a choice
between two or more entries. At least
one of the entries enclosed in braces must
be chosen unless the entries are also
enclosed in square brackets.
Braces also delimit the portion of a state
ment that is referred to by an ellipsis.

Vertical bars separate the choices within
braces. At least one of the entries must
be chosen unless the entries are also
enclosed in square brackets.

Ellipses indicate that an entry may be
repeated as many times as needed or
desired.

Italics Italics represent user-entered data, and
will appear in two forms. Lowercase ital
ics indicate the type of text a user must
enter. For example, CALL filename
prompts the user to enter the name of a
file. UPPERCASE ITALICS represent
data which must be entered exactly as
shown.

INPUT/
OUTPUT

This typeface represents input and output
as well as computer displayed text. All
caps in a command line represents text
that must be entered exactly as shown.

8

Introduction to the Microsoft COBOL Compiler

CAPS Small caps represent a key or combina
tion of keys.

All other punctuation, such as commas, colons, slash marks,
and equal signs must be entered exactly as shown.

1.4 Learning More About COBOL

If you are new to COBOL programming, you may want to
learn more about the language before using this manual. The
following texts are COBOL tutorials, written for the novice
programmer:

Abel, Peter. COBOL Programming: A Structured
Approach. Reston, VA.: Reston Publishing Co., 1980.
McCracken, Daniel D. A Simplified Guide to Structured
COBOL Programming. New York: John Wiley and Sons,
Inc, 1976.
Parkin, Andrew. COBOL for Students. London: Edward
Arnold Ltd, 1975.
Seidel, Ken. Microsoft COBOL. Beaverton, OR.: Dilithium
Press, 1983.
Welburn, Tyler. Structured COBOL — Fundamentals and
Style. Palo Alto: Mayfield Publishing Co, 1981.

9

Chapter 2
Getting Started

2.1
2.2
2.3
2.4

Microsoft COBOL System Software 13
Disk Backup 16
Compilation and Execution 16
Sample Session 17

11

Getting Started

The purpose of this User's Guide is to help you get a Microsoft
COBOL program up and running on your computer. To do
this, you need to perform two initial tasks, as well as under
stand the major steps involved in using MS-COBOL. This
chapter begins by listing the contents of your disks and by
telling you how to perform disk backup and terminal
configuration—two tasks generally performed only once. It
then presents an overview of the compilation process and a
sample program development session.

2.1 Microsoft COBOL System Software

This package contains one or more Microsoft COBOL distribu
tion disks. Disk 1 contains file FILES.DOC, which lists the
contents of the distribution disks.

Important
Disk 1 files FILES.DOC, UPDATE.DOC and IN
STALL.DOC may contain information that was unavailable
when this manual was printed. Locate and read these files
before attempting to use MS-COBOL.

The following files are included on your disk(s):

The MS-COBOL Compiler

COBOL.EXE the main compiler program
COBOLO.OVR overlay 0
COBOL1.OVR overlay 1
COBOL2.OVR overlay 2
COBOL3.OVR overlay 3
COBOL4.OVR overlay 4

13

Microsoft COBOL Compiler User’s Guide

Runtime System

RUNCOB.EXE the common runtime executor
DEBUGCOB.EXE the Interactive Debug Facility
ISAM.EXE the Indexed File Handler

Utility Software

REBUILD.EXE a program that recovers damaged
Indexed files

INSTALL.COM a program that performs terminal
interface configuration

INSTALL.MSG
INSTALL.OVL
INSTALL.SPC

files needed by the INSTALL pro
gram

INSTALL.DAT terminal data file for the INSTALL
program

Demonstration Programs

CRTEST.COB a test program for the terminal
interface, as customized by
INSTALL

CENTER.COB a test program for the MS-COBOL
Compiler and runtime system

CENTER.INT the compiled version of CENTER

The MS-COBOL Demonstration System

DEMO.COB a program to demonstrate the MS-
COBOL SCREEN SECTION, to
CALL the subprogram BUILD, and
to CHAIN to the program
UPDATE

DEMO.CPY a file used by the COPY verb in
DEMO.COB

14

Getting Started

BUILD.COB a program to create an Indexed
(ISAM) file of names, addresses,
and telephone numbers

UPDATE.COB a program to list or update the
ISAM file created by BUILD

CLDEMO.BAT a batch command file for compiling
the Demonstration System

Assembly Language Subroutine Libraries

COBOLl.LIB
COBOL2.LIB
DEBUG.LIB

MS-COBOL runtime libraries

COBOL1.OBJ
COBOL2.OBJ
DEBUG.OBJ
ASM.ASM
USERPROG.MAC
USERSEG.MAC
PSEG.MAC

modules needed for incorporating
assembly language routines into
the MS-COBOL runtime executor

MAKERUN.BAT batch file for linking new runtime
executor

MAKERUN 2 .BAT batch file for linking new runtime
executor on floppy disk systems

Miscellaneous Files

FILES.DOC a file listing the contents of the
distribution disks

UPDATE .DOC an optional file containing update
information

INSTALL.DOC an optional file containing IN
STALL update information

15

Microsoft COBOL Compiler User’s Guide

2.2 Disk Backup

When you first receive your disk(s), make copies to work with,
and save the original disk(s) as backups. Use the COPY or
DISKCOPY utilities supplied on your operating system disk for
this task.

Next, check your copy of the compiler and runtime system by
compiling and executing the test program, CENTER.COB. To
do this, refer to the sample program development session in
Section 2.4, "Sample Session.”

Finally, if your programs use the interactive ACCEPT and
DISPLAY facility in MS-COBOL, you must use the INSTALL
program to make MS-COBOL compatible with your terminal.
You must also run INSTALL before you can use the MS-
COBOL Demonstration System. See Chapter 9, "INSTALL
Program,” for more information.

2.3 Compilation and Execution

MS-COBOL programs are first compiled and then run. The
MS-COBOL Compiler consists of the main module
(COBOL.EXE) and five overlays (COBOLO.OVR through
COBOL4.OVR). The compiler routines analyze your COBOL
program and produce an object code file. This file will have a
.INT file extension.

Compilation is performed in two passes. The first creates an
intermediate version of the program, which is stored in a tem
porary work file. The second creates the final version of the
object code.

The runtime system (RUNCOB.EXE), hereafter referred to as
the "runtime executor,” loads and runs the compiled program.

16

Getting Started

Figure 2.1 outlines the “compile, load, and run” process.

MS-COBOL Compiler (COBOL.COM plus COBOLO.OVR
through C0B0L4.0VR)

Runtime System (RUNCOB.EXE) see Chapter 4,
“Loading and Executing Microsoft COBOL Programs”

Figure 2.1 Major Steps in Compiling and
Executing an MS-COBOL Program

2.4 Sample Session

The compilation and execution of an MS-COBOL program are
described in detail in Chapter 3, “Compiling Microsoft COBOL
Programs,” and Chapter 4, “Loading and Executing Microsoft
COBOL Programs.” To give you an overview of the MS-
COBOL system, however, the following sample session is pro
vided. We recommend that you work through the sample ses
sion and then read Chapters 3 and 4 before beginning to com
pile your own programs.
The examples in this sample session are designed for systems
with two disk drives of at least 160K capacity. The program
development steps, however, are appropriate for all implemen
tations of MS-COBOL.

17

Microsoft COBOL Compiler User’s Guide

Organize Your Disks (Step 1)

Organize the files on your disks to minimize disk-swapping and
“Disk Full” errors during program development. Usually, MS-
COBOL program development will require three working
disks: one for your source and object programs, one for the
MS-COBOL Compiler, and the other for the runtime executor,
the text editor, and any other necessary utilities.

For example, your three working disks might contain the fol
lowing files:

a. Program disk
Your MS-COBOL program (source and object files) will
be placed on this disk.

b. Compiler disk
COBOL.EXE
COBOLO.OVR
COBOL1.OVR
COBOL2.OVR
COBOL3.OVR
COBOL4.OVR

c. Utility disk
A text editor (e.g., EDLIN)
RUNCOB.EXE

The compiler disk should be copied from the distribution disk
(see Section 2.1, “Microsoft COBOL System Software”). It
should contain only the compiler.

During development, the program disk will be kept in drive B:,
and either the compiler disk or the utility disk (depending on
which disk is required at the time) will be in drive A:.

Drive B: should be selected as the default drive (where new
files are placed unless otherwise specified in the command).
This arrangement simplifies access to the program files by
placing them all on the same disk.

18

Getting Started

The MS-DOS PATH command should be executed now, or as
part of the AUTOEXEC.BAT file, to place drive A: on the sys
tem search path. To do this, type

PATH A:\

Setting the path will allow programs such as COBOL.EXE to
be found on the root directory of drive A: without an explicit
drive specification, and will allow MS-COBOL to find its over
lays on the root directory of drive A:.

See Section 3.1, “Invoking the Compiler,” for information on
compiler overlay searching. See your Microsoft MS-DOS User’s
Guide for information on the PATH command and AUTO
EXEC.BAT file.

Create the Source Program (Step 2)

In this sample session, we’ll use the sample program
CENTER.COB for the source program. CENTER asks you to
enter a line of text, and lets you choose whether to center the
text, or align it at the left or right margin. (CENTER can be
converted into a subroutine for your own use later.)

You may either transfer CENTER.COB from the MS-COBOL
distribution disk to your program disk, or use EDLIN or
another text editor to create your own source program. This
source program should also have the name CENTER.COB.

Transferring CENTER.COB

a. After booting the system as usual, place your program
disk in drive B. Then place the disk containing
CENTER.COB in drive A:. Copy it to your program
disk by typing
COPY A:CENTER.COB B:

b. Select B: as the default by typing
B:

19

Microsoft COBOL Compiler User’s Guide

Creating a Source Program with EDLIN

a. After booting the system as usual, place your utility
disk in drive A:. Then place the program disk in drive
B: and select B: as the default drive by typing
B:

b. Type the command
EDLIN A:CENTER.COB

to run the EDLIN editor program so you can write your
own MS-COBOL program.

c. When you have finished writing the program, use the
EDLIN "E" command to place the file CENTER.COB
on your program disk and exit to the operating system.

Check Program Syntax With Trial Compilation (Step 3)

Check your program for syntax errors with a “quick” compila
tion: compile the program and display the error listing on the
screen. No object or listing files are created, so compilation is
faster than usual.

a. Remove the utility disk and place the compiler disk in
drive A:.

b. To compile CENTER.COB and display a list of errors
on the terminal, type the command
COBOL CENTER,NUL;

The compiler first looks for its overlays (COBOLO.OVR
through COBOL4.OVR) in the current directory of the default
drive (drive B: in this example). If the overlays are not in the
current directory, the compiler uses either the MS-DOS search
path (defined by the PATH command) or a directory specified
on the command line by the /C switch (see Section 3.1.3,
“Using Compiler Switches”) to find them.

The previous example and those in Step 4 assume that drive A:
is on the search path as a result of your issuing the PATH
command, “PATH A:\”. When the PATH command has been

20

Getting Started

issued and the disks have been arranged as described in this
example, COBOL.EXE and its overlays will be found on drive
A:.

If errors occur during the trial compilation, go back to Step 2
and correct the source file (with the utility disk in drive A:).
See Appendix F, "Error Messages,” for a list of error messages
and explanations. When the trial compilation is error free, you
are ready to proceed to Step 4.

Compile the Source Program (Step 4)

Now the program is ready to be compiled. Compilation pro
duces the object file. First, make sure the compiler disk is in
drive A: and you are logged onto drive B:.

To compile the program and produce an object file (named
CENTER.INT), enter one of the following commands:

COBOL CENTER;

COBOL CENTER , 7PRN

COBOL CENTER,,CENTER

produces just the object file
produces an object file and
printed listing

produces an object file and a list
file (named CENTER.LST)

When compilation is successful, the message "No Errors or
Warnings” is displayed, and the compiler exits to the operating
system.

Your program disk now contains the following files:
CENTER.COB, CENTER.INT, CENTER.DBG, and, if you
requested a list file, CENTER.LST. The .DBG file will not be
used in this session, and may be deleted.

21

Microsoft COBOL Compiler User’s Guide

Load and Execute the Program (Step 5)

To run a program, you need the object file (CENTER.INT) and
the common runtime executor (RUNCOB.EXE). RUN
COB.EXE may be in either drive. The compiler will search for
it first on the default drive, then on drive A:.

In this example, CENTER.INT is on the program disk and
RUNCOB.EXE is on the utility disk in drive A:. Since we are
keeping the program disk in drive B:, and drive B: is selected
as the default drive, type

RUNCOB CENTER

Even though you’ve been very careful to remove all compile
time errors, runtime errors may still occur when the program
is run. Error messages are described in Appendix F of this
manual. If runtime errors occur, return to Step 2 and edit the
program to correct the errors.

22

Chapter 3
Compiling
Microsoft COBOL Programs

3.1 Invoking the Compiler 25
3.1.1 Filenames 27
3.1.2 Partial Command Strings 28
3.1.3 Using Compiler Switches 29
3.2 The Source Listing File 33
3.3 Compiling Large Programs 33

23

Compiling

As in Chapter 2, the sample commands in this chapter assume
that

1. The Microsoft COBOL Compiler disk is in drive A:.
2. Your program disk is in drive B:.
3. Drive B: has been selected as the default drive.
4. Drive A: has been placed on the MS-DOS search path

using the PATH command.

In the following examples, the file CENTER.DBG will be pro
duced in addition to the files specified. Files with a .DBG
extension are used by the Interactive Debug Facility (see
Chapter 8, “Interactive Debug Facility”). Use the /D compiler
switch to suppress .DBG files. However, since the .DBG file
assists in debugging, we recommend that you produce it during
program development.

3.1 Invoking the Compiler

Two methods may be used to invoke the MS-COBOL Compiler.
Note that the discussions in Sections 3.1.1, “Filenames,” and
3.1.2, “Partial Command Strings,” apply to both. Therefore,
you should read both of these sections before you begin to com
pile your own programs.

Note
The MS-COBOL Compiler first searches for its overlays
(COBOLO.OVR through COBOL4.OVR) in your current
directory. If the overlays are not found there, the direc
tories defined by your MS-DOS PATH environment are
searched. If the overlays are still not found, an error
results. You can also use the /C switch to specify the direc
tory or drive in which the overlays are to be found. The
following examples assume that an MS-DOS PATH A:\
command has been issued, so that drive A: is on the system
search path, and the compiler and its overlays will be
found in the current directory on drive A:.

25

Microsoft COBOL Compiler User’s Guide

1. You may invoke the compiler by entering the command
COBOL

and replying to the following prompts. (Filenames are
discussed in Section 3.1.1.)
Source filename [.COB]:

Name of your source program. A filename must be
specified. If no extension is specified, .COB will be
appended by default.
Object filename [source filename . I NT]:

Name of the object file to be created. The source
filename is the default filename. .INT is the default
extension, and the object file must always be given the
extension .INT.
Source 1 i 51 i ng [NUL . LST]:

Name of the file to which the program listing is to be
written. If a filename is entered, its default extension
is .LST. If no filename is entered, the default is NUL
(no list). See Section 3.2, "The Source Listing File,” for
further discussion of the list file.
Example: The following series of responses compiles
the source file CENTER.COB, producing the object file
CENTER.INT, the debug file, CENTER.DBG, and a
listing file CENTER.LST on the default drive:
COBOL
Source filename [.COB]: CENTER
Object filename [CENTER. INT]: RETURN
Source listing [NUL.LST]: CENTER

2. The compiler can also be invoked with the command
COBOL command string

where the command string contains
source filename , object filename , source listing[;]

as explained above and in Section 3.1.1, "Filenames.”

The separator character is the comma (,). No spaces
are allowed.

26

Compiling

When compilation is complete, you will be notified of any
errors. If errors exist, you must locate and correct them in the
source program and recompile the program before you run it.
If the compiler detected no errors, the message

No Errors or Warnings

will appear, and you may proceed.

If fatal errors were detected, MS-COBOL will set the MS-DOS
exit code to 255. This can be tested in a batch file with the
MS-DOS “IF ERRORLEVEL” command. See Chapter 5,
“Batch Command Files,” for more information.

3.1.1 Filenames

When you use either of the above methods to invoke the com
piler, the source, object, and listing files that you specify can be
the name of a disk file and/or a system device. The format is

device path filename extension

device is the name of a system device. This can be a disk
drive, terminal, line printer, or other device supported by the
operating system. If no device is specified, the current disk
drive will be used. If the device is a disk drive, the filename
must also be given, unless a default filename is available (see
the final example in Section 3.1.2, “Partial Command
Strings”). If the device is not a disk drive, only the device
name is required. The device may be followed by a colon (:)
for readability (it is required only for disk drives). MS-COBOL
recognizes the following device names:

NUL
CON or USER
A: or B: ...
PRN or LPT1
LPT2...
AUX or C0M1

Do not create
Display on terminal
Disk drive
Printer
Additional printer(s)
RS232

path is a valid MS-DOS path name. See the Microsoft MS-DOS
User’s Guide for information on paths. If path is not specified,
the current directory will be used.

27

Microsoft COBOL Compiler User’s Guide

filename is the name of the file on disk. If the filename is
specified without a device, the default disk drive is assumed as
the device. Maximum length of the filename is eight charac
ters.

extension is a period (.) followed by a one to three-character
suffix to the filename. If an extension is not specified, the fol
lowing defaults are assumed:

.COB for the source program file

.INT for the object file

.LST for the list file

3.1.2 Partial Command Strings

You may also enter a partial command string when invoking
the compiler. Note that the default object filename may be
specified by entering only the comma which normally follows
the filename. Also note that entry of a comma after the object
filename causes a default to the source filename. You will be
prompted for any files not specified in the command string.
For example, the command

COBOL CENTER 7,

would (1) prompt you for the source listing filename (with the
default name CENTER.LST), (2) compile the source from
CENTER.COB, and (3) produce the object file CENTER.INT.

Each prompt displays its default, which you may accept by
pressing RETURN or override by entering another filename or
device name.

If you enter an incomplete command string followed by a semi
colon (;), default entries will be assumed for the unspecified
files.

The following examples assume the compiler is in drive A: and
that drive B: has been selected as the default drive. Note that
in all the following examples the debug file, CENTER.DBG,
will also be produced on the default drive.

28

Compiling

1. COBOL CENTER ;
Compiles the source from CENTER.COB and produces
the object file CENTER.INT. No listing file is pro
duced.

2. COBOL CENTER » ;
See Example 1.

3. COBOL CENTER , , ;
Compiles the source from CENTER.COB and produces
the files CENTER.INT and CENTER.LST. (The second
comma tells the compiler to use the source filename as
the default list filename.)

4. COBOL CENTER , ,CON
Compiles the source from CENTER.COB and places the
source listing file on the terminal. The object program
is CENTER.INT.

5. COBOL CENTER,CENT0BJ7PRN
Compiles the source from CENTER.COB, sends the list
file to the printer, and places the object in
CENTOBJ.INT.

6. COBOL A:CENTER,CENTOBJ,A:
Compiles CENTER.COB from drive A:, places the
object into CENTOBJ.INT on drive B:, and places the
listing into CENTER.LST on drive A:.

3.1.3 Using Compiler Switches

You can add one or more switches to the compiler command
string or at the end of any interactive response. A switch is
indicated by a slash (/). Square brackets ([]) delimit optional
entries.

The format for a command string with switch(es) is:

drive : COBOL command string / switch(es)

29

Microsoft COBOL Compiler User’s Guide

Switches

IC[drive[:]][directory]
Ordinarily, the compiler looks for the five overlay files
(COBOLO.OVR through COBOL4.OVR) first in the current
directory, then in the directories specified in the MS-DOS
PATH command. The /C compiler switch specifies the drive
and/or directory in which the overlays will be found. If a single
character is specified after /C, as in C7CA”, the character is
assumed to be a drive name, and the current directory of the
disk in that drive is used. For example,
A:COBOL TEST.COB/C\USR\LEON\WORK

would direct the compiler to the first overlay in file
A: \ USR \ LEON \ WORK \ COBOLO.OVR

/D
This switch suppresses generation of both the debug informa
tion file (with a .DBG extension) and source line numbers,
which are normally placed in the object file. The result is a
shortened (by 16 percent) PROCEDURE DIVISION code. How
ever, when this switch is used, the runtime system will be
unable to note the line number at which an error occurs. (See
Chapter 8, "Interactive Debug Facility,” for more information.)
In this example,
A:COBOL CENTER/D;

the object file will contain no source line numbers and
CENTER.DBG will not be produced.

/Fn
Fn (FIPS) flagging lets you tell the compiler to output a warn
ing for each COBOL statement above the Federal Information
Processing Standard level (n). n must be a digit from 0
through 4 (4 is the default):

30

Compiling

0 Flag everything above low level.
1 Flag everything above low-intermediate level.
2 Flag everything above high-intermediate level.
3 Flag everything above high level.
4 No flagging.

In this example,
A:COBOL CENTER/F1 ;

the compiler will display a warning for each COBOL statement
above low-intermediate level. If you create a source listing
file, the warning will be included with the error messages.

/O (letter O)
This switch restores the default (old) tab settings of 7, 11, 19,
27, 35, 43, 51, 59, 67, and 72 that were used in previous ver
sions of MS-COBOL. See Appendix C, "Tab Stop Customiza
tion,” for more information.

/Pn
This switch sets the compiler listing page length to the value
of n lines, n must be an integer from 10 to 100. The default
page length is 66 lines.

/S [drive[:]][directory]
If the /S switch is used on the MS-COBOL Compiler command
line, the default directory and default drive may be changed for
COPY file searches.
For example, suppose that your copy file, FILE1, is in directory
\TEST on drive B: (not the current drive). The command line
that provides the compiler with the initial information about
FILEl’s location is
A:COBOL SAMPLE/SB:\NEW

31

Microsoft COBOL Compiler User’s Guide

SAMPLE.COB includes this COPY statement which gives the
final information about FILEl’s location:
COPY TEST\FILE1 .

The compiler finds FILE1 by constructing this path using the
following elements:

— the command line specified drive designator, B:
— the command line specified path, \NEW
— the COPY statement specified path, TEST
— the filename, FILE I

The final search path on which FILE1 is found is
B:\NEW\TEST\FILE1 .

See Chapter 6, "COPY Files and Libraries,” for more informa
tion on COPY files.

ITdrive
This switch lets you specify the location of the compiler’s inter
mediate file. (Default is the current directory on the default
drive.) The disk in the drive you specify must not be write pro
tected.
This option is particularly helpful for compiling very large pro
grams on systems with more than two drives (see Section 3.3,
"Compiling Large Programs”).
In this example,
A:COBOL CENTER,,A:CENTER/TA

the intermediate file is placed in the current directory on drive
A:. A colon is not allowed in the switch. (This example
assumes the default drive is B:.)

32

Compiling

3.2 The Source Listing File

The source listing file is a line-by-line account of the source
file(s) with page headings and error messages. Each source
line is preceded by a line number, which will be referenced by
any error messages pertaining to that source line.

Files included in the compilation through source file COPY
statements are also included in the listing.

Compiler error messages are shown at the end of the listing
file and displayed on the terminal. See Appendix F, "Error
Messages,” for a listing and explanation of error messages.

3.3 Compiling Large Programs

Occasionally, an MS-COBOL program may be too large to com
pile in the available memory space or may exhaust the avail
able disk space. There are several ways to take care of this
problem:

1. Use the /D switch in your command string (see Section
3.1.3, "Using Compiler Switches”) to prevent genera
tion of a debug information file and suppress genera
tion of line numbers in the object file.

2. Use the /T switch in your command string (see Section
3.1.3, "Using Compiler Switches”) to place the inter
mediate files on a separate disk.

3. Place the MS-COBOL Compiler (COBOL.EXE) and its
overlays (COBOLO.OVR through COBOL4.OVR) on two
separate disks. Then load each portion into memory
only as needed:
a. With the program disk in drive B:, place the

COBOL.EXE disk in drive A: and invoke the com
piler by typing "A:COBOL”.

b. When you receive the first prompt "Source filename
[.COB]:”, take out the COBOL.EXE disk and place
the overlay disk in drive A:. Then respond to the
compiler prompts as usual.

33

Microsoft COBOL Compiler User’s Guide

This method allows the space normally used by
COBOL.EXE to be available for the intermediate files.

4. Break the program into several program modules.
These modules can be separately compiled and then
run as a single program system. See Chapter 10,
"Interprogram Communication,” for information on
using program modules.

5. Break the large program into several smaller chained
programs. These programs are separately compiled.
See Chapter 10, "Interprogram Communication,” for
information on chaining programs.

6. Check the contents of your disk to make sure that the
compiler’s intermediate files, STX.$$$, DTA.$$$, and
LNK.$$$, have been deleted. Use the DIR operating
system command for this task. (Refer to the Microsoft
MS-DOS User's Guide for more information.)
If these files were not deleted at the end of compilation
because of abnormal termination, you can delete them
by typing "DEL *.$$$ ”.
To make sure that the space has been released, use the
CHKDSK program supplied with the Microsoft Disk
Operating System. CHKDSK reclaims available space
from unclosed files and tells you the total amount of
available space on the disk.

34

Chapter 4
Loading and Executing
Microsoft COBOL Programs

4.1 Finding .INT Files 37
4.2 Using Runtime Switches 38

35

Loading and Executing Microsoft COBOL Programs

Once your Microsoft COBOL program has been compiled suc
cessfully, use the runtime executor (RUNCOB.EXE) to load
and execute your program. Before you begin, be sure
RUNCOB.EXE is on one of the disks in your system.

To run your program, enter RUNCOB followed by the name of
your object file (omit the .INT extension). For example, to run
the demonstration object file CENTER.INT you would type

A:RUNCOB CENTER

Execution of CENTER.INT would begin immediately.

If any nonrecoverable errors are detected during execution, the
MS-DOS exit code will be set to 255. This can be tested with
the MS-DOS "IE ERRORLEVEL” command. See Chapter 5,
"Batch Command Files,” for more information.

4.1 Finding .INT Files

The runtime executor normally uses your MS-DOS PATH
environment to find your object (.INT) file. So, if your PATH
were

" .\BIN;\USR\BIN;\USR\LEON\BIN;USR\COBOL\BIN"

the runtime executor would check your current directory, and
then each of the directories specified in your PATH to find the
.INT file. There are two exceptions to this rule:

1. If your object file begins with the explicit path symbol
(\), or a drive designator (letter followed by a colon (:)),
only the directory specified by this path is searched.
For example,
RUNCOB\TEST\TEST1

finds the run file TEST1.INT in the directory TEST.
2. If the /S runtime switch is used in conjunction with a

valid pathname, that pathname becomes the default
search path. For example,

37

Microsoft COBOL Compiler User’s Guide

RUNCOB TEST/SB:\USR\LEON\WORK\BIN

finds TEST.INT on the search path
B: \ USR \ LE ON \ WORK \ BIN.

These searching conventions also apply to the loading and exe
cution of files called by the MS-COBOL CALL statement and
to the files loaded by the CHAIN statement.

4.2 Using Runtime Switches

You can add one or more switches to the runtime command
line, immediately after the object filename. The switches and
their parameters must be contiguous (without intervening
spaces).

The format for a runtime command string with switch(es) is

[drive :]R U N C 0 B object-file/switch(es)

Switches

IP Causes output files assigned to PRINTER to be
appended instead to file PRINT.SPL, in the
current drive and directory. For example,
RUNCDB TEST 1 /P

sends a PRINTER file to file PRINT.SPL.
/S [drive[:]][directory]

Provides a replacement search path for your
object files (.INT files). The runtime executor will
search the specified path if the .INT file is not in
the current directory. See Section 4.1, "Finding
INT Files,” for more information.

/V Changes the Format 2 ACCEPT statement
(described in Section 7.6.1.2 of the Microsoft
COBOL Reference Manual) to treat numeric
receiving fields as alphanumeric, in conformance
with the ANSI-74 COBOL standard.

38

Chapter 5
Batch Command Files

MS-DOS supports your use of batch command files to compile
and run your Microsoft COBOL programs.

For example, you could use the EDLIN editor to create a batch
file CLGO.BAT ("compile, load, and go”) containing the follow
ing text:

B:
COBOL 7° 1 , , ;
PAUSE Insert RUNCOB.EXE in drive A:
RUNCOB %1

The first line of the batch file will compile the program, pro
ducing a listing file; the second will cause a pause followed by
the reminder to insert the runtime disk; the third runs the
compiler-generated file.

To run the batch file, you would type

C L G 0 sourcefile

sourcefile is the name of the source program you want to com
pile, load, and run.

You may use symbols in the batch file to represent command
line parameters. In this case, the symbol "% 1” refers to the
first parameter, sourcefile, on the CLGO command line.

MS-DOS supports the need to pause, display a prompt, and
wait for you or an operator to continue. The PAUSE com
mand, followed by the user-defined text of the prompt, per
forms this function.

The MS-DOS exit code will be set to the value of 255 if the
MS-COBOL Compiler or runtime system encounter fatal
errors. It may also be set to a value from 0 to 255 with the
EXCODE extension subroutine, described in Section 10.5,

39

Microsoft COBOL Compiler User’s Guide

“Calling MS-COBOL Extension Subroutines.” The exit code
may be tested in batch files by using the “IF ERRORLEVEL”
command to stop a long batch job if errors are found.

For example, in the CLGO batch file you could test for compile
errors before running by adding an IF ERRORLEVEL state
ment:

B:
COBOL 7-1 , , ;
If ERRORLEVEL 255 GOTO END
PAUSE Insert RUNCOB.EXE in drive A:
RUNCOB 7-1
: END

Note
Your batch file must have the extension .BAT and should
be kept on either your program disk or the utility disk. A
.BAT filename must be unique: if the .COM file or .EXE
file have the same name as .BAT, the batch will not be
executed.

For more information about batch command files, see your
Microsoft MS-DOS User's Guide.

40

Chapter 6
_ COPY Files and Librariess -------------------------

6.1 Drive Designators and Paths 43
6.2 Specifying Paths to COPY Files 44
6.3 Library-Names

as Paths to COPY Files 47

41

COPY Files and Libraries

This chapter describes how a COPY statement file-name may
be qualified by a library-name, and how it may be found using
the library-name and an MS-DOS drive designator and path.

The COPY statement is a compiler-directing statement rather
than an executable statement. It logically embeds the text of a
disk file (other than the source file) in the source program. It
may be used anywhere in the ENVIRONMENT, DATA, or
PROCEDURE DIVISIONS. The general format of the COPY
statement is

COPY file-name [{OF I I N} library-name}

Note
The following discussion also applies to COPY statements
that are modified with the REPLACING phrase.

6.1 Drive Designators and Paths

An MS-DOS drive designator is a letter followed by a colon; for
example, A:. It specifies the disk drive on which a file will be
found. If no drive designator is specified in a file-name, the
current drive will be used during a file search.

A path is a series of directory names separated by backslashes
(\). If the first character in the path is a backslash, the search
path begins at the root directory; otherwise it begins at the
default directory (usually your current working directory). For
example:

\ TEST \ COBOL
NEW \ COBOL

starts from the root directory.
starts from the default directory (if
your default directory were “USER”,
the full path would be
\ USER \ NEW \ COBOL).

The default directory for COPY files is normally the current
directory on the current drive. A /S switch, if used on the MS-

43

Microsoft COBOL Compiler User’s Guide

COBOL Compiler command line, changes the COPY file
default directory for a specific drive. If no drive designator is
specified on the command line, the default directory for the
current drive is changed.

See your Microsoft MS-DOS User's Guide for more information
about drive designators, tree-structured directories, and paths.

6.2 Specifying Paths to COPY Files

If no drive designator or path is given for a filename, the MS-
COBOL Compiler searches the default directory for a COPY
file. This default directory is normally the current directory on
the current drive, so when the compiler encounters a COPY
statement such as

COPY FILE1 .

it searches the current directory for FILE1. If the COPY file
name is defined with a path

COPY \TEST\FILE1.

the compiler will search the directory TEST for FILE1 on the
current drive.

If the /S switch is used on the MS-COBOL Compiler command
line, the default directory and default drive may be changed for
COPY file searches.

For example, suppose that your copy file, FILE1, is in directory
\TEST on drive B: (not the current drive) and that \TEST is
also a subdirectory of \ NEW \ COBOL. The MS-COBOL com
mand line that informs the compiler of the initial information
about FILE I's location is

COBOL SAMPLE/SB:\NEW\COBOL

SAMPLE.COB includes this COPY statement which gives the
final information about FILEl’s location:

COPY TEST\FILE1 .

44

COPY Files and Libraries

The compiler finds FILE1 by constructing this path using the
following elements:

— the command line specified drive designator, B:
— the command line specified path, \ NEW \ COBOL
— the COPY statement specified path, TEST
— and the file-name, PILE I

The final search path on which PILE I is found is

B:\NEW\COBOL\TEST\FILE1.

In searching for file names, the MS-COBOL compiler will first
look for the name exactly as specified (e.g. FILED. If no file
with that name is found, and the specified file name contains
no extension, the extension “.COB” will be added to the file
name, and a search will be made for the new file name. For
example, if PILEI is specified, both PILEI and PILEI.COB
will be tried. If FILE1.CPY is specified, only that file name
will be used.

Examples — COPY Files With the Current Directory
Used as the Default Directory

For the following examples, assume that

1. The current drive is A:.
2. The current directory on drive A: is \TEST.
3. The current directory on drive C: is \TEST2.
4. The COBOL command line is

COBOL SAMPLE2

(No default directory is specified on the command line.)

In the following table, each COPY statement gives the com
piler some or all of the path information needed to find PILEI.
The compiler will use the specified file-name (lefthand column)
and the current drive and current directory values to produce
the full file-name (righthand column). Using any of these file
names, the compiler will find PILEI.

45

Microsoft COBOL Compiler User’s Guide

COPY statement

COPY FILE1 .
COPY COBOL\FILE1 .
COPY \C0B0L2\FILE1 .

COPY C:F I LE1 .
COPY C:COBOL\FILE1 .
COPY C:\C0B0L2\FILE1 .

Resulting file-name

A:\TEST\FILE1
A:\TEST\COBOL\FILE1
A:\C0B0L2\FILE1

C:\TEST2\FILE1
C:\TEST2\C0B0L\FILE1
C:\C0B0L2\FILE1

In the first two examples, both the drive and current directory
were picked up from the current system values, A: and \TEST.
(In the third example, only the current drive was picked up.)

In the fourth and fifth examples, the current directory for drive
C:, \TEST2, was used, and the specified drive superseded the
current drive A:. In the last example, where both the drive
designator and a path from the root directory were specified,
the file-name used was exactly the same as the file-name speci
fied in the COPY statement.

Examples — COPY Files With a Specified Default Directory

Suppose the COBOL command line were

COBOL SAMPLE3/SB:\NEW

specifying the default drive B:, and the default directory
\NEW. The resulting filenames for PILEI would be

COPY statement

COPY FILE1 .
COPY COBOLXFILE1 .
COPY \C0B0L2\FILE1 .

COPY C:FILE1 .
COPY C:COBOLXFILE1 .
COPY C:\C0B0L2\F I LE1 .

Resulting file name

B: XNEWXFILE1
B:XNEWXCOBOLXFILE1
B: XC0B0L2XFILE1

C:XTEST2XFILE1
C:\TEST2\C0B0L\FILE1
C: XC0B0L2XFILE1

The default path and drive designator are used only when the
COPY file-name specifies neither a drive designator nor a path
starting from the root directory. When specified, the values in
file-name override the default drive and directory. The speci
fied default directory affects only drive B:, the default drive

46

COPY Files and Libraries

used in the first three examples. Drive C:, specified in the last
three examples, still uses its own default directory, \TEST2.

6.3 Library-Names
as Paths to COPY Files

COBOL allows file-names used with the COPY statement to be
qualified by a library name. Under MS-COBOL for the MS-
DOS operating system, library names are implemented as part
of the MS-DOS subdirectory structure.

When a COPY statement in the following format is encoun
tered with a library-name specified:

COPY file-name [{DPI I N} library-name]

the compiler takes library-name to be the immediate directory
of file-name.

If file-name contains a drive designator, a library-name may
not be specified. If file-name contains a path from the root
directory, only library-names consisting entirely of a drive
designator are allowed.

Full paths to COPY files using library-names are built by first
prepending library-name, then a backslash (if required) to file
name. The resulting filename is then modified as necessary by
the default drive and directory.

Examples — COPY Files With Library-Names

For the following examples, assume that

1. The current drive is A:.
2. The current directory on drive A: is \TEST.
3. The current directory on drive C: is \TEST2.

47

Microsoft COBOL Compiler User’s Guide

4. The COBOL command line is
COBOL SAMPLE4

(No default directory is specified on the command line.)

In the following table, each COPY statement gives the com
piler some or all of the path information needed to find FILE1.
The filenames are all specified without drive designators or
paths.

COPY statement Resulting file name

COPY PILEI DE LIBI .
COPY PILEI OP COBOL\LIB1.
COPY PILEI OP \C0B0L2\LIB1.

A:\TEST\LIB1\PILE1
A:\TEST\COBOL\LIB1\FILE1
A:\C0B0L2\LIB1\FILE1

COPY PILEI INC:.
COPY PILEI IN C:LIBI .
COPY PILE1 IN C:COBOL\LIB1.
COPY FILE1 INC:\C0B0L2\LIB1

C:\TEST2\FILE1
C:\TEST2\LIB1\FILE1
C:\TEST2\C0B0L\LIB1\FILE1
C:\C0B0L2\LIB1\FILE1

Note that library-name may consist of only a drive designator.

If a default directory is specified in the command line, or file
name contains a drive designator or path, the resulting
filename is built according to the rules outlined in Section 6.2,
"Specifying Paths to COPY Files.”

48

Chapter 7
Data Input and Output

7.1 Using Disk Files 51
7.2 Disk File Organization 52
7.3 Using MS-DOS and Nondisk Files 54

49

Data Input and Output

A Microsoft COBOL program can read or write data to files on
disk or to other MS-DOS devices. The instructions for creating
and using these files are entered as part of the MS-COBOL
source program. This section explains disk files and other
types of files, and tells you how to use them with your MS-
COBOL programs. See the Microsoft COBOL Reference
Manual for more information.

7.1 Using Disk Files

To specify that a disk file is to be used in a program, include
the ASSIGN TO DISK clause in the FILE-CONTROL para
graph of the ENVIRONMENT DIVISION.

The file-name of the disk file must be declared in the VALUE
OF FILE-ID clause in a File Description (FD) paragraph, in
the FILE SECTION of the DATA DIVISION. The FD para
graph must also include the clause LABEL RECORDS ARE
STANDARD. BLOCK clauses are checked for syntax, but they
have no effect on any file type. If a disk file is to be used, the
FILE-ID clause should not be given an MS-DOS device name.
(See Section 7.3, "Using MS-DOS and Nondisk Files,” for a list
of MS-DOS device names.) This would cause the file to appear
on the specified MS-DOS device rather than on a disk drive.

There are four types of disk file organization:

Sequential
Line Sequential
Relative
Indexed

Disk files are assumed to be Sequential unless they are
declared otherwise in the ORGANIZATION clause in the
FILE-CONTROL paragraph of the program’s ENVIRONMENT
DIVISION.

51

Microsoft COBOL Compiler User’s Guide

Note also that only Line Sequential files can be created with
an editor. All others must be created by an MS-COBOL pro
gram or assembly language program. See the Microsoft
COBOL Reference Manual or one of the tutorials recommended
in Section 1.4, "Learning More About COBOL,” for more infor
mation about creating disk files.

7.2 Disk File Organization

The following paragraphs describe the four types of disk files.
(All formats are subject to change without notice.)

1. Sequential files have a two-byte count of the record
length, followed by the actual record, for as many
records as are in the file.

2. In Line Sequential files, each record is followed by a
carriage return/line feed pair as the delimiter for as
many records as are in the file. No COMP-O, COMP-3,
or COMP-4 fields should be written into a Line Sequen
tial file because these data-items may contain the same
binary codes used for carriage return, line feed, and
end-of-file. This would cause problems in reading the
file.

Note
If a Sequential or Line Sequential file created by a
program other than MS-COBOL version 2.0 or later
is to be OPENed with the EXTEND option, the file
must first be copied using one of the following
methods:
a. a program written in MS-COBOL version 2.0 or

later, or
b. a utility that will produce a file with MS-DOS

2.0 end-of-file format
This will ensure that the data file end-of-file format
will be acceptable to MS-COBOL.

52

Data Input and Output

Warning
Files created by line editors and non-COBOL pro
grams are often in Line Sequential format. If you
wish to use such a file as input to an MS-COBOL
program, you must include the ORGANIZATION IS
LINE SEQUENTIAL clause in its FILE-CONTROL
paragraph. If the clause is not included, MS-
COBOL assumes the file is in Sequential format,
and stops with a runtime error when the Line
Sequential file is input.

3. Relative files always have fixed-length records of the
size of the largest record defined for the file. Since no
delimiter is needed, none is provided. Deleted records
are filled with binary zeros. Additionally, six bytes are
reserved at the beginning of the file to contain system
bookkeeping information.

4. Each Indexed file declared in an MS-COBOL program
will generate two disk files: a key file and a data file.
The file specification in the VALUE OF FILE-ID clause
specifies a file containing data only. The file-name
included in the file specification is concatenated with
an extension .KEY to form the file specification of the
key file.
The key file contains keys, pointers to keys, and
pointers to data. The format of this file is very compli
cated, but follows the guidelines for a prefix B+ tree.t
The data file consists of data records and a data diction
ary that describes the data fields contained in the file.

tSee Douglas Comer, “The Ubiquitous B-Tree,” in Computing Surveys of the
ACM, Vol. II, no. 2 (June 1979), pp. 121-137.

53

Microsoft COBOL Compiler User’s Guide

7.3 Using MS-DOS and Nondisk Files

You do not need to place files on a disk if they will only be out
put. You can consider these files as a stream of characters
going to a printer or other device; no permanent file need be
created, and no extra characters are needed in the record for
carriage control. Carriage return, line feed, and form feed are
sent to the output device between lines. Note, however, that
blank characters (spaces) on the end of a print line are trun
cated to improve printing speed.

To send an output file to the printer, use the SELECT file
name ASSIGN TO PRINTER clause. Then, in an associated
FD, specify the clause LABEL RECORD IS OMITTED. Do not
specify the VALUE OF FILE-ID clause.

MS-DOS provides special device names for character devices.
Data may be sent to or read from

CON or USER
AUX or C0M1
PRN or LPT1
LPT2...

display on terminal
serial port (RS232)
printer
additional printer(s)

If you assign these names to the VALUE OF FILE-ID clause,
MS-COBOL treats the files as disk files (see Section 7.1,
"Using Disk Files”). That is, you assign the files to disk with
the SELECT clause, but the operating system uses the desig
nated device instead of a disk drive.

ORGANIZATION IS LINE SEQUENTIAL should be specified
in the FILE-CONTROL paragraph for files being sent to MS-
DOS devices.

54

Chapter 8
Interactive Debug Facility

8.1 Using the Debug Facility 57
8.2 Debugging Commands 58
8.3 Debugging Subprograms 61

55

Interactive Debug Facility

The MS-COBOL Interactive Debug Facility allows you to con
trol the execution of a program and to examine or change
data-items in an MS-COBOL program. When a program is
compiled, a "debug information file” is created along with the
object file, unless you have suppressed its creation with the /D
compiler switch. (see Section 3.1.3, "Using Compiler
Switches”).

This information file contains line numbers and data-names
from the DATA DIVISION and PROCEDURE DIVISION of
your MS-COBOL program. The debug commands listed in Sec
tion 8.2, "Debugging Commands,” can use these line numbers
and data-names to affect data-items and program execution in
a number of ways.

The compiler will create the debug information file with the
file-name of the MS-COBOL object program plus .DBG exten
sion. For example, compilation of a source file named MYFILE
would produce MYFILE.INT (object file) and MYFILE.DBG
(debug information file).

The debug facility, DEBUGCOB.EXE, should be configured to
your terminal using the same INSTALL utility option that is
used with RUNCOB.EXE. Prepare the INSTALL files as
described in Chapter 9, "INSTALL Program,” type INSTALL
DEBUGCOB.EXE, then select the option desired. Failure to
run INSTALL will cause the debug facility commands to be
overprinted, but the facility may still be used.

8.1 Using the Debug Facility

To use the debug facility DEBUGCOB.EXE, type DEBUGCOB
in place of RUNCOB, and add the name of the file to be run.
This invokes the interactive debugging executor instead of the
runtime executor. For example, to debug the file
CENTER.INT, type

DEBUGCOB CENTER

and the following message will appear:

57

Microsoft COBOL Compiler User’s Guide

MS-CDBDL Interactive Debug Faci1ity v . xxx
Program : CENTER

Type help for list of commands
*

The asterisk prompt (*) indicates that the debug facility is
ready to accept any of the debug commands listed in Section
8.2, “Debugging Commands.” The debug information file
should be on the current disk and directory. If it is not, the
message

No debug information file found

will follow the messages already displayed.

Note that without a debug information file, limited debugging
is possible. By simply running your program with
DEBUGCOB, you can enable the debug facility and execute
any of the debug commands listed in Section 8.2 except
Change, Exhibit, and Goto line-number. However, without the
debug information file, the debug facility cannot verify that
line numbers specified in the breakpoint command (see Section
8.2, “Debugging Commands”) are valid PROCEDURE DIVI
SION line numbers that contain statements, or section or para
graph names.

8.2 Debugging Commands

Debug commands may be typed in full or may be abbreviated
to the first letter of the command name (shown in boldface).
Uppercase and lowercase characters are equivalent. Argu
ments to the commands (line numbers, data-names, ALL, OFF)
must be given in full. Arguments can be separated from com
mands by any nonalphabetic character: spaces are used in
these examples. When a numeric argument is expected, the
debug facility will scan to the first digit on the line. For exam
ple, the following commands are equivalent (i.e., set a break
point at line 100):

Breakpoint 100
BREAK @ 100
b1 00
break for meat line 100, if you would, please

58

Interactive Debug Facility

Pressing your terminal’s interrupt key suspends program exe
cution at the next statement, as if a breakpoint had been set at
the next line. The key used as the interrupt key may vary
according to your type of terminal, but is usually CONTROL-C,
ALT-C, or CTRL-BREAK.

The following functions are available with the Interactive
Debug Facility:

Address data-name
Displays absolute address (hexadecimal) of a data-item in
memory.

Breakpoints
Lists all breakpoints. (A breakpoint is a point at which execu
tion is interrupted so that you can insert a debug command.)

Breakpoint line-num
Sets breakpoint at line-num. You may have up to eight break
points set at any given time. The Debug Facility verifies that
line-num is a PROCEDURE DIVISION line that contains a
statement or paragraph name.

Change data-name
Displays the contents of data-name and allows a new value to
be entered. Change cannot be used on index-names or on sub
scripted or qualified variables.

Dump [data-name-1 [data-name-2]]
Displays memory addresses (hexadecimal equivalents) from the
start of data-name-1 through the start of data-name-2.
Both data-names are optional. If data-name-2 is omitted, 128
bytes are dumped, starting at data-name-1. If both data-names
are omitted, 128 bytes are dumped, starting at the last data-
name dumped.
If data-name-1 is specified, Dump locates the data-item speci
fied, and begins the dump from its starting location.
In addition to using data-names, explicit addresses may be
used, replacing data-name-1 with addrl and data-name-2 with
addr2. addrl and addr2 are hexadecimal numbers preceded by

59

Microsoft COBOL Compiler User’s Guide

the “at” symbol (@). For example, @1AOE is a valid value for
addrl or addr2.

Exhibit data-name
Displays contents of data-name.
Data-items of less than 77 characters are displayed within
brackets. For data-items greater than 77 characters, the field
length of the contents is displayed without brackets.
Group names may be displayed, although some components
(e.g., binary characters) may not be displayable.
Exhibit cannot be used on index-names or on subscripted or
qualified variables.

Go
Resumes execution from the last breakpoint or current pro
gram position until a breakpoint or end-of-program is encoun
tered.

Goto line-num
Begins execution at line-num; continues until breakpoint or
end-of-program is encountered.
This command may be used to branch anywhere within a pro
gram, even from one overlay segment to another.
If a PERFORM is active when Goto is issued, the debug session
may terminate.

Help
Displays the list of debug commands.

Kill line-num
Removes the breakpoint at line-num.

Kill ALL
Removes all breakpoints from the breakpoint list.

Line
Displays the current line-num.

60

Interactive Debug Facility

Quit
Terminates the program (closing all open files).

Step [count]
Executes one or count statement(s).

Trace
Sets trace mode. When trace is set, each line number will be
displayed as the line is executed.

Trace OFF
Turns off trace mode. (See Trace.)

8.3 Debugging Subprograms

The Interactive Debug Facility allows you to debug systems of
programs consisting of a main program and any number of sub
programs. However, there are some limitations on what can be
debugged in such a system:

1. Assembly language subroutines may be called, but
none of the debugging features will be in effect while
the subprogram is executing. For example, no break
points can be set in an assembly language subroutine.

2. If subroutines are nested to more than five levels
without a return to an earlier subprogram, the debug
facility will not open the debug files for subprograms
beyond the fifth: the message “No debug information
file found” will be generated, even though the informa
tion file may actually be present. You may still set
breakpoints and use the trace mode at these deeper lev
els of nesting, but you may not examine or change vari
ables. Upon return to subprograms nested less than
five levels deep, the full debug facilities will again be
available.
This limitation does not hold for systems where a pro
gram calls a large number of subprograms but returns
to the main program before calling each subprogram.

61

Chapter 9
INSTALL Program

9.1 Overview of INSTALL 65
9.2 Starting INSTALL:

Is Your Terminal Included? (Step 1) 69
9.3 Defining a Terminal (Step 2) 70
9.3.1 Hints on Defining Key Assignments 73
9.3.2 Screen Attributes 74
9.4 Reviewing and

Editing Answers (Step 3) 75
9.5 Running the Terminal Tests (Step 4) 76

63

INSTALL Program

Microsoft COBOL can define screen attributes and have these
attributes and other screen definitions displayed on your
terminal’s screen in an interactive mode.

This capability comes from Microsoft extensions to the DATA
DIVISION (SCREEN SECTION) and the PROCEDURE DIVI
SION ACCEPT and DISPLAY statements (see the SCREEN
SECTION in Chapter 6, "DATA DIVISION,” and Formats 1, 3,
and 4 of the ACCEPT and Format 3 of the DISPLAY state
ments in Chapter 7, "PROCEDURE DIVISION,” of the
Microsoft COBOL Reference Manual).

This chapter tells you how to configure the MS-COBOL run
time system using the INSTALL program.

9.1 Overview of INSTALL

In order for the Microsoft COBOL extensions for interactive
screen-handling and keyboard interpretation to run correctly
on your terminal, the MS-COBOL runtime system needs to be
configured to the characteristics of your system.

INSTALL is run once to reconfigure a specified runtime execu
tor (RUNCOB.EXE, DEBUGCOB.EXE, or any custom runtime
executor created for assembly language interface) to the
characteristics of your terminal. See Chapter 10, "Interpro
gram Communication,” for a discussion of the assembly
language interface that is created by customizing the new MS-
COBOL runtime executor. INSTALL can be run more than
once if you wish to change some of your terminal’s function key
assignments.

When you run INSTALL, the necessary information about the
screen-handling characteristics of your terminal is placed in
the common runtime executor (RUNCOB.EXE or another
specified file). This information comes from a data file which
contains terminal descriptions.

If you have a serial terminal that is not listed in the data file,
you can respond to a series of questions, and your answers will
then be put into the common runtime system.

65

Microsoft COBOL Compiler User’s Guide

Throughout this chapter, the word “terminal” will refer to the
components of your computer system affected by INSTALL. A
terminal consists of the keyboard and screen, either separate
from, or part of a host computer, and any hardware or software
used to communicate with the keyboard or screen.

Terminals may be described as “serial” or “nonserial.” Serial
terminals perform screen functions (e.g., moving the cursor or
turning highlighting on or off) by interpreting special charac
ter strings sent from the host computer. Nonserial terminals
perform screen functions by executing special assembly
language routines rather than by interpreting character
strings. These assembly language routines differ from machine
to machine, and are inserted by INSTALL into the Microsoft
COBOL runtime module.

Note
Many traditionally nonserial terminals and computers can
be treated as serial terminals, because the operating sys
tem will interpret character sequences as output and per
form the corresponding screen functions. Refer to your
system’s documentation for specific information.

When you run the INSTALL program, it shows a list of termi
nals that are already defined in the INSTALL.DAT file (the
input file for the INSTALL program). If your terminal is on
the list, you can quickly modify MS-COBOL by selecting your
terminal from the list. INSTALL then automatically loads and
saves the information from your selection. When INSTALL is
finished, you are ready to run MS-COBOL programs.

If your terminal is not included on the list, INSTALL provides
you with a list of questions for defining a serial terminal. You
will need the technical manual for your terminal to answer
most of the questions. Your answers are then collected into
the INSTALL.DAT file (see Appendix D, “INSTALL Terminal
Database,” for the terminal characteristics known to Microsoft
COBOL). Answers collected in INSTALL.DAT can be modified
later if some answers are incorrect or unsatisfactory. See Sec
tion 9.3, “Defining a Terminal,” for details.

66

INSTALL Program

Warning
You may define only a serial terminal in this manner.
Nonserial terminals not on the terminal list in Appendix D
cannot take advantage of the MS-COBOL screen extensions
unless a serial driver for one of the terminals on the list is
provided by the terminal manufacturer. The ANSI-
standard terminal driver is often provided.

Throughout the program, INSTALL displays explanatory text
to help you complete the answer file.

To run INSTALL, you need these files contained on the MS-
COBOL distribution disks:

INSTALL.COM

INSTALL.MSG
INSTALL.OVL
INSTALL.SPC

INSTALL.DAT

The INSTALL program file.

The files needed by the INSTALL
program.

The file that contains descriptions of
common terminals. If INSTALL
lists your terminal, INSTALL.DAT
contains a description of your termi
nal.

The MS-COBOL files to be modified include RUNCOB.EXE,
DEBUGCOB.EXE, and, potentially, any custom runtime execu
tors created by linking in assembly routines.

INSTALL consists of the steps shown in Figure 9.1. Specifi
cally, these steps are:

1. Starting INSTALL and determining if a description of
your terminal is included.

2. Answering questions about your terminal if it is not
included in INSTALL.

3. Reviewing and editing your answers to the questions in
Step 2.

67

Microsoft COBOL Compiler User’s Guide

4. Running the terminal tests.

Each of the steps is described more fully in Sections 9.2
through 9.5.

Figure 9.1 INSTALL Program Steps

68

INSTALL Program

9.2 Starting INSTALL:
Is Your Terminal Included? (Step 1)

Before starting the INSTALL program, make sure that MS-
DOS is up and running. Then put your program disk contain
ing the INSTALL files in drive A: and make sure that the file
to be reconfigured is on this or another disk in your system.

To start the INSTALL program, type

INSTALL filename

then press RETURN, filename is the name of the file to be
reconfigured with your terminal’s characteristics. If filename
is not specified, RUNCOB.EXE on the default drive is
assumed.

Once the INSTALL program and the necessary files are loaded
into memory, the screen gives instructions about using the
basic keys you will need. These basic keys are:

1. CTRL-C

to terminate the INSTALL program at any time
2. BACKSPACE

to correct your answers
3. RETURN

to proceed with the INSTALL program at any time.
Press RETURN after each answer.

When you have read the initial instructions, press RETURN and
INSTALL displays the list of terminals from INSTALL.DAT.
The terminals listed are the ones for which INSTALL already
has data. INSTALL then asks if your terminal is listed.

If your terminal is listed, enter the number corresponding to
yopr terminal and press RETURN. INSTALL finishes the pro
gfam automatically, adding the description of your terminal to
the file specified. When INSTALL is finished, the message
"Install complete” appears. At this point, you can copy the
"installed” runtime executor to your utility disk, and skip

69

Microsoft COBOL Compiler User’s Guide

Steps 2, 3, and 4. (Steps 2, 3, and 4 are for defining a terminal
not on the list.) Then you can begin running your MS-COBOL
programs. The demonstration program CRTEST may now be
compiled and run. (See Appendix E, “Guide to the MS-COBOL
Demonstration Programs,” for information on CRTEST, and
Section 2.4, “Sample Session,” for instructions on compiling.)
CRTEST tests several of the screen features established by
INSTALL.
If your terminal is not listed, press 1 (“define your own termi
nal”) and RETURN. This starts Step 2, in which you define a
serial terminal. Step 2 is applicable only if you have a serial
terminal system.

Note that some terminals “waste” or use up a character for
turning screen attributes on and off by filling a character posi
tion on the screen with a special marker. This marker appears
as a space on the screen when the screen attribute is turned on
or off.

Some of these terminals, such as the Tele Video®, are prede
fined in the INSTALL data file. For these terminals, the
INSTALL program does not use the screen attributes such as
blink, underline, highlight, and reverse-video, to avoid confus
ing the compiler’s internal mapping of what is on the screen.

However, some MS-COBOL programs may use these screen
attributes despite the wasted characters. If you are sure that
your programs will run with this condition, you may want to
try the “define your own terminal” selection (number 1 on the
menu). This allows you to use your terminal’s screen attri
butes rather than using those in the INSTALL data file.

9.3 Defining a Terminal (Step 2)

This step is applicable only if you have a serial-mapped termi
nal.

When you press 1 and RETURN, INSTALL displays

Would you like to redefine this terminal (Y/N?)

70

INSTALL Program

If you press N (for no), INSTALL automatically finishes the
program and loads the default terminal characteristics into the
specified runtime executor file.

Important
The initial default values (see Table D.2, “Default System
Interface”) in the INSTALL.DAT file are for a general pur
pose terminal and probably do not apply to your terminal.
Consult your terminal’s technical manual for the correct
values.

If you press Y (for yes), INSTALL will ask if you want to go
through the questions sequentially or if you want to use the
shorter menu form. Both forms provide default answers.

The sequential questions are displayed one at a time, along
with their default answers. If you are using INSTALL for the
first time, we recommend using the sequential form to reduce
the chance of skipping an important question.

The menu form is for reviewing and selecting individual ques
tions. It displays some of the questions by groups. For exam
ple, it displays MS-COBOL function keys as a group instead of
showing all the individual function keys. Once you choose the
function key selection, INSTALL will display all of the func
tion key questions sequentially.

INSTALL asks questions about key assignments and terminal
characteristics. Key assignment questions ask which keys are
assigned to the different MS-COBOL functions such as charac
ter delete, forward space, Function 1, etc. Terminal charac
teristic questions pertain to the character sequences needed to
perform such functions as clearing the screen and initializing
the terminal.

When INSTALL asks a question, the default answer is
displayed under the question. To accept the default answer,
simply press RETURN. If you want to change the answer, back
space over the default answer and enter the new answer. Note

71

Microsoft COBOL Compiler User’s Guide

that when INSTALL asks a question, it will prompt you for the
type of answer you should enter. The prompt characters are

1. (I) Integer
Use only number keys for this type of answer.

2. (Y/N) Yes or No
Answer with Y or N (either uppercase or lowercase).

3. (S) Character string
Enter a sequence of characters. Special keys can be
coded with one of the two prefix characters: A and &.
The A is a prefix for coding control characters. (Exam
ple: INSTALL asks, “What sequence(s) of characters
(S) represents DELETE?” If the answer is CONTROL-
U, type “AU”)
The & is a prefix for coding the characters shown in
the following menu. These characters may be typed in
lowercase or uppercase. (Example: INSTALL asks,
“What sequence of characters (S) starts high intensity?”
If the answer is ESCAPE followed by “P”, type “&EP”.)
When you see the “S” prompt, you can type “&M” to
display a menu of special keys and character sequences
that are coded with the & prefix character. The menu
will read:

&Dxxx - 3-digit decimal (less than 256)
&0xxx - 3-digit octal (less than 0400)
&Hxx - 2-digit hex
&P&Hxx - pause xx (hex) milliseconds
&Iy&Dxxx - pad character "y"7 xxx times
& Y - used to code a Y after a CONTROL-C

&E - escape &R - return r -

kN - new 1i ne &T - tab kk - k
KE - formfeed &B - backspace KX - rubout

- -> &+ - +

72

INSTALL Program

Note
On some terminals, certain commands take longer to exe
cute than others. To compensate for this difference, it may
be necessary to make the computer wait until the terminal
has finished executing the command. By inserting a pause
of xx milliseconds, you can indicate how long it must wait.
The millisecond timing of a pause is for an 8 MHz clock. If
you have a 4 MHz clock, divide the value by 2. If you have
a 2 MHz clock, divide the value by 4. For example, for a
40 millisecond pause (with a 8 MHz clock), enter 40. To
get the same 40 millisecond pause from a 4 MHz clock,
enter 20.
Consult your terminal’s technical manual to see if such a
pause is necessary.

9.3.1 Hints on Defining Key Assignments

To use all of your terminal capabilities, you should understand
how INSTALL recognizes character sequences.

All keystrokes send character values to the MS-COBOL pro
gram. Some keys, such as cursor up, send a multiple character
sequence (&E[A). On the other hand, CONTROL-^ey and
SHIFT-Ley are considered single keystrokes. Pressing either
CONTROL or SHIFT by itself signifies nothing to the program,
but when combined with another key, the combination will
send a single character. MS-COBOL recognizes both single
and multiple-character sequences as well as multiple-key
sequences such as “AR + TD” (page up), and multiple-key,
multiple-character sequences such as “AR + &E[A”.

To take advantage of MS-COBOL’s ability to recognize the dif
ferent types of character sequences, use the following guide
lines:

1. Functions requiring a multiple-key sequence are
separated with the “ + ” character between each key
character sequence. This tells MS-COBOL to expect
more than one keystroke for a given function. For

73

Microsoft COBOL Compiler User’s Guide

example, if you want to use the key sequence
“CONTROL-R CONTROL-E”, you would enter
"AR + AE”.

2. The first keystroke of a multiple-key sequence cannot
be defined as a key sequence of its own. For example,
if the character sequence “&E[OM” is a value for a sin
gle key, then, "&E[OM + 'P” cannot be used as a
multiple-key sequence.
The reason for this rule is that MS-COBOL does not
know if it has received the whole command or if it is
waiting for another character to finish the command.
For example, if a portion of a multiple character
sequence is typed as input to an interactive ACCEPT
statement, the MS-COBOL program waits for the
sequence to be completed before continuing processing.

3. Keys in a multiple-key sequence can consist of multiple
characters. For example, the "page up” sequence for
certain terminals is "&E[11~ + &E[A”.

4. When setting up new input key definitions to convert a
character or character sequence to your terminal, make
sure the changes do not result in conflicting sequences.
If there is a conflict, INSTALL will display the message
"Your input keys are ambiguous. No two functions
may share the same string” when you try to exit
INSTALL. If you get this message, check your work
and try again.

9.3.2 Screen Attributes

Screen attributes have a hierarchy of use: blink, underline,
highlight, and reverse-video. If the terminal doesn’t support
the attribute requested, it will try the next attribute in the
hierarchy. For example, if you request the underline attribute
and your terminal doesn’t support it, INSTALL uses the next
attribute (highlight) instead. If highlight isn’t available,
reverse-video is used. If reverse-video isn’t available, normal
video is used.

In order for MS-COBOL to put a character on the screen, it
must know the cursor position. On some terminals, a charac
ter is used to turn on and off a screen attribute. By using a
character to turn on the attribute, the terminal moves the

74

INSTALL Program

cursor over one position. The same is true for turning off the
attribute. Unfortunately, this characteristic is usually not
documented in the terminal’s technical manual. “Standouts”
are the character or characters to which a screen attribute has
been applied. If you notice spaces before standouts, your termi
nal probably has this characteristic. If it does, disable the
screen attributes by entering “blank” answers for the questions
about blink, underline, highlight, and re verse-video. (A
“blank” answer is an empty string.) If the default answer to
the question is “blank,” simply press RETURN. If there is a
character sequence for the default answer, backspace over the
answer, and press RETURN.

When you have seen and answered all questions, you are ready
to begin Step 3, reviewing and editing your answers.

9.4 Reviewing and
Editing Answers (Step 3)

INSTALL allows you to review and edit all answers before sav
ing your terminal characteristics in the INSTALL.DAT file.
Before saving the answers, INSTALL will display a menu of
your terminal characteristics with either the default answer
(from the previous session) or the answer you supply during
this session.

To change an answer on the menu, select the number of the
terminal characteristic and press RETURN. INSTALL will then
display the question again. When it appears, backspace over
the old answer and enter the new answer. Then, press RETURN
to keep the new answer.

You may continue reviewing and editing the characteristics
until you are satisfied that everything is correct. When you
are through reviewing the answers, press D and RETURN. You
are now ready to run the terminal tests.

75

Microsoft COBOL Compiler User’s Guide

9.5 Running the Terminal Tests (Step 4)

The terminal tests let you test your terminal characteristics
before you run your programs. The tests aren’t mandatory, but
we recommend running them to verify your selections.
INSTALL offers the terminal tests shown in the following list.
Three of the test selections, (“initialization,” “graphics charac
ters,” and “all of above”) are not applicable to MS-COBOL.
During the tests, pressing CONTROL-C will return you to the
editing menu.

If you don’t want to run any of the tests, press D and RETURN
when you see the test list. INSTALL will save your answers
and exit automatically.

Note
The answers you save become the default answers for the
INSTALL program.

The tests are

1. cursor positioning
2. clearing the screen
3. initialization
4. function keys
5. screen attributes: blink, underline, highlight, reverse

video
6. cursor and key click options
7. sounding the bell
8. graphics characters
9. all of the above

If the terminal tests that you select end successfully, INSTALL
adds the description of your terminal to MS-COBOL. Then it

76

INSTALL Program

displays the message “Install complete.” You are now ready to
run MS-COBOL.

If any of the tests fail, you will receive a message on your ter
minal. Press CONTROL-C to return to Step 2. Check your
terminal’s technical manual and change any incorrect
responses.

77

Chapter 10
Interprogram
Communication

10.1 PROCEDURE DIVISION
Header With CALL and CHAIN 82

10.2 Calling
Microsoft COBOL Programs 82

10.3
10.4
10.5

Canceling the Called Program 86
Chaining MS-COBOL Programs 86
Calling MS-COBOL
Extension Subroutines 90

10.6
10.6.1
10.6.2

Calling Non-COBOL Subroutines 94
Passing Parameters on the Stack 95
Creating and Linking
Assembly Language Subroutines 97

10.6.3 Examples of Calls to
Assembly Language Subroutines 100

10.7 Chaining Non-COBOL Programs 105

79

Interprogram Communication

Interprogram communication is accomplished using the CALL
or CHAIN statement. CALL temporarily transfers control to a
subprogram, and CHAIN permanently transfers control to
another program. The communications options available with
CALL and CHAIN are

1. Temporary transfer of control from one MS-COBOL
program to a subprogram (CALL).

2. Temporary transfer of control from an MS-COBOL pro
gram to a non-COBOL subroutine (CALL).

3. Permanent transfer of control from one MS-COBOL
program to another (CHAIN).

4. Permanent transfer of control from an MS-COBOL pro
gram to a non-COBOL program (CHAIN).

In addition to transferring program control, these statements
can transfer data between programs. This is done with the
USING and CHAINING phrases. In a CALL statement, the
USING phrase lists parameters which give the addresses of
data to be acted on within the called program. These data are
specified in a corresponding USING phrase in the PRO
CEDURE DIVISION statements of the called program. The
called program makes any necessary changes and then returns
control to the calling program.

In a CHAIN statement to an MS-COBOL program, the USING
phrase also contains parameters, but in this case the actual
values of the parameters in the chaining program are substi
tuted for those of the chained program. The runtime system
copies the data values listed in the chaining program to a safe
place in memory, loads the chained program into memory, and
copies the data values into their corresponding parameters in
the chained MS-COBOL program. These parameters are speci
fied by a chaining phrase in the PROCEDURE DIVISION
header of the chained MS-COBOL program.

Parameters may be passed to called or chained non-COBOL
programs. Such programs must be designed to accept such
data. See Sections 10.6, "Calling Non-COBOL Subroutines,”
and 10.7, “Chaining Non-COBOL Programs,” for more informa
tion.

81

Microsoft COBOL Compiler User’s Guide

Note
MS-COBOL programs are limited to passing 60 parame
ters. See Section 6.3, “DATA DIVISION Limitations,” of
the Microsoft COBOL Reference Manual for more informa
tion.

10.1 PROCEDURE DIVISION
Header With CALL and CHAIN

A called or chained MS-COBOL program may specify data-
items to be passed from the invoking program. These data-
items are specified in the USING and CHAINING phrases of
the PROCEDURE DIVISION header.

The format of the PROCEDURE DIVISION header of an MS-
COBOL program is

PROCEDURE DIVISION
[{USING I CHAINING! data-name-1
[7 da t a - name - 2 1 . . .] .

The data-names in the optional USING phrase must be defined
in the LINKAGE SECTION of a called subprogram, in the
same order specified in the USING phrase. The data-names in
the optional CHAINING phrase must be defined, in any order,
in the WORKING-STORAGE SECTION of the chained-to MS-
COBOL main program.

10.2 Calling
Microsoft COBOL Programs

You can transfer control to a subprogram in a COBOL run unit
by using the CALL statement. Control is returned to the cal
ling program when an EXIT PROGRAM statement is executed.

82

Interprogram Communication

The format of the CALL statement is

CALL {literal-1 I identifier - 1 1
[USING data-name -1 [, data-name -21 ... 1
[; ON OVERFLOW imperative-statement]

Literal-1 is a non-numeric literal whose value is the
PROGRAM-ID defined in the IDENTIFICATION DIVISION of
a called MS-COBOL program. Identifier-1 must be defined as
an alphanumeric data-item whose value can be a program
name.

Note
MS-COBOL loads all subroutines from disk when they are
first called. To do this, it appends the .INT file extension
to literal-1 or identifier-1, then searches for a file of that
name, using the .INT file searching mechanism described
in Section 4.1, "Finding .INT Files.” To be consistent with
the ANSI-74 Standard, the name of the source file for a
called program should match its PROGRAM-ID, at least in
the first six characters.

The data-names in the optional USING phrase refer to data
whose addresses are passed to the called program. For exam
ple, a program needing inventory totals could call another pro
gram to calculate the totals and place them into designated
data-names in the calling program.

If, during the execution of a CALL statement, it is determined
that the available memory can’t accommodate the specified
program, and the ON OVERFLOW phrase is specified, the call
is not made, and the imperative statement contained in the ON
OVERFLOW phrase is executed. If the ON OVERFLOW
phrase is not specified, and memory for the subprogram is una
vailable, the program will terminate with a runtime error.

83

Microsoft COBOL Compiler User’s Guide

Warning
A chained or called program should have neither a chain
ing list nor items in the USING list unless the invoking
CHAIN or CALL statement has a USING list. (The special
case of chained programs that are invoked directly will be
discussed later.) Furthermore, the number of entries in the
lists should be equal, and entries with corresponding posi
tions in the two lists should reference data-items of the
same size and USAGE. Failure to conform to these rules
will not be diagnosed and may cause unpredictable results
at runtime.

Data-item values named in the PROCEDURE DIVISION
header are established at program initialization time by the
contents of corresponding data-items in the invoking CALL or
CHAIN statement. In the case of CALL, the identification is
made by passing data addresses. Therefore, if the value of a
data-item named in a PROCEDURE DIVISION USING phrase
is changed during subprogram execution, the corresponding
data-item in the calling program will reflect the change after
control is returned from the subprogram.

When the USING phrase is used, the following must be true:

1. Within the Calling Program
The data-names listed in the USING phrase must be
declared in the FILE SECTION, WORKING-STORAGE
SECTION, or LINKAGE SECTION of the DATA DIVI
SION.

2. Within the Called Program
The data-names corresponding to those in the USING
phrase of the calling program must be declared in the
LINKAGE SECTION of the DATA DIVISION and in a
USING phrase after the PROCEDURE DIVISION
header. The names in the LINKAGE SECTION and in
the PROCEDURE DIVISION header must be in the
same order.

84

Interprogram Communication

Control is returned to the calling program by an EXIT PRO
GRAM statement in the PROCEDURE DIVISION.

The programmer must make sure that the data-items listed in
the calling program and in the called program are equivalent.
See the Microsoft COBOL Reference Manual for more detailed
information on data-items.

Example of a Calling Program

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.
ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 PARAMETER-1 PIC X(20) VALUE SPACES.

PROCEDURE DIVISION.
100-MAIN.

MOVE "HELLO" TO PARAMETER-1.
CALL "PR0G2" USING PARAMETER-1.
DISPLAY "GOODBYE".
STOP RUN.

Example of a Called Program

IDENTIFICATION DIVISION.
PROGRAM-ID. PR0G2.
ENVIRONMENT DIVISION.

DATA DIVISION.
LINKAGE SECTION.
01 LOCAL-PARAM PIC X(20).

PROCEDURE DIVISION USING LOCAL-PARAM.
100-MAIN.

DISPLAY LOCAL-PARAM.
EXIT PROGRAM.

After PROG1 and PROG2 are compiled, and PROG1 is exe
cuted, the following will be displayed on the screen:

HELLO
GOODBYE

85

Microsoft COBOL Compiler User’s Guide

10.3 Canceling the Called Program

The CANCEL statement releases previously called MS-COBOL
object programs from memory. The format for the CANCEL
statement is

CANCEL {identifier-1 I literal-1}
[7 {identifier-2 I literal-2}] ...

The identifiers or nonnumeric literals specify the subprograms
to be released by the CANCEL statement. The identifiers
must be defined as alphanumeric data so that the value can be
a program name.

Subprograms are released from the memory occupied during
the execution of a CALL operation. These subprograms return
to their initial states after execution and are in that state
when subsequently called.

A subprogram named in the CANCEL statement must not be
in the process of being executed; an EXIT PROGRAM instruc
tion must have been executed in the subprogram before a valid
CANCEL operation can be performed.

10.4 Chaining MS-COBOL Programs

The CHAIN statement is used to permanently transfer control
to a separately compiled program, which is loaded into memory
and executed. The chained program can issue its own CHAIN
statement or may even issue a CHAIN statement to its origi
nal chaining program, but it cannot otherwise return to the
original program.

The format of the CHAIN statement is

CHAIN {literal-1 I identifier-1}
[USING data-name -1 [, data-name-2] ° . .]

Literal-1 or identifier-1 is the filename of an executable pro
gram or the name of an MS-COBOL main program. Literal-1

86

Interprogram Communication

is a nonnumeric literal, and identifier-1 must be defined as an
alphanumeric data-item whose value can be a valid MS-DOS
filename.

Note
To find the file to chain to, MS-COBOL takes the name
specified by literal-1 or identifier-1 and strips off any file
extension. It then appends the .INT extension to the
resulting name, and attempts to find and open the file
using the .INT file searching mechanism described in Sec
tion 4.1, “Finding .INT Files.” If the file can be opened,
that MS-COBOL program is chained to. If the file cannot
be opened, MS-COBOL attempts to open the file using the
filename specified in literal-1 or identifier-1, and if the file
can be opened, the program is chained to.

The data-names in the optional USING list are data-items
defined in the FILE SECTION, WORKING-STORAGE SEC
TION, or LINKAGE SECTION of the chaining program.

For more details about the CHAIN format, see the Microsoft
COBOL Reference Manual.

If the USING phrase is included, the values of the data-items
listed there will be copied to a safe place in memory, and when
the chained program is loaded and run, they will be substi
tuted for the equivalent values in the chained program. This
allows the user to run a new program using values established
in an earlier program. When this phrase is used, the following
requirements must be met:

1. Within the Chaining Program
The data-items listed in the USING phrase must be
declared in the FILE SECTION, WORKING-STORAGE
SECTION, or LINKAGE SECTION of the DATA DIVI
SION.

87

Microsoft COBOL Compiler User’s Guide

2. Within the Chained Program
The data-items corresponding to those in the USING
phrase of the chaining program must be declared in the
WORKING-STORAGE SECTION of the DATA DIVI
SION and in a CHAINING phrase after the PRO
CEDURE DIVISION header.

An MS-COBOL program with a CHAINING phrase specified in
its PROCEDURE DIVISION header may be executed directly,
rather than being chained by another MS-COBOL program. If
this is done, the values to be used by the executed program
may be passed on the command line that invokes the program.
This is one way in which runtime command line parameters
may be passed to MS-COBOL programs; another way is
through use of the built-in subroutine COMMAND, as
described in Section 10.5, "Calling MS-COBOL Extension Sub
routines.”

If this scheme is used, the amount of data that may be passed
is limited by MS-DOS to 128 bytes.

Example of a Chaining Program

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGS.
ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE
01 PARAMETER-1
01 CHAIN-FILE

SECTION.
PIC X(20)
PIC X(20)

VALUE SPACES.
VALUE SPACES.

PROCEDURE DIVISION.
100-MAIN.

DISPLAY "HELLO" .
MOVE "GOODBYE" TO PARAMETER-1.
MOVE "PR0G4" TO CHAIN-FILE.
CHAIN CHAIN-FILE USING PARAMETER-1.
STOP RUN.

88

Interprogram Communication

Example of a Chained Program

IDENTIFICATION DIVISION.
PROGRAM-ID. PR0G4.
ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 LOCAL-PARAM PIC X(20).

PROCEDURE DIVISION CHAINING LOCAL-PARAM.
100-MAIN.

DISPLAY LOCAL-PARAM.
STOP RUN.

After PROG3 and PROG4 are compiled, and PROG3 is exe
cuted, the following will be displayed on the screen:

HELLO
GOODBYE

PROG4 may also be executed directly, rather than being
chained. If PROG4 were to be invoked with the command line

RUNCOB PR0G4 EUREKA

it would display

EUREKA

89

Microsoft COBOL Compiler User’s Guide

10.5 Calling MS-COBOL
Extension Subroutines

Several callable subroutines have been added to the MS-
COBOL runtime system. They enhance file handling from
within MS-COBOL programs, and act as extensions to normal
COBOL statements. These routines are invoked with the
COBOL CALL statement, with a USING list containing the
required parameters.

The names and functions of the available routines are

EXIST Checks to see whether a specified file exists
RENAME Renames a specified file
REMOVE Deletes a specified file
COMMAND Gets the command line given to the runtime

executor
UPCASE Turns alphabetic characters within a data-

item into upper case
LOCASE Turns alphabetic characters within a data-

item into lower case
EXCODE Sets the MS-DOS exit-code to a specified

value

The routines are called as follows:

CALL “EXIST” USING file-name, status.
CALL “RENAME” USING old-file-name, new-file-name,

status
CALL “REMOVE” USING file-name, status.
CALL “COMMAND” USING command-line.
CALL “UPCASE” USING data-name, length, status.
CALL “LOCASE” USING data-name, length, status.
CALL “EXCODE” USING exit-code.

Arguments in the USING list should be defined in the
WORKING-STORAGE or LINKAGE sections as follows:

file-name Alphanumeric data-names in the format
of a valid MS-DOS file name (full MS-
DOS path names may be used).

90

Interprogram Communication

old-file-name Same as file-name. This is the original
name of a file to be renamed.

new-file-name Same as file-name. This is the new
name of a file to be renamed.

status An alphanumeric two-character data-
item (PIC XX). Returned status codes
are described below.

command-line An alphanumeric data-item with PIC
X(128). The MS-DOS command line
passed to the runtime executor will be
loaded here, and command line will be
padded on the right with spaces.

data-name An alphanumeric data-item of length
9999 or smaller. Alphabetic data within
data-name will have its case modified by
UPCASE or LOCASE.

length An unsigned numeric data-item with
USAGE DISPLAY (no COMP type
data-items may be used). PIC can be
from PIC 9 through PIC 9(4). The larg
est allowable value for length is 9999.

exit-code An unsigned numeric data-item with
USAGE DISPLAY (no COMP type
data-items may be used). PIC can be
from PIC 9 through PIC 9(3). The larg
est allowable value for exit-code is 255.

Returned Status Values

In general, the status codes are similar to those used by
COBOL for file-handling status codes.

Status code: “00”
Description: Routine successful; no errors encoun

tered.
Notes: For EXIST, "00” indicates file found.

91

Microsoft COBOL Compiler User’s Guide

Status code: “30”
Description: Routine unsuccessful; no action taken.
Notes: For EXIST, "30" indicates file not found.

For UPCASE and LOCASE, it usually
indicates an invalid length field.

Status code: “92"
Description: Duplicate name found; no action taken.
Notes: Used in RENAME only, when a file with

new-file-name already exists.

Programming Notes

These file-handling routines do not have the full MS-COBOL
error-handling abilities, so they should be used carefully.
Status values should always be tested. If the number of argu
ments received by any of these functions is not the expected
number, the routines return immediately, without taking any
action or reporting any error. Since status would not be
changed in this case, the status data-item should always be ini
tialized to a value such as SPACES (which would never be
returned by these subroutines) before making the call. For
example, an attempt to make the invalid call

CALL "RENAME" USING INFILE, IN-STATUS.

would result in no action, and IN-STATUS would be
unchanged, since one of the expected arguments is missing.

It is usually possible to RENAME or REMOVE an open file,
and problems may not arise until later in processing. If possi
ble, check to see that files are closed before using RENAME or
REMOVE. These routines may be used on files not defined
from within a COBOL program, so checking may not always be
possible.

UPCASE and LOCALE check to see that the length specified is
not greater than the size of data-name. If the length is larger,
an error status "30" will be returned, and no action will be
taken.

EXCODE can be used to set the MS-DOS exit code, which may
be tested in batch files. See Chapter 5, “Batch Command
Files," for more information.

92

Interprogram Communication

The command line returned from COMMAND includes every
thing on the line after the name of the runtime executor. For
example, if you enter

RUNCOB TEST1/P NEWVALUEJOO

you will receive

TEST1/P NEWVALUE,100

Note that the COBOL UNSTRING command is an excellent
tool for breaking a command line into its elements. In the
above example, we could write

CALL "COMMAND" USING COMMAND-L I NE.

PROGRAM-NAME,

UNSTRING COMMAND-LINE DELIMITED BY OR " "
INTO

DELIMITER IN DEL 1 , COUNT IN COUNT1 ,
VALUE-ID,

DELIMITER IN DEL2 , COUNT IN COUNTS ,
MAX-VALUE,

DELIMITER IN DELS, COUNT IN COUNTS.

and the resulting fields would contain

PROGRAM-NAME “TEST1/P”
VALUE-ID “NEWVALUE”
MAX-VALUE “100”
DELI
COUNT1 7
DEL2
COUNT2 8
DEL3
COUNTS 3

93

Microsoft COBOL Compiler User’s Guide

10.6 Calling Non-COBOL Subroutines

A Microsoft COBOL program may call non-COBOL subrou
tines.

Note that several built-in subroutines may eliminate the need
for writing some non-COBOL subroutines. They allow MS-
COBOL programs to delete and rename files and check for a
file’s existence, among other functions. These subroutines are
described in Section 10.5, “Calling MS-COBOL Extension Sub
routines.”

When a non-COBOL subroutine is called, the MS-COBOL run
time system searches through a user-supplied subroutine table
for the desired routine. If it is found, the subroutine is called
using the parameter passing conventions described in Section
10.6.1, “Passing Parameters on the Stack.”

The following discussion will explain how subroutines written
in Microsoft Macro Assembler language may be called from
MS-COBOL programs. Subroutines written in other languages
which match the calling and parameter passing conventions
may also be called. Future versions of MS-COBOL will allow
programs written in other Microsoft languages to be called as
well, using the parameter passing conventions of those
languages. When this feature becomes available, the details
concerning calls to these languages will be included in the
file UPDATE.DOC. Consult the Microsoft Macro Assembler
manual for instructions on writing assembly language pro
grams.

When an MS-COBOL program calls an assembly language sub
routine, the runtime system transfers execution to the subrou
tine by means of a FAR CALL instruction. Execution should
return via the FAR RET instruction.

94

Interprogram Communication

10.6.1 Passing Parameters on the Stack

Parameters are passed by reference (i.e., by passing the
address of the parameter). Parameter addresses are passed on
the stack with the first parameter pushed to the stack first (see
Figure 10.1).

Figure 10.1 Contents of Stack at Entry to a Routine

Since MS-COBOL saves its registers and stack pointer before a
call, and restores them upon return from the subroutine, the
called routine may use registers freely. The called program
does not need to remove the parameter addresses from the
stack before returning, but may do so without causing damage.

The name of a Macro Assembler program module should be
defined by a PUBLIC directive and be declared as PROC FAR.
Data and code segments must be defined so they don’t conflict
with those used by the MS-COBOL modules. Macros
START CSEG, END CSEG, START DSEG, and END DSEG
may be used to establish correct segments. They are provided
in the file USERSEG.MAC, which may be included in your
Macro Assembler routines. The following examples show how
these macros may be used.

95

Microsoft COBOL Compiler User’s Guide

Macro Assembler programs that ran with earlier versions of
MS-COBOL may be used if the code and data segments are
defined as previously described.

Names of user subroutines must not conflict with module
names used by the MS-COBOL runtime executor. If a conflict
occurs, an error will be noted by MS-LINK (the Microsoft
linker for MS-DOS), and the user routine name should be
changed.

Because the stack space used by an MS-COBOL program is
contained within the program boundaries, assembler programs
that use the stack must not overflow or underflow the stack.
The best way to ensure safety is to save the MS-COBOL stack
pointer upon entering the routine and to set the stackpointer
to another stack area. The assembler routine must then
restore the saved MS-COBOL stackpointer or otherwise
preserve the return address before returning to the main pro
gram.

Subroutines can expect only as many parameters as are passed:
the calling program is responsible for passing the correct
number. The user must determine that the type and length of
arguments passed by the calling program are acceptable to the
called subroutine; neither the compiler nor the runtime sys
tem checks for the correct number of parameters.

It is usually most convenient if numeric values to be passed
are declared as binary (i.e., USAGE IS COMB O or COMP-4) in
the WORKING-STORAGE SECTION of the calling program.
Note, however, that the storage order of binary items passed
from MS-COBOL programs may not follow the order expected
by the hardware.

In the current MS-DOS implementation of MS-COBOL, data-
items with USAGE COMP-O are stored with the most signifi
cant and least significant bytes reversed; COMP-4 data-items
have their most and least significant words reversed, with the
bytes reversed within each word. This storage order may
change in future implementations of MS-COBOL.

See Section 10.6.3, "Examples of Calls to Assembly Language
Subroutines,” for examples of how binary data-items may be
used.

96

Interprogram Communication

10.6.2 Creating and Linking
Assembly Language Subroutines

The name of an assembly language subroutine to be called
must be entered into a user-supplied table of subroutine
names. The table and the subroutine(s) must then be linked
with MS-COBOL object modules to produce a new runtime exe
cutor. The INSTALL Utility should be run on the new executor
if interactive screen handling is desired. MS-COBOL programs
that call the assembly language subroutine(s) should be run
using the new runtime executor, rather than RUNCOB.EXE.

The following procedures should be followed when assembly
language subroutines are used:

1. Make the required disk files available. The following
files from the distribution disk must be available:

COBOL1.LIB
COBOL2.LIB
DEBUG.LIB
COBOL1.OBJ
COBOL2.OBJ
DEBUG.OBJ
ASM.ASM
USERPROG.MAC
USERSEG.MAC

PSEG.MAC
INSTALL.COM
INSTALL.MSG
INSTALL.OVL
INSTALL.SPC
INSTALL.DAT
MAKERUN.BAT
MAKERUN 2 .BAT

The following utilities are also required:
ASM86.EXE
LINK.EXE
text editor

2. Edit USERPROG.MAC with EOLIN or another text
editor. For each subroutine to be called, enter a line of
the format
asmriam subroutine-entry-point-name, type

This will create the table of subroutine names, which
will later be assembled with ASM.ASM, to be incor
porated into the new runtime executor module. The
second argument, type, tells the COBOL runtime the
language in which the subroutine is written. Type may
be:

97

Microsoft COBOL Compiler User’s Guide

ASM86
C
PASCAL
FORTRAN

In this example, ASM86, Microsoft Macro Assembler
Language, would be used. Language support may not
be implemented for some of these languages. If the
language is not supported, a message will be printed
during the assembly of ASM. ASM. When new
language support is available, it will be documented in
the file UPDATE.DOC.

3. Create and assemble your subroutines.
Include file USERSEG.MAC or its equivalent in your
program file to establish correct segmentation. If
USEGSEG.MAC is included, begin each group of data
with the START DSEG macro, and end each data
group with END DSEG. Similarly, macros
START CSEG and END CSEG should bracket all sec
tions of code. These macros will create the needed
PUBLIC declaration as well as set up the segments.
Invoke each macro by entering
macro-name subroutine-entry-point-name

Example:
START_DSEG DSPACE

savbc dw ? ;bytes per disk cluster
savdx dw ? ;temporary register area

END_DSEG DSPACE

4. Use batch file MAKERUN.BAT to incorporate your
subroutine name table and subroutines into a new MS-
COBOL runtime executor. MAKERUN.BAT will
a. Assemble ASM.ASM, incorporating your modified

USERPROG.MAC, which contains the subroutine
name table.

b. Link the subroutine name table and any subrou
tines with the MS-COBOL runtime modules con
tained in COBOL1.LIB and COBOL2.LIB to pro
duce the new runtime executor.

MAKERUN.BAT allows up to eight Macro Assembler
subroutines to be linked into the new runtime executor.

98

Interprogram Communication

Programmers experienced with MS-DOS batch files
may modify MAKERUN.BAT if more subroutine object
files are needed. MAKERUN2.BAT may be used
instead of MAKERUN.BAT on smaller floppy-disk
based systems.
MAKERUN.BAT is invoked as follows:
MA KE RUN runtime-executor-name object-file-1

object-file-2 . . . object-file-8

Object files 1 through 8 are the names of the assembly
language subroutines. If fewer than eight routines are
needed, the latter names may be omitted from the com
mand line.
If the MS-COBOL Interactive Debug Facility is to be
used, the first object file specified in the command line
should be DEBUG.
Note that most of the files specified in step 1 will be
required for the execution of MAKERUN. In this
example
MAKERUN RUNSUB SUBIT

the assembly language routine SUBIT.OBJ will be
included in the runtime executor RUNSUB.EXE.
In this example
MAKERUN DEBTEST DEBUG DSPACE SUBIT

the assembly language routines SUBIT.OBJ and
DSPACE. OB J will be included in the runtime executor
DEBTEST.EXE, which will invoke the MS-COBOL
Interactive Debug Facility, since DEBUG.OBJ is also
included.

5. Run the INSTALL utility if interactive screen handling
is desired (see Chapter 9, “INSTALL Program”).

99

Microsoft COBOL Compiler User’s Guide

10.6.3 Examples of Calls to
Assembly Language Subroutines

The following are examples of COBOL programs containing
calls to assembly language subroutines. It is assumed that the
programmer is familiar with Macro Assembler programming
and with MS-DOS function calls. The MS-DOS Users Guide
and Macro Assembler manual should be used for reference, if
needed.

Example 1:

This COBOL program calls the assembly language routine
SUBIT, which subtracts two data-items and puts the result in
a third data-item. The data-items are declared as binary with
USAGE COMB-0. Note that the bytes of the binary data-items
are reversed before and after use, since MS-COBOL and
8088/8086 storage order is different.

1. CALL1, MS-COBOL calling program:

DATA DIVISION.

IDENTIFICATION DIVISION.
PROGRAM-ID. CALL 1 .
ENVIRONMENT DIVISION.

WORKING-STORAGE SECTION.
01 WORK-AREAS.

05 PARM1 PIC S9(5) COMP-O VALUE 511.
05 PARM2 PIC S9(5) COMP-O VALUE 384.
05 PARMS PIC S9(5) COMP-O VALUE ZERO
05 PPARM-1 PIC---------9 VALUE ZERO.
05 PPARM-2 PIC---------9 VALUE ZERO.
05 PPARM-3 PIC---------9 VALUE ZERO.

PROCEDURE DIVISION.
MAIN.

CALL * SUB IT* USING PARM1 7 PARM2? PARMS.
MOVE PARM1 TO PPARM-1.
MOVE PARM2 TO PPARM-2.
MOVE FARMS TO PPARM-3.
DISPLAY PPARM-1 * - " PPARM-2 "

= " PPARM-3.
STOP RUN.

100

Interprogram Communication

2. Table entry in USERPROG.MAC:
asmnam SUBIT,ASM86

3. Macro Assembler routine SUBIT. ASM:
TITLE Assembly language test routine SUBIT

; Contains a routine to subtract 2 numbers and
; return the result in a third. Called from an
; MS-COBOL program.
**

include userseg.mac
PAGE

; Structure for accessing parameters
; on the stack

DYNS STRUC
DW ? ; Pushed BP
DD ? ; Long return address

PARM3 DW ? ; Pa r ame t e r numb e r 3.
PARM2 DW ? ; Paramet er number 2 .
PARM1 DW ? ; Paramet er number 1 .
DYNS ENDS

START..CSEG SUBIT

push bp
mo v bp.sp
mo v bx , [bp] .parml ; get addr of parml
mo v ax , [bx]
xc hg ah,al ; COBOL COMP - 0 bytes r eve r sed
mo v bx,[bp] .pa rm2 ; get add r of pa rm2
mo v cx 7[bx]
xc hg ch,cl ; COBOL COMP - 0 bytes r eve r s ed
sub a x , c x
xc hg ah,al ; restor e byte order of result
mo v di 7 I bp 1 . parm3 ; get addr of parm3
mo v [d i] , a x
pop bp
ret ; note !COBOL will pop a r gument

; off stack, but it can also
; be done here using ret 6
; with no bad results

END.CSEG SUBIT
end

101

Microsoft COBOL Compiler User’s Guide

Example 2:

This COBOL program calls the assembly language routine
DSPACE, which makes a call to the MS-DOS Get Disk Free
Space function described in the Microsoft MS-DOS
Programmer’s Reference Manual. This program uses both
COMP-O and COMP-4 binary storage, and attention should be
paid to the byte and word reversal done in DSPACE. If the
returned value of LPARM3 is ZERO, then an error is indi
cated.

1. CALL2, MS-COBOL calling program:
IDENTIFICATION DIVISION.
PROGRAM-ID. CALL2.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WORK-AREAS.

05 PARM1 PIC S9(5) COMP-O VALUE ZERO.
05 LPARM2 PIC S9(9) COMP-4 VALUE ZERO.
05 LPARMS PIC 89(9) C0MP~4 VALUE ZERO.
05 PPARM-1 PIC---------9 VALUE ZERO.
05 LPPARM-2 PIC 9 VALUE ZERO
05 LPPARM-3 PIC -----,--9 VALUE ZERO

PROCEDURE DIVISION.
MAIN.

DISPLAY " Enter drive (0 = default, ",
" 1 - a : , e t c .) " .

ACCEPT PARM1.
CALL "DSPACE" USING PARM1 , LPARM2, LPARMS.
MOVE PARM1 TO PPARM-1.
MOVE LPARM2 TO LPPARM-2.
MOVE LPARMS TO LPPARM-3.
IF LPARMS NOT -- ZERO

DISPLAY "Drive ", PPARM-1
"Free Space - ", LPPARM-2
"Total Space - ", LPPARM-3 "

ELSE
DISPLAY "DSPACE: Invalid drive "

" designation".
STOP RUN.

2. Table entry in USERPROG.MAC:
asmnam DSPACE,ASM86

102

Interprogram Communication

3. Macro Assembler routine DSPACE.ASM:
TITLE Assembly language test routine DSPACE

;***
; Contains a routine to call the MS-DOS Get
. Free Disk Space function. Zero is returned
; in the third parameter in case of error.
**

include userseg.mac

structure for accessing parameters on stack

DYNS2 STRUC
DW ? ; Pu s hed BP.
DD ? ; Long return address .

ARGS DW 7 ; Parameter number 3.
ARG2 DW 7 ; Paramet e r number 2.
ARG1 DW 7 ;Parameter number 1.
DYNS2 ENDS

MSDOS EQU 21 H ; s t andar d MS-DOS
; en t ry point

SPACE EQU 36H ;get disk free space
; f unc t ion

START._DSEG DSPACE
savbc d w 7 ; bytes per disk cluster
sa vdx d w ? ; temporary register area

END_DSEG DSPACE

START_CSEG DSPACE

push bp ; use bp to point to
; a r gumen t s

mo v bp,5p
mov bx ? E bp] . arg1 ; get addr of arg1

;(drive number)
mo v dx 7[bx] ; get drive into dl
xc hg dh 7 d 1 ; C 0 B 0 L COMP - 0 bytes

; r ever sed
mov ah 7 SP ACE ;call MS-DOS function
INT MSDOS ; on return:

; bx = # of free clusters on drive
; dx = total # of clusters on drive
; ox - bytes per sector
; ax = sectors per cluster

103

Microsoft COBOL Compiler User’s Guide

5 p r e t :

; or FFFF if error

cmp
j z
mo v

ax OFFFFH ; error?
error
savdx,dx ; multiply wipes out dx 7

; so save i t
mu 1
ic

ex ; bytes/c1uster in ax
error ; should never overflow,

; but ...
mo v
mu 1

savbc,ax ; save for later use
bx ; low order result in ax

; high order in dx
mov bx,[bp 1 . ar g2

; get addr of COMP-4 free space
; store 4 byte value in this order:
; least significant word (in dx),
; then most significant word (in ax)
; with bytes of each word reversed

xc hg dh 7 d 1 ; COBOL COMP-O bytes
; reversed

mov
xc hg

[bx17dx
ah 7 a 1 ; COBOL COMP-O bytes

; reversed
mov [bx + 2 1 7 ax

mov
mov
mu 1

ax 7 savbc ;restore ax and dx
dx 7 savdx
dx ;low order result in ax,

;high in dx
mov bx,[bp].arg3 ;get addr of COMP-4 total

; space store 4 byte
;variable

xc hg dh 7 d1 ;COBOL COMP-O bytes
;rever s ed

mov
xc hg

[bx] ? dx
ah 7 a 1 ;COBOL COMP-O bytes

;reversed
mov [bx + 2 1 7 ax

imP spret ; done

error :
xor ax 7 ax ; zero arg3 to

; indicate error
mov bx^Ebpi.argB
mov E b x 1 7 a x
mo v E bx + 2 J 7 ax

104

Interprogram Communication

10.7 Chaining Non-COBOL Programs

Executable non-COBOL programs are chained in the same way
as MS-COBOL programs (see Section 10.4, “Chaining MS-
COBOL Programs”). The following additional information will
be useful when you are writing non-COBOL programs that will
be chained.

When the USING phrase is included in the CHAIN statement,
the parameters passed between programs are stored in the
command line area used by MS-DOS. See the MS-DOS User's
Guide for information on accessing data stored in this area.
Each parameter specified in the USING list of the chaining
MS-COBOL program is copied into the command line area, and
separated from the previous parameter by a single space. The
amount of data that may be passed in this way is limited by
MS-DOS to 128 bytes.

The chained program expects the same number and format of
parameters as were passed. No checking will be done by the
compiler or the runtime system.

105

Chapter 11
REBUILD Utility Version 2.0

11.1 Invoking REBUILD 110
11.2 Definitions of

the Command Line Arguments 111
11.3 Using REBUILD as a Tool 114
11.3.1 Fixing a Corrupted Key File 114
11.3.2 Compressing the Data File 115
11.3.3 Converting

Microsoft COBOL Indexed Files 115
11.4 Data Loss After a System Crash 118
11.5 Adding and Deleting Indexes 119
11.5.1 Updating a Key File:

ASCII Input File 119
11.5.2 Updating a Key File:

Interactive Mode 121
11.6 Creating and Using

a dd (ASCII) Text File 125
11.6.1 Syntax Considerations 126
11.6.2 Statement Directory 126
11.7 Data Dictionary 129
11.8 ASCII Version of

a Data Dictionary 130

107

REBUILD Utility Version 2.0

The Rebuild Utility, (REBUILD) version 2.0 and later, is pri
marily a tool for rebuilding Indexed key files created by MS-
COBOL, the Microsoft Multi-Key ISAM Facility, and Microsoft
SORT. Once a damaged key file has been recovered, the asso
ciated data files may again be accessed by an MS-COBOL
application. The Rebuild Utility can also modify a functional
key file. See Section 11.5, "Adding and Deleting Indexes,” for
details.

Each Indexed file declared in an MS-COBOL program will gen
erate two disk files: a key file and a data file.

The key file contains keys, pointers to keys, and pointers to
data. The VALUE OF FILE-ID clause specifies an operating
system file-name for a file containing data only. That file
name is given an extension (.KEY) to form the file specifica
tion of the key file .

The data file contains data records and usually a data diction
ary which contains a description of the data record format
(record description). The data dictionary resides at the begin
ning of the data file. See Section 11.7, "Data Dictionary,” for
details.

A record description, which describes the key fields within the
record, is used to build a new key file. (The record description
may also contain all fields in the record instead of only the key
fields.)

REBUILD allows you to

1. Generate new key files from Indexed data files.
This is probably the most common use of REBUILD for
MS-COBOL users.
REBUILD must be run to regenerate a corrupted key
file. The data file is the input to REBUILD for this
task. See Section 11.3.1 "Fixing a Corrupted Key File,”
for more information on this task.

2. Compress the data file.
Free space is created during normal record processing
using DELETE and REWRITE statements, especially
when variable length records are used. Data file
compression removes this free space from the data file.

109

Microsoft COBOL Compiler User’s Guide

3. View the data dictionary.
Whenever MS-COBOL or REBUILD creates an Indexed
data file, it also builds a data dictionary — a binary
record description located at the beginning of the data
file. This useful feature allows the Indexed file struc
ture to be examined and, if desired, the data dictionary
to be saved as an ASCII file by redirecting the output
as shown in Section 11.6, “Creating and Using a dd
(ASCII) Text File.”
REBUILD can use a data dictionary to rebuild key
files.

Note
REBUILD also supports an interactive mode for entering
new data dictionary information. You switch to this mode
by starting REBUILD with the /I switch as explained in
Section 11.5.2, “Updating a Key File: Interactive Mode.”

11.1 Invoking REBUILD

Use the following syntax to provide arguments on the
REBUILD command line:

REBUILD [command-line]

where [command-line] stands for

source-file, [target-file] 7 [key description J , [dd-file] [;] [/switches]

Blanks are not allowed in the command line between the argu
ments. A semicolon can be used to generate default values for
the target-file, key description, or dd-file.

110

REBUILD Utility Version 2.0

Note
REBUILD will prompt you for information that it needs
that was not provided on the command line.

11.2 Definitions of
the Command Line Arguments

REBUILD 2.0 supports the following command line arguments:

1. source-file
The source-file is the name of the data file from which
you want to generate a key file. Source-file is the only
required element of the command line.
An Indexed data file compatible with the Rebuild Util
ity can come from the following sources:
a. as output from an MS-COBOL application which

creates Indexed files using MS-COBOL version 2.0
or later

b. as data files created by the Microsoft SORT Facility
which can convert a file with RELATIVE organiza
tion to INDEXED organization

c. as output from a non-MS-COBOL application which
creates Indexed files using the Microsoft Multi-Key
ISAM Facility

111

Microsoft COBOL Compiler User’s Guide

Note
If the Indexed file that you are supplying to
REBUILD was created by MS-COBOL (version 2.0
or later), or a Microsoft ISAM application, or by
REBUILD (which is a Microsoft ISAM application),
the data dictionary for that data file already exists
and is passed to REBUILD. In fact, this is the
same record description that REBUILD will insert
into the data file whenever an output data file is
specified on the command line.

2. target-file (optional)
If target-file is present, the data file will be copied and
a key file {target-fileKEN) will be generated. All free
space will be removed from the file. A target-file must
be specified if a data dictionary is to be added to a data
file.

3. key description (optional)
Key description describes a single key of the format
integer-1: integer-2. Integer-1 and integer-2 refer to the
key field location and key field length.
The key description can be used only when the Indexed
file will contain a single key. The description contains
the starting position and size of the key. The syntax
matches the syntax used on the REBUILD 1.1 com
mand line.

4. dd-file (optional)
The dd-file is the ASCII file prepared with a text edi
tor. dd-file contains an ASCII description of the data
dictionary for a corresponding Indexed data file. The
presence of dd-file tells REBUILD that a file in ASCII
format must be processed. A description of the dd-file
is given in Section 11.6, "Creating and Using a dd
(ASCII) Text File.”

112

REBUILD Utility Version 2.0

The data dictionary is a binary record description
located at the beginning of the data file. REBUILD
generates this binary record automatically during a
data file copy. It will also generate this binary data dic
tionary from the ASCII record description contained in
dd-file if you give both the dd-file and target-file argu
ments.
If no target-file is specified, REBUILD will use the data
dictionary in source-file, rather than the dd-file, to
create the new key file.
See the FIELD statement syntax in Section 11.6.1,
"Syntax Considerations,” for details about defining the
record fields with REBUILD 2.0.

5. switches (optional)
a. /Interactive) switch

The /I switch turns on REBUILD’s interactive mode
(see Section 11.5.2, “Updating a Key File: Interac
tive Mode,” for details). All other arguments,
except source-file and target-file, are ignored.

b. /T(erse) switch
The /T switch sets REBUILD in the terse mode. If
there were no fatal errors, there will be no output
to the screen.

c. /P(rint) switch
The /P switch brings an ASCII version of the data
dictionary to the screen. The output can be
redirected to a file or device. (See Section 11.6,
"Creating and Using a dd (ASCII) Text File,” for
information on redirection.)

d. /F(orce) switch
The /F switch allows REBUILD to exit or perform
other routines without waiting for your confirma
tion.

e. /S(ingle key) switch
The /S switch will copy the data file, remove the
data dictionary and free space; no key file is built.
/S generates a data file that is compatible with the
single-key Rebuild Utility, version 1.1.

113

Microsoft COBOL Compiler User’s Guide

See the FIELD statement syntax in Section 11.6.1, "Syntax
Considerations,” for the details about defining the record fields
with REBUILD 2.0.

11.3 Using REBUILD as a Tool

The following sections describe REBUILD’s major uses as a
tool.

See Section 11.1, "Invoking REBUILD,” for a description of
REBUILD’s command line arguments.

11.3.1 Fixing a Corrupted Key File

Assume an Indexed file named EMPREC.DAT was open for
writing when a power failure occurred. Since it was not closed
by MS-COBOL, it was ‘corrupted’ and must have its key file
rebuilt. Assume that the data file contains a data dictionary
(this will be true in most cases). The command line to
REBUILD would be

REBUILD EMPREC.DAT;

REBUILD will read the data file description from the data dic
tionary in data file EMPREC.DAT, and use that to build a key
file. The key file will be called EMPREC.KEY.

If the data file EMPREC.DAT had not contained a data dic
tionary as assumed above, a description of the data would have
to be provided by entering a key description on the REBUILD
command line, by providing a dd file (see Section 11.6, "Creat
ing and Using a dd (ASCII) Text File”), or by using
REBUILD’s interactive mode (see Section 11.5.2 "Updating a
Key File: Interactive Mode”).

If there is only a single key in the record, the command line
itself can contain this data description. Use the command

REBUILD EMPREC.DAT,J :10;

114

REBUILD Utility Version 2.0

This will also build the key file called EMPREC.KEY. It will
contain a single key that is a fixed-length string, ten charac
ters in length, which starts on the first character of the record.
Since no target-file was specified to initiate the data file copy,
your data file still won’t contain a data dictionary and never
will until a data file copy using a target-file specification is ini
tiated.

11.3.2 Compressing the Data File

When a target file is specified on the command line, a copy of
the source data file is produced in addition to a new key file.
This data file is compressed (all free space records are
removed). Free space records are "empty" records resulting
from deletions and rewrites, which have yet to be reused by the
Indexed file system.

Whenever a data file copy is performed without the /S switch,
REBUILD will put a data dictionary into the data file. If one
did not exist before, it will after REBUILD is run. For exam
ple, using the indexed file EMPREC.DAT on the REBUILD
command line

REBUILD EMPREC.DAT7EMPREC2.DAT;

will create the new file EMPREC2.DAT that will contain the
data records and the data dictionary from EMPREC.DAT. It
will contain no free space records. The key file will be called
EMPREC2.KEY.

11.3.3 Converting
Microsoft COBOL Indexed Files

The key file formats for Indexed files created by MS-COBOL or
REBUILD versions prior to 2.0 (1.0 format files) and Indexed
files created by MS-COBOL or REBUILD 2.0 or later, or the
Microsoft ISAM Facility (2.0 format files) are not identical and
are not compatible. The conversion process between these two
formats follows:

115

Microsoft COBOL Compiler User’s Guide

1. 1.0 Format to 2.0 Format
This is straightforward since REBUILD is able to sup
port both formats. If the 1.0 format data file is called
FILE1.DAT, a valid REBUILD command line could be

REBUILD FILE1.DAT7FILE2.DAT»1:10;

Note
Since Microsoft 1.0 format Indexed files do not pro
duce a data dictionary, you must provide a key field
description on the command line; in this case “1:10”
is specified. REBUILD will build the new Indexed
data file with an appropriate data dictionary. This
new data file (FILE2.DAT) is now fully compatible
with MS-COBOL version 2.0 and later.

2. 1.0 Format to Multi-Key 2.0 Format
If you plan to simultaneously upgrade this single-keyed
data file to include alternate record keys, you’11 need to
revise your source program and create a new key file.
Use one of the following methods to make this conver
sion:

New Data Dictionary Method
a. Using MS-COBOL 2.0, create a data dictionary that

reflects your new indexing structure (i.e., write,
compile and execute a COBOL program that creates
an empty data file by opening the file for output,
then closing it). Use the FILE SECTION from your
application, and a FILE-CONTROL entry with
ALTERNATE RECORD KEY specifications.

b. Extract a copy of the data dictionary from the
created data (empty) file by invoking REBUILD 2.0
with the 7P switch and redirecting the data diction
ary to a file. Delete the empty data file.

REBUILD EMPTY.DAT;>MULTI.DD/P

116

REBUILD Utility Version 2.0

c. Update the single-key file of SINGLE.DAT to a
multi-key file and create your targeted multi-key
data file by invoking REBUILD again with a
target-file for the data file copy and the data dic
tionary filename.

REBUILD SINGLE.DAT,MULT I .DAT, ,MULTI .DD

d. Make your application compatible with the new
multi-key data file by adding the ALTERNATE
RECORD KEY clause to the FILE-CONTROL entry
and compiling using MS-COBOL 2.0.

REBUILD Key Manipulation Method
Use the key manipulating functions of REBUILD as
described in Sections 11.5.1, "Updating a Key File:
ASCII Input File” and 11.5.2, "Updating a Key File:
Interactive Mode” to update the keyfile and data dic
tionary by adding the described new key fields.

COBOL File Rewriting Method
After converting the 1.0 format file to a single-key 2.0
format file as described in Method One, write a COBOL
program to read the converted single key file and copy
it by writing to an Indexed file defined with the desired
alternate keys.

3. 2.0 Format to 1.0 Format
The data dictionary must be removed since this is an
enhancement for 2.0 format Indexed files (MS-COBOL
version 2.0 or later).
To effect the change, REBUILD version 2.0 and REBUILD
version 1.10 must be used. We’ll use the same file and
single-key description used in Section 11.3.2, “Compress
ing the Data File.”
(1) REBUILD EMPREC.DAT,EMPREC2.DAT; / S
(2) REBUILD EMPREC2.DAT,EMPREC1 .DAT,1 : 1 0;

Line (1) shows the REBUILD 2.0 command line and
line (2) shows the REBUILD 1.0 command line.

See version 1.0 of the Microsoft COBOL Compiler User's
Guide for a full description of REBUILD versions prior
to 2.0.

117

Microsoft COBOL Compiler User’s Guide

11.4 Data Loss After a System Crash

A data file can be damaged when electrical power to the com
puter system is interrupted or the operating system is rebooted
while an Indexed file is open in 1-0 or OUTPUT mode.

A system failure may leave the data file with partially written
data records because of the high degree of disk file buffering in
memory. This may cause REBUILD to fail to completely
recover an Indexed file for either or both of the following rea
sons:

1. If the system failure occurred during a file update job,
when 512 bytes of the file are kept in memory, the file
may contain records with both original and new infor
mation. REBUILD cannot determine which part of the
data was written during the terminated job, and there
fore cannot exclude the new, incomplete data from the
rebuilt file. Adding a current date field to data records
may help discriminate between original and new data.

2. If the system failure occurred while records were being
added to the Indexed file, the last 512 bytes of data will
not be written to disk. REBUILD will detect that
information is missing from the end of the file but can
not add it to the recovered file.

A data file can also be damaged when space is exhausted dur
ing a WRITE operation to the disk on which the Indexed file
resides.

You will know that space was exhausted during the WRITE
operation when WRITE produces a boundary error (file status
“24”), indicating that the disk is full. When this happens, you
should perform a CLOSE in order to write as much information
as possible to disk.

It is likely, however, that the CLOSE will also return with a
boundary error. As in the case of a system failure during the
addition of records, the last 512 bytes of information will not
be present within the data file and will, therefore, be unrecov
erable by REBUILD.

118

REBUILD Utility Version 2.0

11.5 Adding and Deleting Indexes

When indexes need to be added, deleted, or otherwise modified,
you can use two methods to update the key file: use an ASCII
input file, or use REBUILD’s interactive mode.

11.5.1 Updating a Key File: ASCII Input File

Use a command line of the form

REBUILD SAMPLE.DAT,SAMPLE2.DAT?,NEW.DD

This directs REBUILD to create SAMPLE2.DAT and
SAMPLE2.KEY, using NEW.DD as the data dictionary (record
description) for SAMPLE2.DAT. REBUILD will also use
NEW.DD file to update the index information in the key file
when SAMPLE2.KEY is generated.

Note
REBUILD will ignore the input file NEW.DD if you have
not specified SAMPLE2.DAT. Without an indication that
you want a data file copy, REBUILD will assume that the
existing data dictionary in SAMPLE.DAT is acceptable.

If you use a dd-file that changes the record description for an
Indexed file, you will need to add the same index and field
information contained in the dd-file to the programs that
access the data file.

For example, suppose that the dd-file, NEW.DD, contains the
following record description, and is designed to update the key
file for a multi-key data file called BUYER.DAT. NEW.DD
contains this information (n:n represents beginning
byte:length):

119

Microsoft COBOL Compiler User’s Guide

FIELD PROCESS-CODE IS 63:1 ALPHA
KEYED BY 1;

FIELD NUMBER IS 1:5 ALPHA
KEYED BY 2;

FIELD NAME IS 6:20 ALPHA
KEYED BY 3 DUPLICATES ALLOWED;

FIELD CITY IS 26:20 ALPHA;
FIELD ZIP-CODE IS 46:5 ALPHA;
SPLIT KEYSET 5 IS PROCESS-CODE ZIP-CODE

DUPLICATES ALLOWED;

All MS-COBOL programs that used the BUYER.DAT key file
with its previous index structure must be changed to reflect
the new index structure. In the following source fragment
from an application, REPORT.INT, a split key containing the
two fields italicized is to be added to the existing FD entry:

FD TRANSACTION-FILE
RECORD CONTAINS 63 CHARACTERS
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "\DATA\BUYER.DAT"
DATA RECORD IS BUYER-DATA.

01 BUYER-DATA.
05 NUMBER PIC X(5).
05 NAME PIC X (2 0)
05 CITY PIC X(2 0)
05 ZIP-CODE PIC X(5).
05 DESCRIPTION PIC X(1 2)
05 PROCESS-CODE PIC X.

The italicized source lines in the following fragment indicate
the corresponding fields which will make up the new split key:

SELECT TRANSACTION-FILE ASSIGN TO DISK

LOCKING IS EXCLUSIVE
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS PROCESS-CODE
ALTERNATE RECORD KEY IS NUMBER
ALTERNATE RECORD KEY IS NAME WITH

DUPLICATES
ALTERNATE RECORD KEY IS SHIP-LOCATION =

PROCESS-CODE, ZIP-CODE WITH DUPLICATES.

When you invoke REBUILD with the command line

120

REBUILD Utility Version 2.0

REBUILD BUYER.DAT,NEWBUYER.DAT,, NEW.DD

the data dictionary and the key file for NEWBUYER.DAT are
updated, making NEWBUYER.DAT compatible with new ver
sions of REPORT.INT.

Note
You may want to format the file description entry and the
FILE-CONTROL entry codes on disk and embed them in
the appropriate programs with the COPY statement. See
Chapter 16, "COPY Statement,” in the Microsoft COBOL
Reference Manual, for more information.

11.5.2 Updating a Key File: Interactive Mode

REBUILD also has an interactive mode that supports your
modification of the record description in an Indexed file’s data
dictionary.

To invoke REBUILD in this mode, enter a command line of the
form

REBUILD SAMPLE.DAT7SAMPLE2.DAT;/I

These arguments place the table of commands on your termi
nal screen (see Figure 11.1, "REBUILD Interactive Mode Main
Menu”), and place REBUILD into the interactive mode. The
record description can then be examined or modified.

Target-file SAMPLE2.DAT is specified in the command line so
that changes made to the record description will become part of
the data dictionary once you complete the edit, and exit
REBUILD.

See Section 11.6.2, "Statement Directory,” for descriptions of
the FIELD and RECORD statements.

121

Microsoft COBOL Compiler User’s Guide

Figure 11.1 REBUILD Interactive Mode Main Menu

List <field>: List a field, or with no args, all
fields.

Delete <field>: Delete a field and/or split key.
Replace <field>: Replace a field or split key.
Add <field>: Add a new field or another field to

a split key.
File options: Change the file options.
Help: List this display.
Exit: Cancel REBUILD.
Quit: Quit editing and perform REBUILD

operations.

Menu Descriptions

The following commands may be typed in full or represented
by their first letter. You will receive a prompt if additional
information is required. If <field> is more than one word,
enclose the name in quotation marks ("). Most of the com
mands take one or more arguments. You may enter all argu
ments at once or as prompted by REBUILD. Multiple argu
ments are separated by spaces.

List <field>:
Displays the current record description in ASCII
file format. All field descriptions are printed if
<field> is omitted.

Delete <field>:
Deletes a field description.

Add <field><statement>:
Adds a field description to the data dictionary. If
<statement> is omitted, the Add statement
issues the prompt

Specify a complete statement for Add

122

REBUILD Utility Version 2.0

A FIELD/SPLIT statement, in the ASCII format
described in Section 11.6.1, “Syntax Considera
tions,n should then be entered.

File <options>:
Modifies the file options that have a global effect.
If <options> is omitted, the prompt returned
is

N)ame Segmented MHnimum Allocation

Each option corresponds to one of the the options
on the RECORD statement from the ASCII for
mat. Enter the first letter for the desired option.
The RECORD statement is described in Section
11.6.2, “Statement Directory.” The Name and
Minimum Allocation options will prompt for
further input.

Replace <field><subcommand>:
Replaces all or part of a field description.
If the <subcommand> option is omitted,
REBUILD issues the following prompts:
N)ame Doc T)ype K)ey# DE)scending

Duplicates Dnsensitive R)emove -Sp 1 i t

A)dd-Split DES)cending-Split

To select subcommands, enter the capitalized
letter(s) to the left of the The subcommands
N)ame through Dnsensitive deal with fields and
keys. The subcommands R)emove-Split through
DES)cending-Split deal with split keys.
a. N)ame [”]field name[”]

Replaces the field name description. The
quotation marks are needed only when the
name has more then one word separated by
spaces.

b. Doc [segment#]start position[:length]
Changes the field position. Segment # is not
used in COBOL.

123

Microsoft COBOL Compiler User’s Guide

c. T)ype field type
Changes the data type. MS-COBOL only
supports a type of ALPHA.

d. K)ey# number
Assigns a key number to the field. MS-
COBOL assigns the prime key #1, the first
alternate key #2, etc. . . You must select the
same key number that MS-COBOL is going
to use. Specifying a key number of 0 makes
the field non-keyed.

e. Descending
This switches the internal "Descending" flag
on or off each time it is excuted. MS-COBOL
will read an Indexed file with this feature in
reverse order. However, MS-COBOL can nei
ther create a DESCENDING key file, nor
inform a program that a file has this feature.
DESCENDING key files should be used only
with programs that expect this feature.

f. Duplicates
This switches "duplicates allowed" on or off.
MS-COBOL requires that key #1 not have
duplicates allowed. This subcommand also
works with split keys.

g. Dnsensitive
This switches the insensitive switch on or off.
MS-COBOL will take advantage of the
INSENSITIVE feature. However, it can nei
ther create an INSENSITIVE FILE, nor
inform a program that a file has this feature.
INSENSITIVE files should be used only in
programs that expect this feature.

h. R)emove-Split field
Allows you to delete the components which
make up a split key.

i. A)dd-Split field
Allows you to add the components which
make up a split key.

124

REBUILD Utility Version 2.0

j. DES)cending-Split field
Allows individual components of a split key
to have the descending attribute independent
of the descending attributes in the referenced
field. This switches “Descending” on or off
each time it is excuted. MS-COBOL will
read an Indexed file with this feature in
reverse order. However, MS-COBOL can nei
ther create a DESCENDING key file, nor
inform a program that a file has this feature.
DESCENDING key files should be used only
with programs that expect this feature.

11.6 Creating and Using
a dd (ASCII) Text File

To bring an ASCII version of SAMPLE.DAT’s data dictionary
to the screen, use a /P on the command line:

REBUILD SAMPLE.DAT;/P

If you want to redirect this output to another file (e.g.,
TEXT.DD), and then edit it to new specifications, enter the
command line

REBUILD SAMPLE.DAT;/P>TEXT.DD

You could then edit TEXT.DD, and add the new version of the
data dictionary to SAMPLE2.DAT, with the command line

REBUILD SAMPLE.DAT,SAMPLE2.DAT,7TEXT.DD

The ASCII files acceptable to REBUILD lend themselves to
easy maintenance._The following sections describe the syntax
and language recognized by REBUILD, and provide practical
examples of record descriptions in data dictionary format.

125

Microsoft COBOL Compiler User’s Guide

11.6.1 Syntax Considerations

An Indexed file record may be described using the RECORD,
FIELD, and SPLIT KEYSET statements. The RECORD state
ment is optional (only one RECORD statement may be given
for any file). One or more FIELD statements must be used;
SPLIT KEYSET statement(s) may be used. All statements
must end with a semicolon.

Note that some entries in the diagrams will never be used with
MS-COBOL Indexed files.

In the syntax diagrams that follow, optional material is indi
cated by square brackets ([]). Braces ({ }) are used with
the vertical bar (I) to indicate a choice of two options, or
with ellipses (...) to indicate a repeated group. The quoted
square brackets ([“[”]) in the FIELD statement indicate that
an actual bracket character may be entered. If the optional
opening bracket ([) is chosen, the closing bracket (]) must also
be used.

[RECORD Irecord-name} [SEGMENTED]
[MINIMUM ALLOCATION IS integer]] ;

FIELD [field-name] IS [*["] position [: size}
datatype [INSENSITIVE] [*]*]

[KEYED [BY] key-number [DUPLICATES ALLOWED]
[DESCENDING]] ;

[SPLIT KEYSET key-number IS
{ <field-name I key-number} [DESCENDING]} ...

[DUPLICATES ALLOWED]] ;

11.6.2 Statement Directory

REBUILD 2.0 supports the following keywords to create an
ASCII file that describes data file records:

126

REBUILD Utility Version 2.0

RECORD Statement

The optional RECORD statement sets global file options. These
options can also be set with the F(ile) options command in the
interactive mode. The arguments are

record-name

SEGMENTED

an optional identifying name.

the file will have a special segmented
structure. This option is not used with
MS-COBOL.

MINIMUM
ALLOCATION

the minimum record size allocated
from the data file. MINIMUM ALLO
CATION can be used to minimize data
file fragmentation when REWRITEing
variable length records.

Data file fragmentation may occur when multiple level 01
entries of different sizes are given under an FD entry, or when
the OCCURS DEPENDING ON clause is used in a record
description. Choose the MINIMUM ALLOCATION size equal
to the largest record size in the file to minimize fragmentation.

FIELD Statement

The FIELD statement describes each field in the record. We
recommend that all fields in a record be defined even though
REBUILD requires that only key fields be defined. This addi
tional effort will allow future utilities to access desired data
items. The interactive mode commands A(dd), L(ist), P(rint),
R(eplace), and D(elete) use field names or entire FIELD state
ments as input.

The arguments of the FIELD statement are

field-name

position

Name of field; maximum 40 characters.
If more than one word, enclose the
name in double quotation marks (").
Position from start of the record (1
being the first position).

127

Microsoft COBOL Compiler User’s Guide

size Size of data field in characters.
datatype Data type is always ALPHANUMERIC

for MS-COBOL files. ALPHA may be
used as a synonym for ALPHA
NUMERIC.

INSENSITIVE Characters which differ by case only
are considered equal. MS-COBOL will
take advantage of the INSENSITIVE
feature. However, it can neither
create an INSENSITIVE file, nor
inform a program that a file has this
feature. INSENSITIVE files should be
used only in programs that expect this
feature.

KEYED BY Clause

The optional KEYED BY clause makes a specific field value
into a key to the record. During revisions of the key file using
REBUILD, the KEYED BY clause is used to make a field into
a record key. The arguments are

key-number Identifies a key and is used in the
Indexed file system. The number can
range from 1 to (n), where (n) is the
number of keys.

DUPLICATES
ALLOWED

Allows two or more records to have
the same key value. Without this
parameter, an error will be returned
when one record having the same key
value as another is inserted.

DESCENDING Reverses the ordering of keys. MS-
COBOL will read an Indexed file with
this feature in reverse order. How
ever, MS-COBOL can neither create a
DESCENDING key file, nor inform a
program that a file has this feature.
DESCENDING key files should be
used only with programs that expect
this feature.

128

REBUILD Utility Version 2.0

SPLIT KEYSET Statement

The SPLIT KEYSET statement defines split keys. The param
eters are

key-number Serves the same purpose as the key
number in the KEYED BY clause.
Identifies a single key composed of
several concatenated record fields.

field-name
or key-number

field-name is the same field name used
to identify the field in the FIELD
statement. If no name was given in
the FIELD statement, key-number can
be substituted for field-name.

DESCENDING Reverses the ordering of the preceding
component of the split key. MS-
COBOL reverses the ordering of keys,
and will read an Indexed file with this
feature in reverse order. However,
MS-COBOL can neither create a DES
CENDING key file, nor inform a pro
gram that a file has this feature.
DESCENDING key files should be
used only with programs that expect
this feature.

11.7 Data Dictionary

The data file portion of a 2.0 format Indexed file contains a
data dictionary.

If a data dictionary exists in the data file, it will always take
precedence over any of the other ways of describing the record
unless a data file copy and a dd-file have been supplied to
REBUILD.

The two methods for modifying a data dictionary, specifying an
ASCII record description file (dd-file), and using REBUILD’s
interactive facility, are described in Section 11.5, "Adding and
Deleting Indexes.”

129

Microsoft COBOL Compiler User’s Guide

11.8 ASCII Version of
a Data Dictionary

In order for REBUILD to transfer data to an MS-COBOL
Indexed file, RECORD, FIELD, KEYED BY, and SPLIT
KEYSET information should be formatted as in the following
example:

Example: EMPLOYEE Identification Record

RECORD EMPLOYEE;
FIELD EMPLOYEE-NAME IS 1:30 ALPHA

KEYED BY 1;
FIELD EMPLOYEE-ADDRESS IS 31:40 ALPHA;
FIELD SOCIAL-SECURITY IS 72:10 ALPHA;
FIELD EMPLOYEE-SALARY IS 83:2 ALPHA;
FIELD EMPLOYEE-NUMBER IS 85:2 ALPHA

KEYED BY 2;
FIELD DATE-OF-EMPLOYMENT IS 87:10 ALPHA

KEYED BY 3;
SPLIT KEYSET 4 IS EMPLOYEE-NAME

SOCIAL-SECURITY EMPLOYEE-SALARY;

This example defines a record called EMPLOYEE. The name
EMPLOYEE is optional and is present for readability. There
are six fields and four keys for this record. The following dis
cussion examines the function of each field.

Field 1: EMPLOYEE-NAME

The field type is ALPHA (ALPHANUMERIC), which means it
is made up of characters. This is the only field type used when
defining data records for MS-COBOL.

The field begins in position one — the first byte of the record.
The field is 30 bytes in length. Finally, the field is also a key.
The key number is a value ranging from 1 to (n) where (n) is
the number of keys in the record. Key numbers should be
assigned in the same order as the keys declared in the
SELECT clause in the FILE-CONTROL entry. Key number 1
is always the prime key.

130

REBUILD Utility Version 2.0

Field 2: EMPLOYEE-ADDRESS

The field is 40 bytes in length. It begins in position 31 in the
record.

Field 3: SOCIAL-SECURITY

The field is 10 bytes in length. It begins in position 72 in the
record.

Field 4: EMPLOYEE-SALARY

This field begins in position 83, and is two bytes in length. It
allows duplicate values. A duplicate value occurs when two
records have the same keyed field value. Identical non-keyed
fields are not detected. The default for Field 1 is DUPLI
CATES NOT ALLOWED.

Field 5: EMPLOYEE-NUMBER

This field begins in position 85 and is two bytes in length. It is
the second keyed field in the record and does not allow duplica
tion of the value of this field by any record.

Field 6: DATE-OF-EMPLOYMENT

The field is 10 bytes long and starts in position 87. It is the
fourth keyed field.

SPLIT KEY specification

The final item specified in Example 1, EMPLOYEE IDENTIFI
CATION RECORD, is not a field in the record, but a key made
of up several keys. This is called a SPLIT KEY, and is used to
gain quick access to records based upon more than one field. It
is treated as a key in every respect except that it is made up of
more than a single field. A field that is a member of a split
key is called a component. The split key is constructed by con
catenating the components in the order specified by the field
names.

131

Microsoft COBOL Compiler User’s Guide

The most significant component is EMPLOYEE-NAME field,
which has already been defined to be 30 bytes long starting at
position one. A field may be both a key and a SPLIT KEY
component. The second and third key components are DATE-
OF-EMPLOYMENT and EMPLOYEE-SALARY and are
defined in their own field statements. Note that EMPLOYEE
SALARY is not a key field and is defined only so that it can be
named as a component in the split key.

132

Appendices

A Differences: Microsoft COBOL
2.0 and Previous Versions 135

B Compiler Phases 139
C Tab Stop Customization 141
D INSTALL Terminal Database 145
E Guide to the MS-COBOL

Demonstration Programs 175
F Error Messages 179
G Loading

the Indexed File Handler 201

133

Appendix A
Differences:
Microsoft COBOL 2.0
and Previous Versions

The significant differences between the current Microsoft
COBOL system software and previous releases are:

• Microsoft COBOL 2.0 is validated by the Federal
government as a HIGH-level implementation of
COBOL. Previous versions were validated at LOW-
INTERMEDIATE level.

• The user-directed linking process has been replaced by
a built-in linking process in the compiler and runtime
executor. As a result, the compiler now produces inter
mediate (.INT) files rather than object (.OBJ) files.
Programs are now executed by entering “RUNCOB
filename” rather than “filename”.

• MS-DOS pathnames and the MS-DOS PATH environ
ment are supported in both the compiler and the run
time system for system files and user-generated files.
Compiler overlays are located by searching the current
directory, then directories specified by the PATH
environment.

• The MS-DOS exit code is set to 255 in case of fatal
errors. This code may be tested with the MS-DOS "IF
ERRORLEVEL" command.

• The runtime command line now supports a /S switch
followed by a pathname for searching an explicit direc
tory for compiled programs. The directory specified in
this way must also contain the .INT files specified by
the CALL and CHAIN statements. A IP switch that
sends PRINTER files to a special disk file is also sup
ported.

135

Microsoft COBOL Compiler User’s Guide

• Built-in subroutines, EXIST, RENAME, REMOVE,
COMMAND, UPCASE, LOCASE, and EXCODE are
included.

• Microsoft Rebuild Utility version 2.0 now accepts input
files in ASCII format for updating a data file’s control
index or data dictionary.

• The Microsoft INSTALL Utility allows the runtime
executor name to be specified, and allows it to be
present in a directory on disk apart from the INSTALL
files.

• Microsoft Multi-Key ISAM Facility version 2.0,
included in the MS-COBOL runtime system, now sup
ports Level 2 multi-key INDEXED file organization.

• A split-key syntax for Indexed files has been added as
an extension to the ANSI 1974 COBOL Standard.

• FOREGROUND-COLOR and BACKGROUND-COLOR
clauses have been added to the DATA DIVISION
SCREEN SECTION.

• Full COPY REPLACING syntax is supported. COPY
libraries are also supported.

• COMPUTATIONAL-4 (COMP-4) storage format has
been added as a tool to reduce DATA DIVISION or
data file storage requirements and to increase the exe
cution speed of certain operations. This is an extension
to the standard.

• File control for multi-user/multi-tasking systems has
been implemented through file and record locking
in the LOCKING IS {EXCLUSIVE I MANUAL I
AUTOMATIC} clause. See Chapter 17 of the Micro
soft COBOL Reference Manual for details.

• Tape-handling syntax and the RERUN clause as
defined by ANSI 1974 COBOL are recognized by the
compiler, but are not executed at runtime.

• OPTIONAL clause has been implemented for Sequen
tial and Line Sequential files in the FILE-CONTROL
Entry.

• MOVE, ADD, and SUBTRACT statements will now
transfer CORRESPONDING data, and return data to
multiple destinations.

136

Differences: Microsoft COBOL 2.0 and Previous Versions

• COMPUTE, DIVIDE, and MULTIPLY statements will
return data to multiple destinations.

• REMAINDER clause has been implemented for the
DIVIDE statement.

• OCCURS DEPENDING ON clause has been imple
mented for describing variable occurrences of table ele
ments.

• Level 66 entries and the RENAMES clause for regroup
ing data fields are supported.

• SEGMENT-LIMIT clause for regrouping segment
numbers is supported.

• CALL ON OVERFLOW is available for monitoring
transfer of control for the overflow condition.

• CANCEL statement for releasing memory occupied by
subprograms is implemented.

• ANSI 1974 COBOL alphabet-name entry in the
SPECIAL-NAMES paragraph is present for collating
files on a customized alphabet.

• ANSI 1974 COBOL SORT/MERGE statements with the
COLLATING SEQUENCE clause are implemented.

• Arithmetic expressions and complex conditional expres
sions may be used in the IF statement, and in any
other places where conditions may be used (PERFORM,
SEARCH).

• Multiple-character figurative constants may be used,
• EJECT may be used as a mnemonic-name.
• The default source program tab settings are now set to

every eight positions to conform with traditional tab
stops. The /O compiler switch can be used to restore
the tab settings used in previous MS-COBOL versions.

For more information about Microsoft COBOL extensions to
ANSI 1974 COBOL, see the Microsoft COBOL Reference
Manual.

137

Appendix B
Compiler Phases

The Microsoft COBOL Compiler creates an object code program
from your source program. This is done by invoking five
"phases," consisting of the root portion of the compiler,
COBOL.EXE, and five overlays, COBOLO.OVR through
COBOL4.OVR. These are the phases referenced by an error
message such as "Compiler error in phase n."

Compilation is performed in two passes:

The first creates an intermediate version of the program, which
is stored in a temporary file. The creation of the intermediate
file is done in three steps:

Phase 0 (COBOLO.OVR) compiles the IDENTIFICATION
and ENVIRONMENT DIVISIONS of the source program.
Phase 1 (COBOL1.OVR) compiles the DATA DIVISION of
the source program.
Phase 2 (COBOL2.OVR) compiles the PROCEDURE DIVI
SION of the source program.

The second pass reads the intermediate file and creates the
object code in two steps:

Phase 3 (COBOL3.OVR) reads the intermediate file and
creates the object code.
Phase 4 (COBOL4.OVR) allocates file control blocks and
finalizes the object code.

139

Appendix C
Tab Stop Customization

This appendix is intended for those who are proficient with a
debugger and/or assembly language and would like to change
the built-in source program tab stop parameters of Microsoft
COBOL.

Default tab stops interpreted by COBOL are every 8 charac
ters, through column 80:

8, 16, 24, 32, 40, 48, 56, 64, 72, 80

When a tab character (hex 09) is encountered in the source file,
subsequent text is treated as if it began in the column follow
ing the next tab stop. Thus, in a line beginning with a tab and
the letter "A", the "A" is interpreted as if in column 9.

Previous versions of the compiler assumed the following tab
stops:

7, 11, 19, 27, 35, 43, 51, 59, 67, 72

The ‘70” switch may be used to cause the compiler to interpret
tabs using the Old tab settings. (Note that old documentation
refered to the stops as 8, 12, 20, etc. These are the columns
following the tab stops, at which characters following the tabs
are placed.)

The tab stops are maintained as a table. If you wish, you may
modify this table to suit your needs by patching the compiler.
The location of the default tab table may vary, based on the
size of the .EXE file header. The following information may
help you find this location.

The table is 10 bytes long, one byte per tab stop. Any values
may be used, provided that:

141

Microsoft COBOL Compiler User’s Guide

1. The numbers are in ascending order.
2. No more than 10 stops are defined.
3. The last tab stop is 80.

Note that the "/O" switch, as mentioned above, takes pre
cedence over the default tab stops, even if the defaults have
been patched.

When using the MS-DOS DEBUG utility to change the tab set
tings, the following script may be used. A> is the MS-DOS
prompt. - is the DEBUG prompt. You must rename
COBOL.EXE to a name without the .EXE extension before
using DEBUG.

Commands Comments

A> COPY COBOL.EXE COBOL.SAV Save original COBOL.EXE.
A> REN COBOL.EXE COBOL.NEW Rename without .EXE.
A> DEBUG COBOL. NEW Start DEBUG.
- d nnnn Examine current settings,

(must be 08 10 18 28 30 38
40 48 50). To determine
nnnn, see “Finding the Tab
Table/’

- e nnnnn Enter values now, in hexade
cimal, followed by SPACE.
The last entry is terminated
by RETURN.

- d nnnn Examine new settings.
- w Write out file.

- q
A> REN COBOL.NEW COBOL.EXE

End DEBUG.
Rename back for use.

142

Tab Stop Customization

Finding the Tab Table

The tab table begins immediately after the .EXE file header.
To find this location use DEBUG on COBOL.NEW, as
described in the previous section.

The simplest method of finding the tab table is to search for
the bytes that make up the table. The resulting location must
be an address that ends in 00. The following search command
will find the bytes 08 10 18 20 28 in the first 2000
(hexadecimal) bytes of the file:

-s 0 2000 08 10 18 20 28

The computer will respond with

???? :nnnn

where

???? segment (ignored)
n n n n the desired location

If nnnn does not end in 00, or no match is found, or more than
one match is found, use the following method to find nnnn:

The size of the EXE file header, in 16 byte paragraphs, is
stored 8 bytes from the start of the .EXE file header. To find
it, enter

-d 108

Take the first 2-digit hexadecimal number, and add hexade
cimal 10 to it. Place a 0 on each end of the result, and you will
have nnnn. For example, if the value at 108 was 40, adding 10
hex gives 50, and attaching zeroes gives 0500.

At the time this manual was printed, the value of nnnn was
0500.

143

Appendix D

INSTALL Terminal Database

This appendix contains a list of terminals included in the
INSTALL data file (INSTALL.DAT) and shows the special key
assignments for those systems. (See the disk file
INSTALL.DOC on your distribution disk for the most current
information on the terminals supported by the INSTALL pro
gram.)

Each list entry includes the functions, ASCII key names, and
escape codes for a particular terminal. The description of the
INSTALL general purpose default system is also included.

If your system is not one of those listed, check your system’s
technical manual for the appropriate values.

Table D.l lists the escape codes which apply to all the termi
nals described in this section, including the default system.

Table D.2 lists the characteristics applied by INSTALL to the
general purpose "default” system. These default values prob
ably do not apply to your system. See your system’s technical
manual for the applicable values.

145

Microsoft COBOL Compiler User’s Guide

Table D.l.
Escape Codes

Function Escape Code

Terminator Keys

Backtab 99
Escape 01
Tab 00
Carriage Return 00
Line Feed 00

Function Keys

Function 1 02
Function 2 03
Function 3 04
Function 4 05
Function 5 06
Function 6 07
Function 7 08
Function 8 09
Function 9 10
Function 10 11
Function 11 12
Function 12 13
Function 13 14
Function 14 15
Function 15 16

146

INSTALL Terminal Database

Table 0.2.
Default System Interface

Function ASCII Key Name

Editing Keys

Delete Line CTRL-U
Delete Character DEL
Forward Space CTRL-F
Back Space CTRL-H
Plus Sign +
Minus Sign -

Terminator Keys

Escape ESCAPE
Back Tab CTRL-B
Tab CTRL-I or TAB
Carriage Return RETURN
Line Feed LINEFEED

Function Keys

Function 1 CTRL-E 1
Function 2 CTRL-E 2
Function 3 CTRL-E 3
Function 4 CTRL-E 4
Function 5 CTRL-E 5
Function 6 CTRL-E 6
Function 7 CTRL-E 7
Function 8 CTRL-E 8
Function 9 CTRL-E 9
Function 10 CTRL-E 0

147

Microsoft COBOL Compiler User’s Guide

The following output functions have no default interface in
INSTALL:

Set Cursor Position
Backspace Cursor
Cursor On
Cursor Off
Erase to End of Screen
Erase to End of Line
Sound Bell
Start Highlight
End Highlight
Start Blink
End Blink
Start Re verse-Video
End Re verse-Video
Start Underline
End Underline

The following default system
default values indicated:

Screen Format
System Name
Terminal Initialization
Reset COBOL

interface features have the

24 lines by 80 columns
Undefined
Undefined
Undefined

148

INSTALL Terminal Database

AT&T® PC 6300

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space

CTRL-U or CTRL-End or CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key or BACK
SPACE key

Plus Sign
Minus Sign

+
Terminator Keys

Escape
Back Tab

ESC
CTRL-B or SHIFT TAB or up arrow
key

Tab
Carriage Return
Line Feed

CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10
Function 11
Function 12
Function 13
Function 14
Function 15

CTRL-E 1 or Fl or SHIFT Fl
CTRL-E 2 or F2 or SHIFT F2
CTRL-E 3 or F3 or SHIFT F3
CTRL-E 4 or F4 or SHIFT F4
CTRL-E 5 or F5 or SHIFT F5
CTRL-E 6 or F6 or SHIFT F6
CTRL-E 7 or F7 or SHIFT F7
CTRL-E 8 or F8 or SHIFT F8
CTRL-E 9 or F9 or SHIFT F9
CTRL-E 0 or F10 or SHIFT F10
CTRL-E A
CTRL-E B
CTRL-E C
CTRL-E D
CTRL-E E

149

Microsoft COBOL Compiler User’s Guide

Screen Attributes available:

HIGHLIGHT BLINK REVERSE-VIDEO.

UNDERLINE available under monochrome adapter only.
UNDERLINE appears as HIGHLIGHT under graphics adapter.

Color available:

FOREGROUND-COLOR BACKGROUND-COLOR
Integer Color Integer Color

0 black 0 black
1 blue 1 blue
2 green 2 green
3 cyan 3 cyan
4 red 4 red
5 magenta 5 magenta
6 brown 6 brown
7 white 7 white

8 gray 8 blinking black
9 light blue 9 blinking blue
10 light green 10 blinking green
11 light cyan 11 blinking cyan
12 light red 12 blinking red
13 light magenta 13 blinking magenta
14 yellow 14 blinking brown
15 high-intensity white 15 blinking white

150

INSTALL Terminal Database

COMPAQtm

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space

Plus Sign
Minus Sign

CTRL-U or CTRL-End or CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key or BACK
SPACE key
+

Terminator Keys

Escape
Back Tab

Tab
Carriage Return
Line Feed

ESC
CTRL-B or SHIFT TAB or up arrow
key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10
Function 11
Function 12
Function 13
Function 14
Function 15

CTRL-E 1 or Fl or SHIFT Fl
CTRL-E 2 or F2 or SHIFT F2
CTRL-E 3 or F3 or SHIFT F3
CTRL-E 4 or F4 or SHIFT F4
CTRL-E 5 or F5 or SHIFT F5
CTRL-E 6 or F6 or SHIFT F6
CTRL-E 7 or F7 or SHIFT F7
CTRL-E 8 or F8 or SHIFT F8
CTRL-E 9 or F9 or SHIFT F9
CTRL-E 0 or F10 or SHIFT FLO
CTRL-E A
CTRL-E B
CTRL-E C
CTRL-E D
CTRL-E E

151

Microsoft COBOL Compiler User’s Guide

Screen Attributes available:

HIGHLIGHT BLINK REVERSE-VIDEO.

UNDERLINE available under monochrome adapter only.
UNDERLINE appears as HIGHLIGHT under graphics adapter.

Colors available:

FOREGROUND-COLOR BACKGROUND-COLOR
Integer Color Integer Color

0 black 0 black
1 blue 1 blue
2 green 2 green
3 cyan 3 cyan
4 red 4 red
5 magenta 5 magenta
6 brown 6 brown
7 white 7 white

8 gray 8 blinking black
9 light blue 9 blinking blue
10 light green 10 blinking green
11 light cyan 11 blinking cyan
12 light red 12 blinking red
13 light magenta 13 blinking magenta
14 yellow 14 blinking brown
15 high-intensity white 15 blinking white

152

INSTALL Terminal Database

DEC® Rainbow™ 100

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CTRL-U, CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key
+

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

ESC (Ell)
CTRL-B or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINE FEED (F13)

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CTRL-E 1 or PF1
CTRL-E 2 or PF2
CTRL-E 3 or PF3
CTRL-E 4 or PF4
CTRL-E 5 or F14 (additional options)
CTRL-E 6 or F16 (DO)
CTRL-E 7 or F17
CTRL-E 8 or F18
CTRL-E 9 or F19
CTRL-E 0 or F20

Note
Only the above noted Rainbow function keys are used by
MS-COBOL. Keys PF1 through PF4 on the numeric
keypad may be used as function keys 1 through 4.

153

Microsoft COBOL Compiler User’s Guide

DEC VT™-52

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CTRL-U, CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key
+

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

ESC
CTRL-B or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CTRL-E 1
CTRL-E 2
CTRL-E 3
CTRL-E 4
CTRL-E 5
CTRL-E 6
CTRL-E 7
CTRL-E 8
CTRL-E 9
CTRL-E 0

Screen Attributes available:

Vary by machine. Non-available attributes may be represented
by bracketing in.

Color not available.

154

INSTALL Terminal Database

DEC VI-100 (ANSI mode)

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CTRL-U, CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key
+

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

ESC
CTRL-B or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CTRL-E 1
CTRL-E 2
CTRL-E 3
CTRL-E 4
CTRL-E 5
CTRL-E 6
CTRL-E 7
CTRL-E 8
CTRL-E 9
CTRL-E 0

Screen Attributes available:

UNDERLINE HIGHLIGHT BLINK REVERSE-VIDEO

Color not available.

155

Microsoft COBOL Compiler User’s Guide

Heath® / Zenith® 19

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

CTRL-U, CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key
+

ESC
CTRL-B or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1 CTRL-E 1 or Fl key
Function 2 CTRL-E 2 or F2 key
Function 3 CTRL-E 3 or F3 key
Function 4 CTRL-E 4 or F4 key
Function 5 CTRL-E 5 or F5 key
Function 6 CTRL-E 6 or ERASE key
Function 7 CTRL-E 7 or blue key
Function 8 CTRL-E 8 or red key
Function 9 CTRL-E 9 or white key
Function 10 CTRL-E 0 or SHIFT-ERASE key

Note
The key pad is enabled in unshifted mode. Use SHIFT-2
for down arrow, SHIFT-4 for left arrow, SHIFT-6 for right
arrow, and SHIFT-8 for up arrow.

156

INSTALL Terminal Database

Screen Attributes available:

UNDERLINE, HIGHLIGHT, BLINK, and REVERSE-VIDEO
all appear as REVERSE-VIDEO.

Color not available.

157

Microsoft COBOL Compiler User’s Guide

Hyperion ™

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CTRL-U, CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key
+■

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

ESCAPE
CTRL-B or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CTRL-E 1
CTRL-E 2
CTRL-E 3-
CTRL-E 4
CTRL-E 5
CTRL-E 6
CTRL-E 7
CTRL-E 8
CTRL-E 9
CTRL-E 0

Screen Attributes available:

UNDERLINE, HIGHLIGHT, BLINK, and REVERSE-VIDEO
all appear as REVERSE-VIDEO.

Color not available.

158

INSTALL Terminal Database

IBM i Display writer

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CODE-U or CODE-End or CODE-X
DEL key or BACKSPACE key
CODE-F or right arrow key
CODE-H or left arrow key
+

Terminator Keys

Escape
Back Tab

ESC
CODE-B or SHIFT TAB or up arrow
key

Tab
Carriage Return
Line Feed

CODE-I or TAB or down arrow key
CODE-M or RETURN
CODE-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CODE-E 1 or Fl or SHIFT Fl
CODE-E 2 or F2 or SHIFT F2
CODE-E 3 or F3 or SHIFT F3
CODE-E 4 or F4 or SHIFT F4
CODE-E 5 or F5 or SHIFT F5
CODE-E 6 or F6 or SHIFT F6
CODE-E 7 or F7 or SHIFT F7
CODE-E 8 or F8 or SHIFT F8
CODE-E 9 or F9 or SHIFT F9
CODE-E 0 or F10 or SHIFT F10

Screen Attributes available:

UNDERLINE HIGHLIGHT BLINK REVERSE-VIDEO

Color not available.

159

Microsoft COBOL Compiler User’s Guide

IBM PC

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space

CTRL-U or CTRL-End or CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key or BACK
SPACE key

Plus Sign
Minus Sign

+
Terminator Keys

Escape
Back Tab

ESC
CTRL-B or SHIFT TAB or up arrow
key

Tab
Carriage Return
Line Feed

CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10
Function 11
Function 12
Function 13
Function 14
Function 15

CTRL-E 1 or Fl or SHIFT Fl
CTRL-E 2 or F2 or SHIFT F2
CTRL-E 3 or F3 or SHIFT F3
CTRL-E 4 or F4 or SHIFT F4
CTRL-E 5 or F5 or SHIFT F5
CTRL-E 6 or F6 or SHIFT F6
CTRL-E 7 or F7 or SHIFT F7
CTRL-E 8 or F8 or SHIFT F8
CTRL-E 9 or F9 or SHIFT F9
CTRL-E 0 or F10 or SHIFT F10
CTRL-E A
CTRL-E B
CTRL-E C
CTRL-E D
CTRL-E E

160

INSTALL Terminal Database

Screen Attributes available:

HIGHLIGHT BLINK REVERSE-VIDEO.

UNDERLINE available under monochrome adapter only.
UNDERLINE appears as HIGHLIGHT under graphics adapter.

Color available:

FOREGROUND-COLOR BACKGROUND-COLOR
Integer Color Integer Color

0 black 0 black
1 blue 1 blue
2 green 2 green
3 cyan 3 cyan
4 red 4 red
5 magenta 5 magenta
6 brown 6 brown
7 white 7 white

8 gray 8 blinking black
9 light blue 9 blinking blue
10 light green 10 blinking green
11 light cyan 11 blinking cyan
12 light red 12 blinking red
13 light magenta 13 blinking magenta
14 yellow 14 blinking brown
15 high-intensity white 15 blinking white

161

Microsoft COBOL Compiler User’s Guide

Lear Siegler® ADM 42
Ergonomic Terminal ™ Video Display

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CTRL-U or delete line key
DEL key or delete char key
CTRL-F or right arrow key
CTRL-H or left arrow key
+

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

ESC
CTRL-B or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CTRL-E 1
CTRL-E 2
CTRL-E 3
CTRL-E 4
CTRL-E 5
CTRL-E 6
CTRL-E 7
CTRL-E 8
CTRL-E 9
CTRL-E 0

or Fl key
or F2 key
or F3 key
or F4 key
or F5 key
or F6 key
or F7 key
or F8 key
or F9 key
or F10 key

Screen Attributes not available.

Color not available.

162

INSTALL Terminal Database

Microsoft MS-DOS 2.xx ANSI Device Driver

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CTRL-U, CTRL-X
DEL key
CTRL-F
CTRL-H+

Terminator Keys

Escape
Back Tab
Tab

ESC
CTRL-B
CTRL-I or TAB

Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CTRL-E 1
CTRL-E 2
CTRL-E 3
CTRL-E 4
CTRL-E 5
CTRL-E 6
CTRL-E 7
CTRL-E 8
CTRL-E 9
CTRL-E 0

Screen Attributes available:

UNDERLINE HIGHLIGHT BLINK REVERSE-VIDEO

Color not available.

163

Microsoft COBOL Compiler User’s Guide

Victor® 9000 and Sirius™ 1

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

ALT-U, ALT-X
DEL key
ALT-F or right arrow key
ALT-H or left arrow key
+

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

CLR HOME
ALT-B or ALT-TAB or up arrow key
ALT-I or TAB or down arrow key
ALT-M or RETURN
ALT-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10
Function 11
Function 12
Function 13
Function 14
Function .15

ALT-E 1 or Fl
ALT-E 2 or F2
ALT-E 3 or F3
ALT-E 4 or F4
ALT-E 5 or F5
ALT-E 6 or F6
ALT-E 7 or F7
ALT-E 8 or F8
ALT-E 9 or F9
ALT-E 0 or F10
ALT-E A
ALT-E B
ALT-E C
ALT-E D
ALT-E E

164

INSTALL Terminal Database

Screen Attributes available:

UNDERLINE HIGHLIGHT REVERSE-VIDEO.
BLINK appears as UNDERLINE.

Color not available.

165

Microsoft COBOL Compiler User’s Guide

Soroe IQ® 120

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CTRL-U, CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key
+

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

ESC
CTRL-B or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CTRL-E 1
CTRL-E 2
CTRL-E 3
CTRL-E 4
CTRL-E 5
CTRL-E 6
CTRL-E 7
CTRL-E 8
CTRL-E 9
CTRL-E 0

Screen Attributes not available.

Color not available.

166

INSTALL Terminal Database

Tele Video® 925/950

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CTRL-U, CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key
+

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

ESC
CTRL-B or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CTRL-E 1 or Fl key
CTRL-E 2 or F2 key
CTRL-E 3 or F3 key
CTRL-E 4 or F4 key
CTRL-E 5 or F5 key
CTRL-E 6 or F6 key
CTRL-E 7 or F7 key
CTRL-E 8 or F8 key
CTRL-E 9 or F9 key
CTRL-E 0 or F10 key

Screen Attributes not available.

Color not available.

167

Microsoft COBOL Compiler User’s Guide

Texas Instruments Professional Computer

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

CTRL-17, CTRL-X
DEL key or backspace key
CTRL-F or right arrow key
CTRL-8 or left arrow key
+

ESC
CTRL-B or BACKTAB or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10
Function 11
Function 12
Function 13
Function 14
Function 15

CTRL-E 1 or Fl or SHIFT Fl
CTRL-E 2 or F2 or SHIFT F2
CTRL-E 3 or F3 or SHIFT F3
CTRL-E 4 or F4 or SHIFT F4
CTRL-E 5 or F5 or SHIFT F5
CTRL-E 6 or F6 or SHIFT F6
CTRL-E 7 or F7 or SHIFT F7
CTRL-E 8 or F8 or SHIFT F8
CTRL-E 9 or F9 or SHIFT F9
CTRL-E 0 or F10 or SHIFT F10
CTRL-E A or Fll or SHIFT Fll
CTRL-E B or F12 or SHIFT F12
CTRL-E C
CTRL-E D
CTRL-E E

168

INSTALL Terminal Database

Screen Attributes available:

BLINK REVERSE-VIDEO UNDERLINE

Colors available:

FOREGROUND-COLOR BACKGROUND-COLOR
Integer Color Integer Color

0 black not supported (no effect if
1 blue BACKGROUND-COLOR clause
2 green is used)
3 cyan
4 red
5 magenta
6 brown
7 white

(colors 8-15 are the same as 0 - 7)

169

Microsoft COBOL Compiler User’s Guide

Wang® Professional Computer

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space

CTRL-U, CTRL-X
DELETE
CTRL-F or RIGHT ARROW
CTRL-H or LEFT ARROW or
BACKSPACE

Plus Sign
Minus Sign

+
Terminator Keys

Escape
Back Tab

ESC (HELP)
CTRL-BorBACKTAB or
UPARROW

Tab CTRL-I or TAB or
DOWN ARROW

Carriage Return
Line Feed

RETURN
LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

CTRL-E 1 or Fl or SHIFT Fl
CTRL-E 2 or F2 or SHIFT F2
CTRL-E 3 or F3 or SHIFT F3
CTRL-E 4 or F4 or SHIFT F4
CTRL-E 5 or F5 or SHIFT F5
CTRL-E 6 or F6 or SHIFT F6
CTRL-E 7 or F7 or SHIFT F7
CTRL-E 8 or F8 or SHIFT F8
CTRL-E 9 or F9 or SHIFT F9
CTRL-E 10 or F10 or SHIFT F10

Screen Attributes available:

UNDERLINE HIGHLIGHT BLINK REVERSE-VIDEO

Color not available.

170

INSTALL Terminal Database

Zenith Data Systems tm z-100™

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space
Plus Sign
Minus Sign

CTRL-U, CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key
+

Terminator Keys

Escape
Back Tab
Tab
Carriage Return
Line Feed

ESC
CTRL-B or up arrow key
CTRL-I or TAB or down arrow key
CTRL-M or RETURN
CTRL-J or LINEFEED

Function Keys

Function 1 CTRL-E 1 or Fl key
Function 2 CTRL-E 2 or F2 key
Function 3 CTRL-E 3 or F3 key
Function 4 CTRL-E 4 or F4 key
Function 5 CTRL-E 5 or F5 key
Function 6 CTRL-E 6 or F6 key
Function 7 CTRL-E 7 or F7 key
Function 8 CTRL-E 8 or F8 key
Function 9 CTRL-E 9 or F9 key
Function 10 CTRL-E 0 or F10 key

Screen Attributes available:

UNDERLINE, HIGHLIGHT, BLINK, and REVERSE-VIDEO
all appear as REVERSE-VIDEO.

171

Microsoft COBOL Compiler User’s Guide

Color available:

FOREGROUND-COLOR BACKGROUND-COLOR
Integer Color Integer Color

0 black 0 black
1 blue 1 blue
2 green 2 green
3 cyan 3 cyan
4 red 4 red
5 magenta 5 magenta
6 brown 6 brown
7 white 7 white

(colors 8-15 are the same as 0 - 7)

172

INSTALL Terminal Database

Zenith Data Systems z-100-PC™ (z-150™)

Editing Keys

Delete Line
Delete Character
Forward Space
Back Space

Plus Sign
Minus Sign

CTRL-U or CTRL-End or CTRL-X
DEL key
CTRL-F or right arrow key
CTRL-H or left arrow key or BACK
SPACE key+

Terminator Keys

Escape ESC
Back Tab CTRL-B or SHIFT TAB or up arrow

key
Tab CTRL-I or TAB or down arrow key
Carriage Return CTRL-M or RETURN
Line Feed CTRL-J or LINEFEED

Function Keys

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10
Function 11
Function 12
Function 13
Function 14
Function 15

CTRL-E 1 or Fl or SHIFT Fl
CTRL-E 2 or F2 or SHIFT F2
CTRL-E 3 or F3 or SHIFT F3
CTRL-E 4 or F4 or SHIFT F4
CTRL-E 5 or F5 or SHIFT F5
CTRL-E 6 or F6 or SHIFT F6
CTRL-E 7 or F7 or SHIFT F7
CTRL-E 8 or F8 or SHIFT F8
CTRL-E 9 or F9 or SHIFT F9
CTRL-E 0 or F10 or SHIFT F10
CTRL-E A
CTRL-E B
CTRL-E C
CTRL-E D
CTRL-E E

173

Microsoft COBOL Compiler User’s Guide

Screen Attributes available:

HIGHLIGHT BLINK REVERSE-VIDEO.

UNDERLINE available under monochrome adapter only.
UNDERLINE appears as HIGHLIGHT under graphics adapter.

Color available:

FOREGROUND-COLOR BACKGROUND-COLOR
Integer Color Integer Color

0 black 0 black
1 blue 1 blue
2 green 2 green
3 cyan 3 cyan
4 red 4 red
5 magenta 5 magenta
6 brown 6 brown
7 white 7 white

8 gray 8 blinking black
9 light blue 9 blinking blue
10 light green 10 blinking green
11 light cyan 11 blinking cyan
12 light red 12 blinking red
13 light magenta 13 blinking magenta
14 yellow 14 blinking brown
15 high-intensity white 15 blinking white

174

Appendix E
Guide to the MS-COBOL
Demonstration Programs

E.l CRTEST 177
E.2 CENTER 177
E.3 MS-COBOL Demonstration System 177

175

Guide to the MS-COBOL Demonstration Programs

The following demonstration programs are included with the
MS-COBOL Compiler:

E.l CRTEST

CRTEST is a test program for the terminal interface, as modified
by the INSTALL utility program. CRTEST must be compiled
before it can be run. (Follow directions for compiling in Section 2.4,
“Sample Session.”) When you run the program, it will prompt you
for input.

E.2 CENTER

CENTER is a program that centers a line of text or aligns it
with the left or right margin. It is a simple MS-COBOL pro
gram that does not use sophisticated screen-handling features.
CENTER.INT is provided on the demonstration disk. It does
not need to be compiled.

E.3 MS-COBOL Demonstration System

The MS-COBOL demonstration system consists of three MS-
COBOL programs:

DEMO.COB
BUILD.COB
UPDATE. COB

These programs must be compiled before they are run. You
can run the batch file CLDEMO.BAT (described later in this
section) to compile DEMO.COB, BUILD.COB, and
UPDATE.COB.

177

Microsoft COBOL Compiler User’s Guide

DEMO is the executive program of the system. It asks if you
would like a demonstration of the MS-COBOL SCREEN SEC
TION, or whether you would like to create or update an
Indexed (ISAM) file of names, addresses, and phone numbers.

Use the following procedure to compile and run DEMO:

1. Run INSTALL (see Chapter 9, "INSTALL Program,”
for details).

2. Include drive A: on the MS-DOS PATH by entering
PATH A:\

3. Load the Indexed file handler (see Appendix G, "Load
ing the Indexed File Handler”) by putting a disk con
taining ISAM.EXE in the default drive and typing
"ISAM”.

4. Compile the system.
a. Copy DEMO.COB, DEMO.CPY, BUILD.COB,

UPDATE.COB, and CLDEMO.BAT onto a blank
disk, and insert into drive B:.

b. Place the disk containing COBOL.EXE and its
overlays into drive A:.

c. Type "B:” at the system prompt to make drive B:
the default drive.

d. Type “CLDEMO” to compile the programs and
create files DEMO.INT, DEM0.050, BUILD.INT,
and UPDATE.INT.

5. Remove the compiler disk from drive A: and replace it
with a disk containing RUNCOB.EXE.

6. Now type "RUNCOB DEMO”.
When DEMO has been loaded, it will ask if INSTALL
has been run. If INSTALL hasn’t been run, cancel the
job. (If you continue, you will have to restart the sys
tem to exit from DEMO.)
If INSTALL has been run, DEMO will prompt you for
input by providing menus and information screens to
guide you through the demonstration.

Note that CLDEMO.BAT uses the /D switch to prevent the
.DBG files used by DEBUGCOB from being created.

178

Appendix F
Error Messages

F.l Compile Time Error Messages 181
F.1.1 Command Input

and Operating System 1-0 Errors
F.1.2 Program Syntax Errors 184
F.1.3 File Usage Errors 192
F.l.4 Warnings 193
F.2 Runtime Error Messages 196

182

179

Error Messages

This appendix lists all the error messages you may encounter
while compiling and executing a Microsoft COBOL program.

F.l Compile Time Error Messages

Compile time error messages include messages for

1. command input and operating system 1-0 errors
2. program syntax errors
3. file usage errors
4. warnings

Command input and operating system input-output error mes
sages will be displayed as errors occur during compilation.

Program syntax error messages (which include file usage and
warning messages) are displayed as they occur during compila
tion, and are placed at the end of the listing file. They consist
of

1. The source program line number, which is four digits
followed by a colon (:).

2. An explanation of the error. If the explanation begins
with an /F/ (inconsistent file usage) or a /W/ (warning),
then the message is only a warning; if not, the error is
severe enough to prevent you from executing the object
file.

Program syntax error messages will always be listed at your
terminal at the end of compilation. A message displaying the
total number of errors or warnings is also displayed. This
feature allows you to make a simple change to a program,
recompile it without a listing, and still receive any error mes
sages at your terminal.

Syntax error messages in this manual are listed in alphabeti
cal order, with IF I (file usage) and /W/ (warning) placed at the
end of the list. The number included with an IF/ warning
represents the order in which files are entered in the FILE
SECTION of the MS-COBOL program, rather than a line
number.

181

Microsoft COBOL Compiler User’s Guide

F.1.1 Command Input
and Operating System 1-0 Errors

Cannot find overlay for loading.
One of the MS-COBOL Compiler overlay files
(COBOLn.OVR) is not on the disk. It may have been
written to another disk or destroyed. Recompiling and
relinking may eliminate the problem. Be sure that the
disk containing the overlays is either in the current direc
tory of the current drive, or is in a directory in the search
path specified by the MS-DOS PATH command.

Compiler error in phase n at address.
Usually caused by a damaged source program or damaged
compiler or overlay file. In the latter case, try your
backup copy. If this does not work, you can sometimes
determine the cause of the error by compiling increasingly
larger portions of the program, starting with only a few
lines, until the error reoccurs. See Appendix B, "Compiler
Phases,” for more information.

Compiler table overflow.
One of the compiler’s internal tables has used up all
memory available to it. See the "Out of memory” error
description.

Debug file cannot be opened.
The debug file (.DBG file) cannot be opened.

Disk input error.
An input-output operation on an input file has been
unsuccessful.

Disk output error.
An input-output operation on an output file has been
unsuccessful. This usually indicates that the disk is full.

Error while reading overlay.
The compiler’s overlay was found but is damaged in some
way. Restore a new copy of the compiler and its overlays
from your backup disk.

182

Error Messages

Invalid switch.
You have entered a switch parameter that the compiler
does not recognize.

List file cannot be opened.
The listing file (.LST file) cannot be opened.

Object file cannot be opened.
An output file cannot be opened. For example, the output
disk is write-protected.

Out of memory.
Occurs when there is insufficient memory for all the sym
bols and other information obtained from the source pro
gram. It indicates that the program is too large and must
be decreased in size, or split into modules and compiled
separately.
The symbol table of data-names and procedure-names is
usually the largest user of space during compilation. All
names require as many bytes as there are characters in
the name, with an overhead requirement of about 10
bytes per data-name and 2 bytes per procedure-name. On
the average, each line in the DATA DIVISION uses about
14 bytes of memory during compilation, and each line in
the PROCEDURE DIVISION uses about 3 1/4 bytes.

Source file cannot be found.
You have specified a filename for input that does not
exist, or have specified an invalid filename.

183

Microsoft COBOL Compiler User’s Guide

F.1.2 Program Syntax Errors

A FILE-ID name is undefined.
A data-name specified in a VALUE OF FILE-ID clause is
not defined.

A paragraph declaration is required here.
An EXIT statement is not followed by a section or para
graph header, or the PROCEDURE DIVISION header.

Area A not blank in continuation line.
A character was encountered in Area A of a continuation
line.

Area A violation; resumption at next
paragraph/section/division/verb.

The entry starting in one of columns 8-12 cannot be inter
preted as a division header, section name, paragraph
name, file description indicator, or 01 or 77 level number.

Bad SORT/RELEASE/RETURN usage.
A file described by an SD was OPENed or otherwise acted
upon by something other than a SORT statement.

Clauses other than VALUE deleted.
The data-description of a level 88 item includes a descrip
tive clause other than VALUE IS.

COPY file not found.
The filename for the COPY file is invalid, or the COPY
file cannot be found.

DATA DIVISION limitations exceeded.
One of the limitations on the contents of the DATA DIVI
SION has been exceeded. Check the Microsoft COBOL
Reference Manual, Section 6.3, for DATA DIVISION lim
its.

184

Error Messages

Duplicate alphabet name.
Two or more alphabet definitions in the SPECIAL
NAMES paragraph were given the same name.

Element length error.
The length of the quoted literal is over 120 characters; or
the numeric literal is over 18 digits; or the
identifier/name is over 30 characters.

Erroneous filename is ignored.
An entry which has not been declared as a filename
appears where a filename is required.

Erroneous qualification; last declaration used.
The qualifiers used with a data-name are incorrect or are
not unique.

Erroneous subscripting; statement deleted.
Too few or too many subscripts are provided for a data-
name.

Excessive literal pool or display string length.
The total length of the literals contained within a single
paragraph is greater than 4096 bytes.

Excessive OCCURS nesting is ignored.
OCCURS clauses are nested more than three deep.

Excessive segment number.
A section header contains a section number greater than
99.

Excessive segment number in DECLARATIVES.
A section header in the DECLARATIVES Region contains
a section number greater than 49.

File not selected; entry bypassed.
An ED is given for a file-name which does not appear in
any SELECT sentence.

185

Microsoft COBOL Compiler User’s Guide

File share syntax error.
LOCK, WAIT, LOCKING MANUAL, or LOCKING
AUTOMATIC was specified for a Sequential or Line
Sequential file.

File status declaration of this file is not correct.
The file status data-item is not alphanumeric.

Fill character conflict.
In a Format 3 ACCEPT statement, SPACE FILL and
ZERO-FILL are both specified.

First non-DECLARATIVE SECTION segment number
cannot exceed 49.
The first section segment number following the optional
DECLARATIVES Section must be less than 50.

Fractional exponent or negative scaled base (99p).
In a COMPUTE statement, an exponent is a numeric
literal with a decimal point or a numeric data-item
described with a digit to the right of an assumed decimal
point; or the PICTURE of an exponentiation base (entry
preceding) contains the character P as the rightmost digit.

Group item, therefore PIC/JUST/BLANK/SYNC is
ignored.
A phrase which is allowed for only elementary data-items
is used in the description of an item that is followed
immediately by an item of a higher level number.

Illegal character.
An invalid character has been encountered. This can often
be caused by older text editors.

Illegal MOVE or comparison is deleted.
The operands of a MOVE statement or relational condi
tion are incompatible.

Imperative statement required. Statement deleted.
A conditional statement is contained within a conditional
statement other than IF.

186

Error Messages

Improper item to control # of occurrences.
The DEPENDING ON data-name is not a proper identi
fier or does not refer to a numeric integer

Improper # of split key components.
More than 31 components have been specified or a
psuedo-name has already been defined, or one of the
names following the equal sign (-) has not been defined.

Improper character in column 7.
An invalid character in column 7 has been encountered.

Improper PICTURE. PIC X assumed.
An invalid PICTURE clause has been encountered.

Improper punctuation.
Incorrect punctuation has been encountered. For
instance, a comma or period must be followed by a space.

Improper redefinition ignored.
The data-name specified in a REDEFINES clause is not at
the same level as the current data-name, or it is
separated from it by an item with a lower level number.

Improperly formed element.
Incorrect syntax for an item has been encountered. For
instance, you may have ended a word with a hyphen or
used multiple decimal points in a numeric literal.

Incomplete (or too long) statement deleted.
A verb immediately follows a partial statement form, or
an otherwise acceptable statement is too large for the
compiler to read.

Indexed/Relative requires disk assignment.
A file assigned to PRINTER is described as having
INDEXED or RELATIVE organization.

187

Microsoft COBOL Compiler User’s Guide

Invalid key specification.
The key item for a Relative or Indexed file should not be
subscripted, or it is inconsistent with the file organization
in class or USAGE. This message is issued when the
OPEN statement is processed.

Invalid quoted literal.
A literal of zero length, improper construction, or missing
end quotes has occurred.

Invalid SELECT sentence.
The syntax of a SELECT sentence in the FILE-CONTROL
paragraph is incorrect.

Invalid VALUE ignored.
The value specified in a VALUE IS phrase is not a prop
erly formed literal.

Justification conflict.
In a Format 3 ACCEPT statement, LEFT-JUSTIFY and
RIGHT-JUSTIFY are both specified.

Key declaration of this file is not correct.
The RELATIVE KEY clause is missing for a Relative file,
or the RECORD KEY clause is missing for an Indexed
file. A RECORD KEY or RELATIVE KEY clause was
specified for a file with SEQUENTIAL or LINE SEQUEN
TIAL organization.

LINAGE-COUNTER may not be modified.
An illegal attempt was made to change the value of the
LINAGE-COUNTER special register.

Literal truncated to size of item.
The literal specified in a VALUE IS phrase is larger than
the data-item being declared.

Maximum number of SORT keys is 12.
A SORT or MERGE statement with more than 12 keys was
encountered.

188

Error Messages

Misordered/redundant section processed as is.
A section in the IDENTIFICATION, ENVIRONMENT, or
DATA DIVISION is out of order or repeated.

Name omitted; entry bypassed.
The data-name is missing in a data description entry.

No items ’CORRESPOND’.
In a MOVE, ADD, or SUBTRACT operation with the
CORRESPONDING option, no items were found to
correspond. The operation is ignored.

No msg for msg no.
This message indicates an internal compiler problem.

No PICTURE; elementary item assumed to be binary.
No PICTURE is given for an elementary data-item.

OCCURS disallowed at level 01/77, or count too high.
An OCCURS clause appears in a data-description entry at
level 01 or 77; or the number of occurrences specified is
greater than 32,767.

Omitted word SECTION is assumed here.
The required word SECTION is missing from the header
of a section in the DATA DIVISION.

Over 255 values in 88 condition.
Level 88 condition names are limited to 255 values or
ranges.

Procedure-name is unresolvable.
A reference to a section name or procedure-name is not
sufficiently qualified or is not unique.

Procedure range not in current segment.
A PERFORM statement in a section with a number
greater than 49 refers to a procedure in a section with a
different number greater than 49.

189

Microsoft COBOL Compiler User’s Guide

Procedure range spans segments.
A procedure range (procedure-name-1 THRU procedure
name-2) mentioned in a PERFORM statement contains
paragraphs in sections with different section numbers
greater than 49, or in sections numbered both less than or
equal to 49 and greater than 49.

Redundant FD processed as is.
The same filename appears in more than one file descrip
tion.

REWRITE valid only for a disk file.
The file-name entry in a REWRITE statement is a file
assigned to PRINTER.

Semantical error in screen description.
This message can be caused by five error conditions:

1. The SCREEN SECTION does not begin with a
level 01 screen item description.

2. A level 01 screen item description does not include
a screen name.

3. A group screen item is described with a clause
which is allowed only for elementary items.

4. An elementary screen item description is missing
in FROM, TO, USING, or VALUE clauses.

5. A screen item description contains inconsistent
clauses (such as USING and VALUE).

SIGN clause ignored for unsigned item.
The PICTURE of a numeric item with USAGE IS
DISPLAY describes it as unsigned, but a SIGN IS clause
is present.

Single-spacing assumed due to improper ADVANCING
count.
The operand of the BEFORE or AFTER phrase of a
WRITE statement is not numeric, or it is outside the
range 0-120.

190

Error Messages

Source bypassed until next FD/section.
An error in a file description prevents further analysis.

Statement deleted because integer item is required.
A numeric data-item whose PICTURE specifies digits to
the right of the decimal point is used where an integer is
required.

Statement deleted because operand is not a filename.
A name appearing where a filename is required has not
been declared as a filename.

Statement deleted due to erroneous syntax.
A syntax error, to which no more specific message applies,
is present.

Statement deleted due to non-numeric operand.
An alphanumeric or alphanumeric-edited item is used as
an operand of an arithmetic statement; a numeric-edited
item is used as an operand other than the result; or a
number is longer than 18 digits.

Subscript 0 or over maximum number of occurrences; 1
used.
A literal used as a subscript is inconsistent with the
range defined by the associated OCCURS clause.

Subscript or index-name is not unique.
A name which requires qualification is used as a sub
script.

Syntax error in screen description.
A screen item description contains a clause which is
unrecognizable, improperly constructed, or redundant.

Unrecognizable element is ignored.
A required keyword is missing, or a data-name or pro
cedure name is unidentified.

191

Microsoft COBOL Compiler User’s Guide

Using-list item level must be 01/77.
A name used in the PROCEDURE DIVISION header
USING list is not declared at level 01 or level 77.

USING/GIVING file’s ACCESS MODE must be SEQUEN
TIAL.
In a SORT or MERGE statement, the files specified in a
USING or GIVING clause must have been declared with
ACCESS MODE IS SEQUENTIAL in their FILE
CONTROL entries.

VALUE disallowed-OCCURS/REDEFINES/type/size con
flict.
The VALUE IS clause is specified for a data-item
described with (or included within an item described with)
an OCCURS or REDEFINES clause; or the literal given
in a VALUE IS clause is not compatible with the PIC
TURE of the declared item.

VALUE OF FILE-ID required.
The VALUE OF FILE-ID clause is not specified in the file
description of a file assigned to DISK.

Varying item may not be subscripted.
The data-item controlled by the VARYING phrase of a
PERFORM statement is subscripted.

F.1.3 File Usage Errors

ZF/ File never closed.
No CLOSE statement is present for the file.

/F/ File never opened.
No OPEN statement is present for the file.

/F/ Inconsistent READ usage.
An OPEN INPUT statement is present for a file, but no
READ statement; or vice versa.

192

Error Messages

/F/ Inconsistent WRITE usage.
An OPEN OUTPUT statement is present for a file, but no
WRITE statement; or vice versa.

F.1.4 Warnings

/W/ BLANK WHEN ZERO is disallowed.
The BLANK WHEN ZERO phrase appears in the descrip
tion of an alphanumeric or alphanumeric-edited item.

/W7 ’COMP’ ignored for decimal item.
An item declared with USAGE COMP-0 or COMP-4 had a
PICTURE beyond the allowable size for the USAGE.

/W/ DATA DIVISION assumed here.
The DATA DIVISION header is missing.

/W7 DATA RECORDS clause was inaccurate.
The record-name(s) given in a DATA RECORDS clause is
not consistent with the record descriptions following the
file description.

/W7 Erroneous RERUN entry is ignored.
A RERUN clause of the I-O-CONTROL paragraph con
tains a syntax error.

/W/ FD-value ignored since LABELS ARE OMITTED.
The VALUE OF FILE-ID clause is used in the description
of a file which is assigned to PRINTER.

/W/ FILE SECTION assumed here.
The FILE SECTION header is missing.

/W/ FIPS COBOL language extension.
When FIPS flagging has been selected, it indicates that
the statement or clause identified is a Microsoft extension.

193

Microsoft COBOL Compiler User’s Guide

/W/ FIPS High-level feature.
When FIPS flagging has been selected, it indicates that
the statement or clause identified is a High-level feature.

/W/ FIPS High-Intermediate level feature.
When FIPS flagging has been selected, it indicates that
the statement or clause identified is a High-Intermediate
level feature.

/W/ FIPS Low-Intermediate level feature.
When FIPS flagging has been selected, it indicates that
the statement or clause identified is a Low-Intermediate
level feature.

/W/ Invalid Blocking is ignored.
The BLOCK clause of an FD contains an error.

/W/ Invalid record size(s) ignored.
The RECORD clause of an FD contains an error.

/W/ LABEL RECORD STANDARD required.
The LABEL RECORD(S) STANDARD phrase is not
present in the FD of a file assigned to DISK.

/W/ LABEL RECORDS OMITTED assumed for Printer
file.
The LABEL RECORDS OMITTED clause is missing in
the file description of a file assigned to PRINTER.

/W/ Level 01 assumed.
A record-description begins with a level number other
than 01.

/W/ Period assumed after procedure-name definition.
A section or paragraph header does not end with a period.

/W/ PICTURE ignored for index item.
A data-item described with USAGE IS INDEX phrase
also has a PICTURE phrase.

194

Error Messages

/W/ PROCEDURE DIVISION assumed here.
The PROCEDURE DIVISION header is missing.

/W/ Record size inconsistent with ED. RECORD CON
TAINS clause ignored.
The record size specified in the RECORD CONTAINS
clause of an ED is inconsistent with the sizes of the asso
ciated record-descriptions.

/W/ Redundant clause ignored.
The same clause is specified more than once in a file
description.

/W/ Right parenthesis required after subscripts.
The closing parenthesis for a subscript is missing.

/W/ Terminal period assumed above.
A data-description entry or paragraph does not end with a
period.

/W/ WORKING-STORAGE assumed here.
The WORKING-STORAGE header is missing.

195

Microsoft COBOL Compiler User’s Guide

F.2 Runtime Error Messages

Some programming errors cannot be detected by the compiler
but cause the program to end prematurely during execution.
These are program execution errors (runtime errors). They are
displayed in the format

**Run-time error: reason,
Program: program-id, line: line-number*

The program execution errors detected by MS-COBOL are:

Can’t find code file
The ".MT" file containing the program to be run or called
could not be found.

Cursor position
Attempt was made to position the cursor beyond the line
or column limits of the screen. A Format 3 or 4 ACCEPT
statement or a DISPLAY statement with a position-spec
or screen-name is the statement responsible for the error.
If a screen has been displayed or accepted, one or more
fields within the screen have starting positions outside
the maximum screen line or column.

Data unavailable
Reference was made to a data record in a file that was not
open or had reached the AT END condition.

DELETE; no READ
Attempt was made to DELETE a record of a SEQUEN
TIAL access mode file when the last operation was not a
successful READ.

File locked
OPEN attempted after an earlier CLOSE WITH LOCK.

196

Error Messages

File not OPENed/previous error
An attempt was made to perform an I/O operation on a
file that was not OPENed or was damaged in some way
due to a previous error.

GO TO not set
A null GO TO statement, which has never been altered to
refer to a destination, was executed.

Illegal ALTER
Attempt was made to alter a nonalter able GO TO.

Illegal CANCEL
Attempt was made to CANCEL an active subprogram or
one which was never called.

Illegal DELETE
Relative or Indexed file not opened for 1-0.

Illegal READ
Attempt was made to READ a file that was not open in
the INPUT or 1-0 mode.

Illegal RELEASE
A RELEASE statement was encountered when no SORT
statement was active.

Illegal RETURN
A RETURN statement was encountered when no SORT or
MERGE statement was active.

Illegal REWRITE
REWRITE was executed for a record in a file not open in
the 1-0 mode.

Illegal START
File not opened for INPUT or 1-0.

197

Microsoft COBOL Compiler User’s Guide

Illegal WRITE
Attempt was made to WRITE to a file that was not open
in the OUTPUT mode for SEQUENTIAL access files, or
in the OUTPUT or 1-0 mode for RANDOM or DYNAMIC
access files.

Incompatible runtime and compiler used
A program was compiled using one version of the MS-
COBOL Compiler and run with a runtime executor that
had a different version number.

Indexed file system not available
In an MS-COBOL implementation with a separate
Indexed file handler program, the file handler has not
been run before Indexed I/O was attempted.

Input/output
Unrecoverable 1-0 error, with no provision in the user’s
MS-COBOL program for acting upon the situation by way
of an AT END clause, INVALID KEY clause, FILE
STATUS item, or DECLARATIVES SECTION.

Insufficient memory for program
During a CALL or CHAIN statement, sufficient memory
to load the called or chained program was unavailable.

MS DOS version prior to 2.0 used
Versions 2.0 and later of MS-COBOL require MS-DOS
with version 2.0 or later.

Need more memory
The indexed file manager or sorter has ended abnormally
because of insufficient dynamically allocatable memory.

Non-numeric data
Whenever the content of a numeric item does not conform
to the given PICTURE, this condition may arise. Always
check input data, if it is subject to error (because input
editing has not yet been done) by using the NUMERIC
test.

198

Error Messages

Object code error
An undefined object program instruction has been encoun
tered. This should occur only if the absolute version of
the program has been damaged in memory or on the disk
file.

PERFORM overlap
An illegal sequence of PERFORMS, as, for example, when
paragraph A is performed and another PERFORM A is
initiated prior to exiting from the first, has occurred.

PERFORMS too deeply nested
The number of currently active paragraphs being PER-
FORMed has exceeded the maximum of 40.

READ beyond EOF.
An attempt was made to read beyond the end of a file.

READ error on code file
The runtime found but was unable to successfully READ
a given code (“.INT”) file.

Redundant CLOSE
A CLOSE operation was performed on an unopened file.

Redundant OPEN
An OPEN operation was executed on a file that had
already been opened.

REWRITE; no READ
Attempt was made to REWRITE a record of a SEQUEN
TIAL access file when the last operation was not a suc
cessful READ.

Segment nn load error
An error occurred while attempting to load an overlay
segment, nn is 31 hex (49 decimal) less than the overlay
segment number.

199

Microsoft COBOL Compiler User’s Guide

SORT error nn
An error has occurred during a SORT operation. See
Chapter 13, “SORT/MERGE Facility” in the Microsoft
COBOL Reference Manual for a description of the errors.

Stopped by Interrupt key
The interrupt key was pressed, which caused the program
to close files and stop.

Subroutine language not supported
A non-COBOL subroutine entered in the user-supplied
subroutine table has an illegal or currently non-supported
language type.

Subscript fault
A subscript has an illegal value. This error may be
caused by an index reference whose value is less than 1.

Too many subroutines
The number of active called MS-COBOL subroutines has
exceeded the maximum of 20.

Too many files OPENed
The number of open data files exceeds the allowable max
imum number.

Unexpected error
This is an internal error.

200

Appendix G
Loading
the Indexed File Handler

G.l Loading ISAM 203
G.2 Using ISAM With Batch Files 204
G.3 Error Handling 204

201

Loading the Indexed File Handler

Warning
The MS-DOS ASSIGN command and Microsoft ISAM must
not be used together. If ASSIGN has been used before
ISAM was loaded, the system should be turned off and
rebooted before loading ISAM. If ASSIGN is to be used
after ISAM is loaded, the system should also be rebooted.
Failure to "clear out” ISAM or ASSIGN will result in
failures of the ASSIGN or ISAM functions or will cause the
system to crash.
These problems occur whenever ISAM or ASSIGN have
been loaded. Users of Microsoft COBOL and Microsoft
ISAM applications should receive this warning.

This implementation of Microsoft COBOL uses the Microsoft
Multi-Key ISAM Facility (ISAM) to perform its Indexed file
input and output. This is the same ISAM facility used by
other Microsoft languages and application products. This
ensures compatibility with other Microsoft products and simpli
fies updating to new versions of ISAM. This will be especially
important when networking versions of ISAM, with file and
record locking, become available.

Microsoft ISAM belongs to a special class of programs known
as "terminate and stay resident” programs. Once executed,
ISAM remains in memory until it is removed, or the system is
shut off, and it is always available to COBOL applications.

G.l Loading ISAM

Microsoft ISAM consists of a separate program which must be
loaded before any MS-COBOL applications using Indexed files
are run. To load ISAM, place a disk containing ISAM.EXE into
your default drive and enter a command of the form

ISAM [/switches]

203

Microsoft COBOL Compiler User’s Guide

Switches used by ISAM are

/S'.buffer size in bytes causes the specified amount of
memory to be allocated for use as
Indexed file buffers. Larger buffers
generally result in faster file
operations. If /S is not specified,
10,000 bytes will be allocated for
buffers.

/F frees memory previously occupied
by ISAM, and "unloads" ISAM.

When this command is executed, ISAM is loaded and becomes
available to applications, unless the IF switch is specified, in
which case a previously loaded copy of ISAM is removed from
the system, and is no longer available to applications.

G.2 Using ISAM With Batch Files

The command to load Microsoft ISAM may be made part of a
batch file to ensure that ISAM will be available to any applica
tion that needs it. If the command is made part of
AUTOEXEC.BAT, ISAM will be loaded at system startup, and
will always be present. Alternatively, ISAM loading may be
done as part of a batch file used to start a COBOL application.
Note that ISAM occupies memory once it is loaded (approxi
mately 35K if the /S switch is not specified), and can be
removed only by rerunning ISAM with the IF switch, or reboot
ing MS-DOS.

G.3 Error Handling

If an MS-COBOL program is run when ISAM has not previ
ously been loaded, all Indexed file operations will be unsuccess
ful, and normal MS-COBOL 1-0 error handling takes place. If
INVALID KEY or AT END clauses are present, the imperative
statements following these clauses will be executed. If these
clauses are not present, any associated DECLARATIVES pro
cedures would be executed.

204

Loading the Indexed File Handler

If a FILE-STATUS item has been defined, Indexed file opera
tions will return a status value of 95. If none of these error
handling mechanisms are invoked, Indexed file operations will
cause a runtime error, and the message, "Indexed file system
not available,” will be displayed.

205

Index

.COB file, 28
,INT file, 28
.LST file, 28

/C compiler switch, 25, 30
/D compiler switch, 25, 30, 33,

57
/Fn compiler switch, 30
/O compiler switch, 31
/P runtime switch, 38
/Pn compiler switch, 31
/8 compiler switch, 31, 43
/S runtime switch, 38
/T compiler switch, 32, 33

ACCEPT and DISPLAY
statements

screen handling, 65
ACCEPT statement, 16
ALTERNATE RECORD KEY

clause, 4
ANSI Device Driver, 163
ASCII file, 112
Assembler macros

END CSEG, 95
END DSEG, 95
START CSEG, 95
START DSEG, 95
USERSEG.MAC, 95

Assembly language subroutines,
94

ASSIGN TO DISK clause, 51
ASSIGN TO PRINTER clause,

54
ATT PC 6300, 149
AUTOEXEC.BAT file, 19
AUX, 27, 54

B+ tree, 53

Batch command files, 39
BLOCK clause, 51
Boundary error indicator, 118
BUILD.COB, 15
Byte-swapped storage, 96

CALL statement, 81, 83
loading run files, 38
passing data addresses, 84
passing parameters, 81
see also Data transfer

CANCEL statement, 86
CENTER, 177
CENTER.COB, 19, 21
CENTER.INT, 21
CENTER.LST, 21
CHAIN statement, 4, 81

loading run files, 38
see also Data transfer

CHAINING phrase, 4, 81, 82,
88

Character sequences, 73, 75
Characters, lower-case, 4
CHKDSK command, 34
CLDEMO.BAT, 15
COBOL.EXE, 16
Code segment, 95
CONI, 27, 54
Command input errors, 182
Command line storage area

USING list parameters, 105
COMP-O data-item, 4, 96
COMP-3 data-item, 4
COMP-4 data-item, 4, 96
COMPAQ Portable Computer,

151
Compilation process, 16
Compile time error messages,

181
Compile, load, and go, 39
Compiler command line, 26

207

Index

Compiler disk, 18, 25
Compiler overlays, 16

system search path, 25
Compiler switches, 29

/C, 30
/D, 30
/Fn, 30
/O, 31
/Pn, 31
/S, 31, 43
/T, 32

Compiler, previous versions,
135

Compiler
disk files, 13

Compiling large programs, 33
Compiling

command line strings, 26
compiler prompts, 26
default drive, 25
invoking MS-COBOL, 25
overlay search path, 25
partial command strings, 28
PATH command, 25
specifying files, 27

Compressing data file, 115
CON, 27, 54
Converting Indexed file format,

115
COPY file searches, 31
COPY files switch, 31
COPY statement, 43
CRTEST, 177
Current working directory, 43

Damaged data file, 118
Data dictionary, 53, 129
Data file, 109

definition, 53
Data input and output, 51

end-of-file format, 52
MS-DOS device names, 54
OPEN EXTEND option, 52

Data segment, 95

Data transfer
assembler macros, 95
CALL statement, 81
CANCEL statement, 86
CHAIN statement, 81
CHAINING phrase, 81, 82, 88
COMP-O data-item, 100, 102
COMP-4 data-item, 102
dynamic CALL, 83
EXIT PROGRAM statement,

85
FAR CALL instruction, 94
FAR RET instruction, 94
FILE SECTION, 84
LINKAGE SECTION, 82, 84
non-COBOL subroutines, 94
ON OVERFLOW phrase, 83
PROCEDURE DIVISION

header, 81
USING phrase, 81, 82, 84, 87
WORKING-STORAGE

SECTION, 82, 84
dd-file, 112
Debug Facility, 57

commands
Address, 59
Breakpoint, 59
Breakpoints, 59
Change, 59
Dump, 59
Exhibit, 60
Go, 60
Goto, 60
Help, 60
Kill, 60
Kill ALL, 60
Line, 60
Quit, 61
Step, 61
Trace, 61
Trace OFF, 61

interrupt key
ALT-C, 59
CTRL-BREAK, 59
CTRL-C, 59

Debug information file, 57, 58

208

Index

DEBUGCOB.EXE, 14, 57
Debugging subprograms, 61
DEC Rainbow 100, 153
DEC VT-100, 155
DEC VT-52, 154
Default directory, 25
Default drive, 18, 25
Default tab settings, 31
Defining a terminal system, 71
Delimiters, Line Sequential file,

52
DEMO. COB, 14
DEMO.CPY, 14
Demonstration programs, 177

disk files, 14
Device names

A: or B:, 27
AUX or COMI, 27
CON or USER, 27
NUL, 27
PRN or LPT1/LPT2, 27

DIR command, 34
Disk backup, 16
Disk file organization, 51
Disk space, 33

checking availability? 34
exhausting available space,

33
reclaiming space, 34

Disk storage error, 118
DISPLAY statement, 16
Drive designator, 43
Dynamic call, 83

EDLIN, 20
End-of-file format, 52
END CSEG, 95
END DSEG, 95
Error messages, 181

command input errors, 182
compile time, 181
file usage errors, 192
operating system 1-0 errors,

182
program syntax errors, 184

Error messages (continued)
runtime errors, 196
warnings, 193

Executing MS-COBOL
programs, 37

Exhausting available memory,
33

EXHIBIT statement, 4
EXIT PROGRAM statement, 85
Extension subroutines, 90

FAR CALL instruction, 94
FAR RET instruction, 94
FD paragraph, 51,-54
File description paragraph (FD),

51
FILE SECTION, 51, 84
File usage errors, 181, 192
FILE-CONTROL entry, 51, 121
File-handling syntax

ASSIGN TO DISK clause, 51
ASSIGN TO PRINTER

clause, 54
COPY statement, 43
FD paragraph, 51, 54
FILE SECTION, 51
FILE-CONTROL entry, 51
LABEL RECORD IS

OMITTED clause, 54
LABEL RECORDS ARE

STANDARD clause, 51
OPEN EXTEND option, 52
ORGANIZATION clause, 51
REPLACING phrase, 43
SELECT clause, 54
VALUE OF FILE-ID clause,

51, 53, 54
File

ASCII file, 112
batch command file, 39
data file, 53, 199
dd-file, 112
debug information file, 30, 57
delimiters, 52
disk file, 51

209

Index

File (continued)
Indexed files, 109
INSTALL.DAT file, 66
intermediate, 34
key file, 53, 109
list file, 33
MS-DOS device names, 54
multi-key Indexed file, 116-

117
nondisk file (device), 54
object file, 26
output file, 54
single-key Indexed file, 116-

117
source file, 26
spooled printer file, 38

Filename
COPY statement, 46
extensions, 28
response to compiler, 27

FIPS flagging, 30

Heath / Zenith 19, 156
Hyperion, 158

IBM Display writer, 159
IBM PC, 160
Indexed files, 53, 109

recovery utility
see REBUILD

Indexes
input to REBUILD, 119
modified with REBUILD, 121

INSTALL program, 65
disk files, 67
editing answers, 76
running terminal tests, 77
terminal key assignments, 74
terminal screen attributes, 75

INSTALL.DAT, 66
Installing terminal interface, 70
Interactive Debug Facility, 57
Interactive screens, 65
Intermediate file, 16, 34

Interprogram communication
see Data transfer

Invoking REBUILD, 110

Key assignments, 72, 74
Key file, 109

definition, 53
Keyboard configuration, 65

LABEL RECORD IS OMITTED
clause, 54

LABEL RECORDS ARE
STANDARD clause, 51

Lear Siegler ADM 42, 162
Library-name (COPY

statement), 47
Line Sequential file

carriage return/line feed pair,
52

COMP fields, 52
OPEN EXTEND option, 52

Line sequential files, 52
LINE SEQUENTIAL

organization, 53
LINKAGE SECTION, 82, 84
List file, 33
Loading object files, 37
Lower-case characters, 4
LPT1, 27, 54
LPT2, 27, 54

Microsoft Multi-key ISAM, 136
MS-COBOL Demonstration

System, 177
MS-DOS

AUTOEXEC.BAT file, 19
batch command file, 39
CHKDSK command, 34
command line storage area,

105
current working directory, 43
1-0 errors, 182
loading command line, 91

210

Index

MS-DOS (continued)
PATH command, 19, 25, 30
PATH environment, 25
PAUSE command, 39
reclaiming disk space, 34
search path, 43
searching for subroutines, 83

Multi-key Indexed file, 136

Non-COBOL programs, 94, 105
NUL, 27

Object code, 16
ON OVERFLOW phrase, 83
OPEN EXTEND option, 52
Operating system

batch command file, 39
interpreting characters, 66
see also MS-DOS

ORGANIZATION clause, 51
Organizing disks, 18
Output files, 54

Page length switch, 31
Passing data addresses, 84
Passing parameters

addresses on the stack, 95
CHAINING list, 81, 88
runtime command line, 88
USING list, 81, 90

PATH command, 25
PATH environment, 25

AUTOEXEC.BAT file, 19
compiler overlay search, 25
COPY operation, 46
default directory, 25
default drive, 25
exceptions, 37
finding INT files, 37
overridden by filename

(COPY), 46
overridden by library-name,

46

PATH environment (continued)
override at runtime, 38

Path
compiler overlays, 25
drive designator, 43
PATH command, 25
root directory, 43
see also PATH environment

Pathname, 37
PAUSE command, 39
PRINT. SPL, 38
PRINTER file, 38
PRN, 27, 54
PROCEDURE DIVISION

header, 81
in calling program, 82
in chaining program, 82
see also Data transfer

Program development, 17
chaining programs, 34
compiling the source, 21
creating the source, 19
program modules, 34
trial load and run, 22

Program disk, 18, 25
Program modules, 34
Program syntax errors, 184

READY TRACE statement, 4
REBUILD command line

syntax, 110
REBUILD Utility, 109

indexed file recovery, 109
redirect output, 125
switches

/F, 113
/I, 113
/P, 113
/S, 113
/T, 113

REBUILD.EXE, 14
Reclaiming disk space, 34
Redirecting compiler output, 32
Relative files, 53
REPLACING phrase, 43

211

Index

RESET statement, 4
RS232, 27, 54
RUNCOB.EXE, 14, 97
Runtime error messages, 196
Runtime error screen display,

196
Runtime executor, 16, 37

configuration, 65
customized with subroutines,

98
customizing terminal driver,

70
searching subroutine table, 94

Runtime switches
/P runtime switch, 38
/S runtime switch, 38

Runtime system, 14, 16
extension subroutines

COMMAND, 90
EXIST, 90
LOCASE, 90
REMOVE, 90
RENAME, 90
returned status value, 91
UPCASE, 90

Sample session, 17
Screen attributes, 75

BACKGROUND-COLOR,
136, 150, 152, 161, 169,
174

FOREGROUND-COLOR, 136,
150, 152, 161, 169, 174

Screen handling
ACCEPT and DISPLAY

statements, 65
Search path

compiler overlays, 25
COPY files, 43
default directory, 25

SELECT clause, 54
Sequential file

end-of-file format, 52
OPEN EXTEND option, 52

Sequential files, 52

Sirius 1, 164
Soroc IQ 120, 166
Stack

passing parameters
(addresses), 95

stackpointer (subroutine), 96
underflow and overflow, 96

Stackpointer, 96
START CSEG, 95
START DSEG, 95
Subprogram state after

execution, 86
Subroutines

code segment, 95
data segment, 95
user-supplied table, 94, 97, 98
using registers, 95

Switches
/C compiler switch, 30
/D compiler switch, 25, 30
/Fn compiler switch, 30
IO compiler switch, 31
/P runtime switch, 38
/Pn compiler switch, 31
/S compiler switch, 31
/S runtime switch, 38
/T compiler switch, 32

System search path, 25

Tab stops, 31
Tab stop customization, 141
TeleVideo 925/950, 167
Terminal characteristics

character sequences, 73, 75
interpreting character strings,

66
key assignments, 72, 74
MHz clock, 74

Terminal
definition, 66

Texas Instruments Professional
Computer, 168

Transfer program control, 81
Trial compilation, 20

212

Index

USER, 27, 54
USERSEG.MAC, 95
USING phrase, 81, 82, 87
Utility disk, 18
Utility software, 14

VALUE OF FILE-ID clause, 51,
109

device name (file), 54
disk filename, 53

Victor 9000, 164

Wang Professional Computer,
170

Warning error messages, 193
WORKING-STORAGE

SECTION, 82, 84

Zenith Data Systems z-100, 171
Zenith Data Systems z-150, 173

213

Microsoft. COBOL
Reference Manual

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corporation.
The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement. It is
against the law to copy Microsoft COBOL on magnetic tape, disk, or
any other medium for any purpose other than the purchaser’s personal
use.

© Copyright Microsoft Corporation, 1980, 1983, 1984

If you have comments about the software or these manuals, please
complete the Software Problem Report at the back of this manual and
return it to Microsoft Corporation.

Microsoft and the Microsoft logo are registered trademarks, and MS is a trade
mark of Microsoft Corporation.

Document Number 8301b-200-02
Part Number 011-014-021

Contents

1 Introduction 1

1.1 Syntax Notation 4
1.2 Microsoft COBOL Conformance

With the ANSI Standard 6
1.3 Microsoft COBOL Extensions 7
1.4 Learning More About COBOL 8

2 Language Elements 9

2.1 Source Coding Rules 11
2.2 Character Set 13
2.3 Punctuation 14
2.4 Reserved Words 15
2.5 Names 15
2.5.1 Naming Conventions 15
2.5.2 Qualification of Names 18
2.6 Literals 19
2.6.1 Numeric Literals 19
2.6.2 Non-Numeric Literals 20
2.6.3 Figurative Constants 21
2.7 Data Types (Categories) 22
2.8 Statements 22
2.8.1 Imperative Statements 22
2.8.2 Conditional Statements 23
2.8.3 Compiler Directing Statements 23
2.9 Arithmetic Statements 24
2.9.1 Composite of Operands 24
2.9.2 Optional Phrases 25
2.10 Arithmetic Expressions 26

iii

Contents

3 Structure of a COBOL Program 29

3.1 Terms 32
3.2 Level Numbers and Data-Items 34
3.3 Compiler Directing Statements 36

4 IDENTIFICATION DIVISION 37

4.1 ENVIRONMENT DIVISION
Header and General Format 39

4.2 AUTHOR Paragraph 41
4.3 DATE-COMPILED Paragraph 42
4.4 DATE-WRITTEN Paragraph 43
4.5 INSTALLATION Paragraph 44
4.6 PROGRAM-ID Paragraph 45
4.7 SECURITY Paragraph 46

5 ENVIRONMENT DIVISION 47

5.1 ENVIRONMENT DIVISION
Header and General Format 49

5.2 CONFIGURATION SECTION Header 51
5.2.1 OBJECT-COMPUTER Paragraph 53
5.2.2 SOURCE-COMPUTER Paragraph 55
5.2.3 SPECIAL-NAMES Paragraph 56
5.3 INPUT-OUTPUT SECTION Header 59
5.3.1 FILE-CONTROL Paragraph 61
5.3.2 I-O-CONTROL Paragraph 73

6 DATA DIVISION 79

6.1 DATA DIVISION
Header and General Format 84

6.2 Record Description Entry 87
6.2.1 Data Description

Entries and Data-Items 89
6.2.2 Group Items 90
6.2.3 Elementary Items 91
6.2.4 Alphanumeric and

Alphanumeric-Edited Items 91
6.2.5 Numeric Items 92
6.2.6 Numeric-Edited Items 96

iv

Contents

6.2.7 Level 66 (RENAMES) Items 97
6.2.8 Level 77 (Noncontiguous) Items 97
6.2.9 Level 88 (Condition-Name) Items 98
6.3 DATA DIVISION Limitations 100
6.4 Sections 104
6.4.1 FILE SECTION and

the File Description (FD) Entry 105
6.4.2 WORKING-STORAGE SECTION 109
6.4.3 LINKAGE SECTION 111
6.4.4 SCREEN SECTION 113
6.5 Clauses 118
6.5.1 AUTO Clause 119
6.5.2 BACKGROUND-COLOR Clause 120
6.5.3 BELL Clause 121
6.5.4 BLANK LINE Clause 122
6.5.5 BLANK SCREEN Clause 123
6.5.6 BLANK WHEN ZERO Clause 124
6.5.7 BLINK Clause 125
6.5.8 BLOCK Clause 126
6.5.9 CODE-SET Clause 127
6.5.10 COLUMN Clause 128
6.5.11 DATA RECORD(S) Clause 130
6.5.12 FOREGROUND-COLOR Clause 131
6.5.13 FROM/TO/USING Clause 132
6.5.14 FULL Clause 134
6.5.15 HIGHLIGHT Clause 135
6.5.16 JUSTIFIED Clause 136
6.5.17 LABEL RECORD(S) Clause 137
6.5.18 LINAGE Clause 138
6.5.19 LINE Clause 140
6.5.20 OCCURS Clause 142
6.5.21 PICTURE Clause 145
6.5.22 RECORD Clause 153
6.5.23 REDEFINES Clause 154
6.5.24 RENAMES Clause 156
6.5.25 REQUIRED Clause 158
6.5.26 SECURE Clause 159
6.5.27 SIGN Clause 160
6.5.28 SYNCHRONIZED Clause 162
6.5.29 TO Clause 163
6.5.30 USAGE Clause 164
6.5.31 USING Clause 166
6.5.32 VALUE IS Clause 167
6.5.33 VALUE OF FILE-ID Clause 169

v

Contents

7 PROCEDURE DIVISION 171

7.1 PROCEDURE DIVISION
Header and General Format 175

7.2 Arithmetic Statements 177
7.2.1 CORRESPONDING Option 178
7.2.2 GIVING Option 179
7.2.3 REMAINDER Option 180
7.2.4 ROUNDED Option 180
7.2.5 SIZE ERROR Option 181
7.3 1-0 Error Handling 182
7.4 Dynamic Debugging Statements 183
7.5 MS-COBOL Tape Syntax 184
7.6 PROCEDURE DIVISION Statements 184
7.6.1 ACCEPT Statement 185
7.6.2 ADD Statement 207
7.6.3 ALTER Statement 209
7.6.4 CALL Statement 211
7.6.5 CHAIN Statement 212
7.6.6 CLOSE Statement 213
7.6.7 COMPUTE Statement 214
7.6.8 COPY Statement 215
7.6.9 DELETE Statement 216
7.6.10 DISPLAY Statement 217
7.6.11 DIVIDE Statement 220
7.6.12 EXHIBIT Statement 222
7.6.13 EXIT Statement 224
7.6.14 EXIT PROGRAM Statement 225
7.6.15 GO TO Statement 226
7.6.16 IF Statement 227
7.6.17 INSPECT Statement 236
7.6.18 MERGE Statement 240
7.6.19 MOVE Statement 241
7.6.20 MULTIPLY Statement 244
7.6.21 OPEN Statement 246
7.6.22 PERFORM Statement 247
7.6.23 READ Statement 252
7.6.24 READY/RESET TRACE Statements 253
7.6.25 RELEASE Statement 255
7.6.26 RESET TRACE Statement 256
7.6.27 RETURN Statement 257
7.6.28 REWRITE Statement 258
7.6.29 SEARCH Statement 259
7.6.30 SET Statement 260
7.6.31 SORT Statement 261

Contents

7.6.32 START Statement 262
7.6.33 STOP Statement 263
7.6.34 STRING Statement 264
7.6.35 SUBTRACT Statement 267
7.6.36 UNLOCK Statement 269
7.6.37 UNSTRING Statement 270
7.6.38 USE Statement 273
7.6.39 WRITE Statement 274

Interprogram Communication 275

8.1 CALL Statement 277
8.1.1 USING Phrase 278
8.1.2 ON OVERFLOW Phrase 279
8.2 EXIT PROGRAM Statement 279
8.3 CHAIN Statement 279
8.4 CANCEL Statement 280
8.5 PROCEDURE DIVISION Header

With USING/CHAINING Phrases 281

Table Handling by
the Indexing Method 283

9.1 Index-Names and Index-Data-Items 285
9.2 Subscripting 285
9.3 Relative Indexing 286
9.4 SET Statement 286
9.5 Format 1 SEARCH Statement 287
9.6 Format 2 SEARCH Statement 290

10 Sequential Files 293

10.1 Definition of
SEQUENTIAL File Organization 295

10.2 Syntax Considerations
for Sequential File 1-0 296

10.2.1 FILE-CONTROL Entry
(ENVIRONMENT DIVISION) 296

10.2.2 File Description Entry
(DATA DIVISION) 297

10.2.3 I-O-CONTROL Paragraph
(ENVIRONMENT DIVISION) 298

vii

Contents

10.3 File Status Reporting 299
10.4 PROCEDURE DIVISION

Statements for Sequential Files 300
10.4.1 CLOSE Statement 301
10.4.2 OPEN Statement 303
10.4.3 READ Statement 305
10.4.4 REWRITE Statement 307
10.4.5 WRITE Statement 308

11 Indexed Files 311

11.1 Definition of
INDEXED File Organization 313

11.2 Syntax Considerations
for Indexed File 1-0 314

11.2.1 FILE-CONTROL Entry
(ENVIRONMENT DIVISION) 314

11.2.2 RECORD KEY Clause 315
11.2.3 ALTERNATE RECORD KEY Clause 317
11.2.4 File Description Entry

(DATA DIVISION) 317
11.2.5 I-O-CONTROL Paragraph

(ENVIRONMENT DIVISION) 318
11.3 File Status Reporting 319
11.4 PROCEDURE DIVISION

Statements for Indexed Files 321
11.4.1 CLOSE Statement 322
11.4.2 DELETE Statement 324
11.4.3 OPEN Statement 325
11.4.4 READ Statement 327
11.4.5 REWRITE Statement 329
11.4.6 START Statement 331
11.4.7 UNLOCK Statement 333
11.4.8 WRITE Statement 334

12 Relative Files 337

12.1 Definition of
RELATIVE File Organization 339

12.2 Syntax Considerations
for Relative File 1-0 339

12.2.1 FILE-CONTROL Entry
(ENVIRONMENT DIVISION) 340

viii

Contents

12.2.2 RELATIVE KEY Clause 340
12.2.3 File Description Entry

(DATA DIVISION) 341
12.2.4 LO-CONTROL Paragraph

(ENVIRONMENT DIVISION) 341
12.3 File Status Reporting 342
12.4 PROCEDURE DIVISION

Statements for Relative Files 343
12.4.1 CLOSE Statement 345
12.4.2 DELETE Statement 347
12.4.3 OPEN Statement 348
12.4.4 READ Statement 350
12.4.5 REWRITE Statement 352
12.4.6 START Statement 353
12.4.7 UNLOCK Statement 355
12.4.8 WRITE Statement 356

13 SORT/MERGE Facility 357

13.1 Syntax Considerations 359
13.1.1 FILE-CONTROL Entry 359
13.1.2 Sort File Description Entry

(SORT/MERGE) 360
13.1.3 LO-CONTROL Paragraph 360
13.2 Sort File Status Reporting 361
13.3 SORT Statement 363
13.4 MERGE Statement 364
13.5 Sorting and Merging Sequence 365
13.5.1 INPUT PROCEDURE

and USING Phrase 366
13.5.2 OUTPUT PROCEDURE

and GIVING Phrase 367
13.6 Restrictions 367
13.7 RELEASE Statement 369
13.8 RETURN Statement 370
13.9 Examples 372

14 DECLARATIVES
Region and USE Statement 383

15 Segmentation 385

ix

Contents

16 COPY Statement 387

17 File and Record LOCKING 395

17.1 File LOCKING 397
17.2 Record LOCKING 398
17.3 Syntax Considerations 399
17.3.1 FILE-CONTROL Entry

(SELECT Clause) 399
17.3.2 OPEN, READ, START,

and UNLOCK Statements 402

Appendices 405

A Permissible MOVE Operands 407

B Nested IF Statements 409

C Reserved Words 413

D ASCII Character Set 419

Index 421

X

Tables

Table 10.1 Sequential File Status Settings 299
Table 11.1 Indexed File Status Settings 319

Table 11.2 1-0 Permitted With Indexed Files 321

Table 12.1 Relative File Status Settings 342
Table 12.2 1-0 Permitted With Relative Files 344
Table A.l Permissible MOVE Operands 407

xi

Acknowledgment

“COBOL is an industry language and is not the property of
any company or group of companies, or of any organization or
group of organizations.

“No warranty, expressed or implied, is made by any contribu
tor or by the CODASYL Programming Language Committee
as to the accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

“Procedures have been established for the maintenance of
COBOL. Inquiries concerning the procedures for proposing
changes should be directed to the Executive Committee of the
Conference on Data Systems Languages.

“The authors and copyright holders of the copyrighted material
used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNI VAC (R) I and II, Data Automa
tion Systems, copyrighted 1958, 1959, by Sperry Rand Cor
poration; IBM Commercial Translator, Form No. F28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copy
righted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole
or in part in the COBOL specification, in programming manu
als or similar publications.”

from the ANSI
COBOL STANDARD
(X3.23-1974)

xiii

Chapter 1
Introduction

1.1 Syntax Notation 4
1.2 Microsoft COBOL Conformance

With the ANSI Standard 6
1.3 Microsoft COBOL Extensions 7
1.4 Learning More About COBOL 8

1

Introduction

Microsoft® COBOL extends the power of the ANSI 1974
COBOL Standard with advanced verbs, a file-sharing (multi
user) construct for Relative and Indexed file processing, in
teractive and trace-style debugging, and formatted screen
handling with the ACCEPT and DISPLAY statements. These
features assure you that Microsoft COBOL will perform to
specification and will also provide you with the tools you need
to create better business programs.

How to Use This Manual

Chapter 1 introduces you to Microsoft COBOL.

Chapters 2 and 3 discuss the MS™-COBOL language, including
language conventions and concepts, definitions of terms, coding
rules, and the kinds of statements recognized by the MS-
COBOL Compiler.

Chapters 4 through 7 discuss the four divisions of an MS-
COBOL program, including any statements or clauses normal
ly placed in those divisions. The first page of each chapter
gives the general format for the appropriate division, with the
arrangement that would normally appear in an MS-COBOL
source program. Individual portions of the general format are
then discussed in alphabetical order.

Chapters 8 through 17 present advanced MS-COBOL topics, in
cluding interprogram communication, table handling, file or
ganizations, the SORT/MERGE facility, declaratives, the USE
statement, segmentation, the COPY statement, and file and
record locking.

The appendices provide a table of permissible MOVE operands,
a discussion of nested IF statements, a list of COBOL reserved
words, and a list of ASCII characters.

3

Microsoft COBOL Reference Manual

1.1 Syntax Notation

Whenever the format for a language element appears in this
manual, the following conventions will apply:

CAPS All words shown in CAPS are Microsoft
COBOL reserved words. Reserved words
that are not underlined are optional. If
included, they are used solely for improv
ing the readability of the program.
Microsoft COBOL reserved words may be
entered in upper-case or lower-case.

CAPS
(underlined)

All underlined reserved words are key
words, and are required unless the por
tion of the format containing them is it
self optional. A missing key word or in
correct spelling of a key word results in
an error.

lower-case Words printed in lower-case letters
represent terms for which the user must
substitute a valid entry.

lower-case
(with suffix)

When more than one occurrence of a term
is included in a format, a digit or letter
may be used as a suffix. The suffix is for
clarification only, and does not change
the meaning of the term (e.g., data-
name-1, data-name-2).

Relational
operating
signs
«, >, =)

The characters less than (<), greater
than (>), and equals (=), although not
underlined, are required when they ap
pear in a general format.

[] Any part of a statement or data descrip
tion entry that is enclosed in brackets is
optional.

() Optional elements may be indicated by
parentheses instead of brackets, if no am
biguity results.

4

Introduction

{}

1

When braces enclose parts of a statement,
one (and only one) of the options must be
used. In cases where ambiguity might
arise, braces may also delimit the portion of
a statement that may be repeated and will
be followed by an ellipsis.

Alternate options may also be separated by
a vertical line (e.g., AREA 1 AREAS is
equivalent to enclosure within braces).

The ellipsis (. . .) indicates that the im
mediately preceding unit may occur once or
any number of times in succession. A unit
is either a single lower-case word or a group
of one or more words enclosed in brackets or
braces. If repetition occurs, the entire unit
must be repeated.

Special
characters

Punctuation and special characters are re
quired where shown in a general format.
Additional punctuation can be inserted, ac
cording to the rules for punctuation speci
fied in Section 2.3, “Punctuation.”

Terminal
periods

Terminal periods are shown in formats
where they are required as separators.
Semicolons and commas are sometimes
shown as separators, but they are optional.

Blank
following
separators

To be considered separators, all commas,
semicolons, and periods must be followed by
a space or blank.

If necessary, the text accompanying the general format will
contain comments, restrictions, or clarification on the use of
the format.

Any clauses (e.g., BLOCK clause) or statements (e.g., PER
FORM statement) mentioned in a format will be described else
where in the text.

5

Microsoft COBOL Reference Manual

1.2 Microsoft COBOL Conformance
With the ANSI Standard

The following list compares the modules supported by Microsoft
COBOL with the ANSI Standard, Level 2, to give you a sense
of the full capabilities of the Microsoft COBOL Compiler.

Microsoft COBOL Module Level of Implementation

Nucleus
Table Handling
Sequential 1-0
Relative 1-0
Indexed 1-0
Segmentation
Library

All Level 2 features are
implemented.

Interprogram-
Communication

All Level 2 features are
implemented. The CHAIN
verb is an extension to the
full language standard.

Sort/Merge Full Level 2 implementation
with an extension, SORT
STATUS, for sort file status
reporting.

Debug
Report-Writer
Communications

Not currently implemented.
However, Microsoft COBOL
does include the trace-style
debug extensions to ANSI 74
Standard COBOL and an
interactive debug facility.

6

Introduction

1.3 Microsoft COBOL Extensions

Microsoft COBOL includes the following extensions to ANSI 74
Standard COBOL.

1. COMB-0, COMP-3, and COMP-4 data formats are
available. COMP-3 format packs numeric data two dig
its per byte. COMP-0 and COMP-4 are two and four
byte binary integers, respectively. All three data types
can be used to reduce DATA DIVISION memory
requirements, to reduce data file storage requirements,
and to increase the execution speed of certain opera
tions.

2. Microsoft COBOL is capable of defining screen attri
butes and having these attributes and other screen def
initions displayed on your terminal’s screen in an
interactive mode.
This capability comes from Microsoft extensions to the
DATA DIVISION (SCREEN SECTION) and the PRO
CEDURE DIVISION (ACCEPT and DISPLAY state
ments). (See Section 6.4.4, "SCREEN SECTION,” and
Formats 1, 3, and 4 of the ACCEPT and Format 3 of
the DISPLAY statement in Chapter 7, "PROCEDURE
DIVISION.”)

3. Lower-case characters are treated as if they were
upper-case, unless made part of a non-numeric (quoted)
literal.

4. The dynamic debugging statements, READY TRACE,
RESET TRACE, and EXHIBIT, allow the display of
procedure names or data-items during program execu
tion.

5. The SELECT clause of the ENVIRONMENT DIVISION
supports a split key option with both the RECORD
KEY and the ALTERNATE RECORD KEY clauses.
See Section 11.2, "Syntax Considerations for Indexed
File I-O.”

6. A CHAIN statement and CHAINING phrase extend
the scope of interprogram communication and allow a
program to be loaded into memory and executed.

7

Microsoft COBOL Reference Manual

7. A multi-tasking file-sharing construct exists to support
file processing in multi-user/multi-tasking systems.
The new syntax applies in the OPEN, READ, START,
and UNLOCK statements, and the SELECT clause.
Note that the UNLOCK statement is an extension to
the full language standard.

8. Sort file status reporting has been implemented
through the SORT STATUS clause in the FILE
CONTROL entry for a sort file.

1.4 Learning More About COBOL

If you are new to COBOL programming, you will probably
want to learn more about the language before using this manu
al. The following texts are all COBOL tutorials, written for
the novice programmer:

Abel, Peter. COBOL Programming: A Structured Approach.
Reston, Virginia: Reston Publishing Co., 1980.

McCracken, Daniel D. A Simplified Guide to Structured
COBOL Programming. New York, New York: John Wiley and
Sons, Inc., 1976.

Parkin, Andrew. COBOL for Students. London, England:
Edward Arnold, Ltd., 1978.

Seidel, Ken. Microsoft COBOL. Beaverton, Oregon: Dilithium
Press, 1983.

Welburn, Tyler. Structured COBOL — Fundamentals and
Style. Palo Alto, California: Mayfield Publishing Co., 1981.

8

Chapter 2
Language Elements

2.1 Source Coding Rules 11
2.2 Character Set 13
2.3 Punctuation 14
2.4 Reserved Words 15
2.5 Names 15
2.5.1 Naming Conventions 15
2.5.1.1 Data-Names 16
2.5.1.2 File-Names 16

2.6 Literals 19

2.5.1.3 Condition-Names 17
2.5.1.4 Mnemonic-N ames 17
2.5.1.5 Procedure-N ames 17
2.5.1.6 Index-Names and

Index-Data-Items 18
2.5.2 Qualification of Names 18

2.6.1 Numeric Literals 19
2.6.2 Non-Numeric Literals 20
2.6.3 Figurative Constants 21
2.7 Data Types (Categories) 22
2.8 Statements 22
2.8.1 Imperative Statements 22

9

2.8.2 Conditional Statements 23
2.8.3 Compiler Directing Statements 23
2.9 Arithmetic Statements 24
2.9.1 Composite of Operands 24
2.9.2 Optional Phrases 25
2.10 Arithmetic Expressions 26

io

Language Elements

This chapter defines the terms that are used throughout this
manual to refer to parts of a Microsoft COBOL program. It
also gives the rules for coding a Microsoft COBOL source pro
gram and outlines the naming conventions recognized by
Microsoft COBOL.

2.1 Source Coding Rules

Source programs may be written on standard coding sheets or
on a terminal. The rules given below apply to both methods;
though the actual column numbers may differ slightly for a
particular terminal, the relative positions remain the same.

The Microsoft COBOL Compiler interprets source code in four
areas of each source line: the sequence number area (defined
by columns 1-6), the indicator area (column 7), Area A
(columns 8-11), and Area B (columns 12-72). The compiler ig
nores the contents of the sequence number area, and the con
tents of columns beyond column 72 (see Figure 2.1).

Area A is reserved for the following elements of the source
code: division, section, and paragraph headers, file description
entry indicators (FD and SD), and level-numbers 01 and 77.
Comment line characters are also accepted in Area A, provided
that column 7 contains an asterisk (*) or a slash (/).

Area B is reserved for the filenames associated with the FD or
SD indicators and the SELECT clause, level-numbers 66, 88,
and 02-49, and the descriptive clauses and/or data descriptions
that make up specific paragraph entries. Continuation lines
are also accepted in Area B, provided that column 7 contains a
hyphen (-).

The following diagram illustrates Area A, Area B, the indica
tor area, the ignored area, and the optional sequence number
area in a COBOL source line.

11

Microsoft COBOL Reference Manual

IGNORED AREA-------

12345678 11 12 (

SEQUENCE
NUMBER

AREA
AREA A

-

-----INDICATOR AREA

72 73

AREA B

Figure 2.1. Format of MS-COBOL Source Line

The following rules apply to coding a Microsoft COBOL pro
gram:

1. Each line of code may have a six-digit line number in
columns 1 through 6. These line numbers must be in
ascending order. Blanks are also permitted in columns
1 through 6.

2. If an asterisk () is placed in column 7 of the line, the
line will be treated as a comment. It will be shown on
the source listing but will otherwise be ignored. If a
slash (/) appears in column 7, the line will be treated as
a comment, and the source listing will begin a new
page before printing the line.

*

3. If the character “D” is placed in column 7 of the line,
the line will be treated as a comment unless the WITH
DEBUGGING MODE clause of the SOURCE
COMPUTER paragraph is used. See Section 5.2.2 for
information concerning the SOURCE-COMPUTER
paragraph.

4. If a hyphen (-) is placed in column 7, the line is treated
as a continuation of the previous line. Except when
non-numeric literals are continued, all trailing spaces
on the preceding line and all leading spaces on the con
tinuation line are ignored. (See Section 2.6.2, “Non
Numeric Literals,” for special rules on continuing non
numeric literals.) Area A (columns 8 through 11) of
the continuation line must be blank.

5. Reserved words for division, section, and paragraph
headers must begin in Area A. Definitions of
procedure-names must also begin in Area A, as must

12

Language Elements

level-numbers 01 and 77 and level-indicators FD and
SD. Other level numbers must begin in Area B
(columns 12 through 72).

6. All other program elements should be confined to Area
B. Rules of statement punctuation must be observed.

7. Information entered beyond column 72 is ignored by
the compiler.

8. Tab characters in a line are expanded as specified in
the Microsoft COBOL Compiler User’s Guide. Care
should be taken that tab characters do not cause illegal
placement of program elements.

2.2 Character Set

The Microsoft COBOL language character set consists of the
following characters:

Letters A through Z, a through z
Blank or space
Digits 0 through 9
Special characters:

+ Plus sign
— Minus sign
* Asterisk
= Equal sign
> Relational sign (greater than)
< Relational sign (less than)
$ Dollar sign
, Comma
; Semicolon

Period or decimal point
" Quotation mark
(Left parenthesis
) Right parenthesis

Apostrophe (alternate of quotation mark)
/ Slash

13

Microsoft COBOL Reference Manual

For non-numeric (quoted) literals and comments, the Microsoft
COBOL character set is expanded to include the computer’s en
tire character set.

2.3 Punctuation

The following characters are used for punctuation:

(Left parenthesis
) Right parenthesis
, Comma

Period
; Semicolon

The following general rules of punctuation apply in writing
source programs:

1. When used as punctuation, a period, semicolon, or com
ma should not be preceded by a space, but must be fol
lowed by a space.

2. At least one space must appear between two successive
words.

3. Relational characters should always be preceded by a
space and followed by another space.

4. When the plus or minus characters, period, or comma
are used in the PICTURE clause, they are governed
solely by rules for numeric-edited items (see Section
6.5.21, "PICTURE Clause,” for further discussion).

5. A comma may be used as a separator between succes
sive operands of a statement, or between two sub
scripts. It must be followed by a space (e.g., 10, 20).

6. A semicolon or comma may be used to separate a series
of statements or clauses. The punctuation must be fol
lowed by a space (e.g, SUBTRACT A FROM X; MOVE
X TO Y).

14

Language Elements

2.4 Reserved Words

Reserved words are words with specific meanings within the
COBOL language or within Microsoft COBOL. They appear in
upper-case letters in general formats. They may contain the
letters A through Z and a through z, the digits 0 through 9, or
the hyphen (-). The maximum length is 30 characters. Many
are verbs (e.g., ADD, SUBTRACT, MOVE) or descriptive
phrases (e.g., PICTURE, VALUE IS). Reserved words may not
be used for programmer-assigned names.

See Appendix C, “Reserved Words,” for a complete list of
COBOL reserved words.

2.5 Names

Any word that is not a Microsoft COBOL reserved word can be
used as a programmer-assigned name, as long as it meets the
naming conventions listed in the following section.

2.5.1 Naming Conventions

Names may be up to 30 characters long and must contain only
the letters A through Z and a through z, the digits 0 through 9,
or the hyphen (-). In addition:

1. All names except procedure-names must contain at
least one letter or hyphen. Procedure-names may con
sist entirely of digits.

2. A name may not begin or end with a hyphen. Howev
er, a name may contain more than one hyphen, and
consecutive hyphens are permitted.

3. A name is ended by a space or by appropriate punctua
tion.

4. If a programmer-supplied name is not unique, it must
be used with qualifiers. Qualifiers are described in Sec
tion 2.5.2, “Qualification of Names.”

15

Microsoft COBOL Reference Manual

2.5.1.1 Data-Names

A data-name is a word assigned by the user to identify a data-
item referenced in a program.

Data-names are defined in the DATA DIVISION of the pro
gram. A data-name always refers to a region that contains
data, rather than to a particular value, because an item often
assumes a number of different values during the course of a
program.

If some of the characters in a record are not referenced in the
processing steps of a program, a data-name need not be as
signed. Instead, the word FILLER is used to set aside the ap
propriate amount of space.

A data-name must begin with an alphabetic character. A
data-name or the key word FILLER must be the first word fol
lowing the level number in each data-name entry, as shown in
the following general format:

i data-name-11
level-number I FILLER /

See Chapter 3, "Structure of a COBOL Program,” for discus
sion of level numbers. See also Chapter 6, "DATA DIVISION,”
for more information on assigning data-names.

2.5.1.2 File-Names

A file is a collection of data records, such as a printed listing or
a region of a disk, containing individual records of a similar
class or application. A file-name is defined by an FD entry in
the FILE SECTION of the DATA DIVISION. The format is:

FD file-name

Rules for composition of the file-name are identical to those for
data-names. References to file-names appear in the EN
VIRONMENT DIVISION and in CLOSE, OPEN, and READ
statements.

16

Language Elements

2.5.1.3 Condition-Names

A condition-name is a name assigned to a specific value, set, or
range of values within the complete set of values that a data-
item may assume. Condition-names are defined in level 88 en
tries within the DATA DIVISION. For example, a level 03
item “CLASS-NO” might be followed by the following subordi
nate level 88 entries:

88 VALID-NO VALUE IS Z1 z.
88 INVALID-NO VALUE IS Z2Z.

An IF statement could then reference either the literal value
T or ’2’, or the condition-names VALID-NO or INVALID-NO.

Rules for forming condition-names are the same as those for
data-names (see Section 2.5.1.1, “Data-Names”). Condition
names and their uses are explained more fully in Chapter 6,
“DATA DIVISION,” and Chapter 7, “PROCEDURE DIVI
SION.”

2.5.1.4 Mnemonic-Names

A mnemonic-name such as PRINTER assigns a user-defined
word to an implementation-specific name. The rules for nam
ing are the same as those for data-names (see Section 2.5.1.1,
“Data-Names”). Mnemonic-names are assigned in the
SPECIAL-NAMES paragraph of the ENVIRONMENT DIVI
SION and are referenced by the ACCEPT and DISPLAY state
ments and the WRITE statement for Sequential files.

2.5.1.5 Procedure-Names

Procedure-names are assigned to paragraphs or sections that
are executed with the PERFORM or GO TO statements or by
falling through from another part of the program. Procedure
names are declared in the PROCEDURE DIVISION. They
must conform to the rules for data-names (see Section 2.5.1.1,
“Data-Names”), except that a procedure-name may consist en
tirely of digits.

17

Microsoft COBOL Reference Manual

2.5.1.6 Index-Names and Index-Data-Items

Index-names and index-data-items are used for table handling
by the indexing method. An index-name is declared implicitly
by its appearance in the “INDEXED BY index-name” append
age to an OCCURS clause. Index-data-items are defined by
the USAGE IS INDEX phrase. See Chapter 9, “Table Han
dling by the Indexing Method,” for further discussion.

2.5.2 Qualification of Names

When a data-name, condition-name, or paragraph-name (see
Chapter 3, “Structure of a COBOL Program,” for a description
of paragraphs) is not unique, a specific instance of the name
may be referenced by using qualifiers.

For example, if there were two or more items named YEAR,
the qualified reference

YEAR DE HIRE

might differentiate between YEAR fields in HIRE and TERMI
NATION.

Qualifiers are data-names or condition-names preceded by
“OF” or “IN”. The qualifiers must designate broader-level
groups that contain all the names in the reference. For exam
ple, HIRE must be a data-name, a section-name, or a library
name to which YEAR is subordinate or in some way related.
(See Chapter 3, “Structure of a COBOL Program,” for discus
sion of hierarchy.)

Paragraph-names may be qualified by a section-name. Text
names in COPY statements may be qualified by a library
name.

The maximum number of qualifiers allowed is: one for a
paragraph-name or text-name; five for other qualified items.
File-names and mnemonic-names must be unique.

18

Language Elements

A qualified name may be written in the ENVIRONMENT
DIVISION, DATA DIVISION, and PROCEDURE DIVISION.
A reference to a paragraph-name that is defined more than
once need not be qualified when the reference is made within
the same section.

2.6 Literals

A literal is a constant. It is not assigned a data-name in a pro
gram, but is referred to only by its value, which does not
change. Literals can be numeric, non-numeric (quoted), or
figurative.

2.6.1 Numeric Literals

A numeric literal must contain at least one and not more than
18 digits. A numeric literal may consist of the characters 0
through 9, optionally preceded by a sign, and the decimal
point. It may contain only one sign character and only one
decimal point. The sign, if present, must appear as the left
most character in the numeric literal. If a numeric literal is
unsigned, it is assumed to be positive.

A decimal point may appear anywhere within the numeric
literal except as the right-most character. If a numeric literal
does not contain a decimal point, it is considered to be an in
teger.

The following are examples of numeric literals:

72 +1011 3.14159 -6 -.333 0.5

European notation (period and comma interchanged) can be
specified by including the DECIMAL-POINT IS COMMA entry
in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION. In European notation, for example, the numeric
literal pi would be written as 3,14159.

19

Microsoft COBOL Reference Manual

2.6.2 Non-Numeric Literals

A non-numeric literal is also called a “quoted” literal. It is de
limited by quotation marks or apostrophes, and may consist of
any combination of characters in the ASCII set. Generally, if
the literal is delimited by apostrophes, quotation marks may be
used within the literal, and vice versa. However, the delimiter
character can be used as a character within the literal if two
such characters are consecutive. In such a case, the two char
acters are considered as one representation of the delimiter
within the literal. For instance,

"THE DATA-NAME ""VALID-NO"" IS ACCEPTED HERE"

would be interpreted as

THE DATA-NAME "VALID-NO" IS ACCEPTED HERE

All spaces enclosed by the delimiters are included as part of
the literal and are counted when the length is checked. Delim
iters are not included in the length, which must be in the
range 1 through 120.

The following are examples of non-numeric literals:

"ILLEGAL CONTROL CARD"

'CHARACTER-STRING'

"DO'S k DON'T'S"

Non-numeric literals may be continued from one line to the
next. The following rules apply to the continuation line:

1. Column 7 of the continuation line must contain a hy
phen.

2. Area A of the continuation line must be blank.
3. A delimiter must be entered in Area B, followed by the

continuation of the literal.
4. All spaces at the end of the previous line and any i

spaces from the delimiter to the end of the continuation
line are considered to be part of the literal.

20

Language Elements

2.6.3 Figurative Constants

A figurative constant is a special type of literal. It represents
a value or character to which a reserved data-name has been
assigned by Microsoft COBOL. When the program is compiled,
that value or character will be provided as needed. For exam
ple, the figurative constant SPACE clears its entire field to
blanks; LOW-VALUE enters the computer’s lowest value. A
figurative constant is not bounded by quotation marks.

In Microsoft COBOL, the reserved words that follow are figura
tive constants. The plural forms of the words are accepted by
the compiler but are equivalent to the singular forms.

character non-numeric literal or a
figurative constant. If the literal is a
figurative constant, ALL is not necessary
but is usually included for readability.

ZERO may be used in many places in a pro
gram as a numeric literal. It may also
be used in alphanumeric fields.

SPACE represents the blank character.
LOW-VALUE represents the computer’s lowest value.
HIGH-VALUE represents the computer’s highest value.
QUOTE represents the double quotation mark

(").
ALL indicates one or more instances of the
literal literal, which may be a multiple-

A figurative constant may be used anywhere a literal is called
for in a general format, except where the literal is numeric
only. In this case, the only figurative constant that can be
used is ZERO.

21

Microsoft COBOL Reference Manual

2.7 Data Types (Categories)

Every elementary data-item except an index-data-item belongs
to one of the following categories: alphabetic, alphanumeric,
alphanumeric-edited, numeric, or numeric-edited.

Group data-items are treated as alphanumeric regardless of the
data type(s) of their elementary items.

2.8 Statements

Statements specify actions to be taken by the compiler. They
usually consist of a verb, such as ACCEPT or MOVE, followed
by operands that are data-names or literals. The compiler
recognizes three kinds of statements: imperative, conditional,
and compiler directing.

2.8.1 Imperative Statements

An imperative statement specifies an unconditional action to
be taken by the program. Imperative statements appear only
in the PROCEDURE DIVISION of the program. The verbs
that can be used in imperative statements are:

ACCEPT EXIT SEARCH
ADD* GO SET
CALL* INSPECT SORT
CANCEL MOVE START*
CHAIN MULTIPLY STOP
CLOSE OPEN STRING
COMPUTE* PERFORM SUBTRACT*
DELETE* READ* UNLOCK
DISPLAY READY UNSTRING
DIVIDE* RESET WRITE*
EXHIBIT REWRITE*

* If the statement contains an ON SIZE ERROR, INVALID
KEY, AT END, or ON OVERFLOW clause, it becomes a condi
tional, rather than an imperative statement.

22

Language Elements

See Chapter 7, “PROCEDURE DIVISION,” for discussion of
individual statements.

2.8.2 Conditional Statements

Conditional statements test for conditions and provide alter
nate paths of program execution. Conditional statements occur
only in the PROCEDURE DIVISION of a program. The follow
ing verbs can be used for conditional statements:

ADD* MULTIPLY* START*
CALL* READ* STRING
COMPUTE* RETURN SUBTRACT*
DELETE* REWRITE* UNSTRING
DIVIDE* SEARCH WRITE*
IF

* These verbs form conditional statements when used with ON
SIZE ERROR, INVALID KEY, AT END, or ON OVERFLOW
phrases.

2.8.3 Compiler Directing Statements

A compiler directing statement is a command to the compiler
itself, rather than a functional part of the program. Compiler
directing statements can be used anywhere in the ENVIRON
MENT, DATA, or PROCEDURE DIVISIONS. The two verbs
used as compiler directing statements are COPY and USE.
COPY reads source lines from another file and inserts them in
the original program. USE specifies procedures to be executed
when input-output errors occur. See Chapter 14, “DECLARA
TIVES Region and USE Statement,” and Chapter 16, "COPY
Statement,” for a discussion of these two statements.

23

Microsoft COBOL Reference Manual

2.9 Arithmetic Statements

There are five arithmetic statements: ADD, SUBTRACT,
MULTIPLY, DIVIDE, and COMPUTE. Any arithmetic state
ment may be either imperative or conditional.

All Microsoft COBOL arithmetic statements may have multi
ple destinations. For example,

ADD 1 TO RECORD-COUNT, LINE-COUNT, SUBTOTAL.

will add one to the contents of each of the data-items in the list
following the connector, TO.

Arithmetic statements are subject to the restriction of compos
ite operands, and may also be modified by five optional
phrases.

2.9.1 Composite of Operands

The composite of operands for the ADD, SUBTRACT, MULTI
PLY, and DIVIDE statements is a hypothetical data-item
whose size is the result of taking the sum, for all the applicable
operands of the statement, of the largest number of digits to
the left of the decimal point, and the largest number of digits
to the right of the decimal point. An implied decimal point is
assumed, if none is specified.

For the ADD and SUBTRACT operations, the composite of
operands is determined by superimposing all operands in a
given statement (except those following the GIVING option). If
the CORRESPONDING option is used, the composite of
operands is determined separately for each corresponding pair
of data-items.

For the MULTIPLY operation, the composite of operands is
determined by superimposing all receiving data-items.

For the DIVIDE operation, the composite of operands is also
determined by superimposing all receiving data-items, but
the data-item referred to by the REMAINDER option is not
included.

24

Language Elements

Neither the composite of operands nor the receiving fields de
fined in the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements may exceed eighteen (18) decimal digits. This re
striction does not apply to the COMPUTE statement. (See the
example below.)

Example:

ADD A, B, C7 D, E GIVING TOTAL.

where the data are defined as follows:

05 A PIC 9(5)V9(3).
05 B PIC 9(7)V9(2).
05 C PIC 9(2)V9(5).
05 D PIC 9(4)V9(3).
05 E PIC 9(11)V9(4)
05 TOTAL PIC 9(1 2)V9(5)

The composite of operands in this example would have a max
imum left side number of 11, and a right side number of 5, ef
fectively,

COMPOSITE- ITEM PIC 9(11)V9(5).

which has 16 digits. However, if the B operand was defined as
PIC 9V9(8), the right side number would become 8, and the
composite of operands would contain 19 digits, which is not
permissible. Note that the size of the GIVING data-item, TO
TAL, is not included in the calculation.

2.9.2 Optional Phrases

Five optional phrases are available with arithmetic statements.
They are: ON SIZE ERROR, ROUNDED, GIVING,
CORRESPONDING, and REMAINDER. See Chapter 7, "PRO
CEDURE DIVISION,” for a detailed discussion of individual
arithmetic statements and optional phrases.

When an arithmetic statement includes an ON SIZE ERROR
specification, the entire statement is termed conditional, be
cause the size-error condition is data-dependent. For example,
the following arithmetic statement is conditional:

25

Microsoft COBOL Reference Manual

ADD 1 TO RECORD-COUNT
ON SIZE ERROR

MOVE ZERO TO RECORD-COUNT
DISPLAY "LIMIT 99 EXCEEDED".

If a size error occurs (in this case, it is assumed that
RECORD-COUNT has PICTURE 99, and therefore cannot hold
a value of 100), subsequent statements (i.e., MOVE and
DISPLAY) are executed.

All data-names used in arithmetic statements must be elemen
tary numeric data-items that are defined in the DATA DIVI
SION of the program, except that operands of the GIVING
option may be numeric-edited items. Index-names and index-
data-items are not allowed in these arithmetic statements.
(See Chapter 6, "DATA DIVISION,” for a definition of elemen
tary items.)

Decimal point alignment is supplied automatically throughout
arithmetic computations. Intermediate result fields are gen
erated for the evaluation of arithmetic expressions. These
intermediate fields assure the accuracy of the result, except
where high-order truncation is necessary.

2.10 Arithmetic Expressions

An arithmetic expression is a combination of numeric literals,
data-names, arithmetic operators, and parentheses. In general,
the data-names in an arithmetic expression must designate
numeric data. Consecutive data-names (or literals) must be
separated by an arithmetic operator, and there must be one or
more blanks on either side of the operator. The operators are:

T for addition
— for subtraction
* for multiplication
/ for division
** for exponentiation to an integer power

Language Elements

When more than one operation is to be executed using a given
variable or term, the order in which the operations are per
formed is:

1. the unary operators plus and minus (involving one
variable only)

2. exponentiation
3. multiplication and division
4. addition and subtraction

Parentheses may be used to change the standard order of
evaluation. Expressions within parentheses are evaluated
first, and parentheses may be nested to any level. When
parentheses are used in an expression, the following punctua
tion rules should be observed:

1. A left parenthesis is preceded by one or more spaces.
2. A right parenthesis is followed by one or more spaces.

The following examples illustrate the evaluation process.

Example 1: The expression

A + B / (C - D * E)

is evaluated in the following sequence:

1. Compute the product D times E, considered as inter
mediate result Rl.

2. Compute intermediate result R2 as the difference C -
Rl.

3. Divide B by R2, providing intermediate result R3.
4. The final result is computed by addition of A to R3.

27

Microsoft COBOL Reference Manual

Example 2: The same expression, without parentheses,

A + B/ C- D*E

is evaluated as follows:

1. R1 = B / C
2. R2 = D E*
3. R3 = A + R1
4. The final result is R3 - R2.

Example 3: The expression

A - B ~ C

is evaluated as:

(A - B) - C

28

Chapter 3
Structure of
a COBOL Program

3.1 Terms 32
3.2 Level Numbers and Data-Items
3.3 Compiler Directing Statements

34
36

29

Structure of a COBOL Program

Every COBOL source program is divided into four divisions:

1. IDENTIFICATION DIVISION, which names and docu
ments the program

2. ENVIRONMENT DIVISION, which indicates the com
puter equipment and features to be used in the pro
gram

3. DATA DIVISION, which defines the names and charac
teristics of data to be processed

4. PROCEDURE DIVISION, which consists of statements
that direct the processing of data and program execu
tion

Each division must begin with a division header, and divisions
must appear in the program in the order shown above.

Each program division consists of a particular arrangement of
"grammatical" parts. In hierarchical order, these parts fit to
gether as follows, with "division" as the highest level part:

Division
Region
Section
Paragraph
Sentence I Entry
Statement I Clause
Phrase I Option

When one of the levels shown in the preceding list contains
multiple terms separated by a vertical bar (e.g.,
Sentence I Entry), the term that is used depends on which
part of the program it occurs in. For example, the progression
in the ENVIRONMENT DIVISION is: Division, Section, Para
graph; while the progression in the DATA DIVISION is: Divi
sion, Section, Entry, Clause. See Chapters 4 through 7 for
general formats for each division.

31

Microsoft COBOL Reference Manual

3.1 Terms

The following list defines the preceding terms and other
Microsoft COBOL terms associated with them. The list starts
with the lowest level in the hierarchy. For a more comprehen
sive glossary of COBOL terms, see the 1974 ANSI Standards
document, American National Standard Programming
Language COBOL, ANSI X3.23-1974, ISO 1989-1978, corrected
edition July 1978.

1. Phrase
A group of words that performs part of a procedural
statement or clause. For example, the WRITE state
ment contains an optional INVALID KEY phrase
which specifies a procedure that will be performed if an
INVALID KEY condition exists.

2. Option
Because most phrases are optional (as denoted by
brackets in the general format), they are often referred
to as options.

3. Statement
An action that is to be performed. It includes a verb,
one or more operands (data-names or literals) that are
to be acted on, and any necessary phrases. The three
kinds of statements — imperative, conditional, and
compiler directing — are defined in Chapter 2,
“Language Elements.”
All statements except COPY appear only in the PRO
CEDURE DIVISION. The COPY statement may ap
pear anywhere except the IDENTIFICATION DIVI
SION.

4. Clause
A group of words that specify an attribute, or charac
teristic, of an entry in the DATA DIVISION. An entry
may have multiple clauses.

5. Sentence
A group of one or more statements. The last statement
in the sentence is followed by a period (.) and a space.

32

Structure of a COBOL Program

Like statements, sentences appear only in the PRO
CEDURE DIVISION.

6. Entry
Entry is often used as a general term for anything that
is “entered” in a particular place in a program. How
ever, it does have a specific meaning in COBOL: an
entry is a descriptive set of clauses, ending with a
period. Unless stated otherwise, the specific meaning
will be used in this manual. Entries may occur in the
IDENTIFICATION, ENVIRONMENT, and DATA
DIVISIONS.

7. Paragraph
A group of related sentences (in the PROCEDURE
DIVISION) or entries (in the IDENTIFICATION,
ENVIRONMENT, or DATA DIVISIONS). A paragraph
always starts with a paragraph-name or paragraph
header.
In some cases, a group of entries will constitute a sec
tion, rather than a paragraph. This happens, for exam
ple, in the FILE SECTION of the DATA DIVISION.

8. Section
A set of related paragraphs or entries. A section
always starts with a section header.

9. Region
A set of PROCEDURE DIVISION sections. The only
region in Microsoft COBOL is the DECLARATIVES
Region in the PROCEDURE DIVISION. It starts with
the DECLARATIVES header and ends with END
DECLARATIVES.

10. Division
One of the four major functional parts of a COBOL pro
gram. A division always starts with a division header.

33

Microsoft COBOL Reference Manual

3.2 Level Numbers and Data-items

In the DATA DIVISION of a Microsoft COBOL program, all
entries except the FD and SD entries (for file and sort file
descriptions) are names and descriptions of data-items used in
the program. These data-items can be group items, elementary
items, or conditions. A group item has subordinate items
within it; an elementary item does not. Level numbers are a
form of outline that shows how the data-items are related to
each other. Group items can be at any level from 01 to 48. An
item’s status as a group or elementary item is determined sole
ly by whether another item is subordinate to it. An item is a
group item if a higher numbered level exists within the pro
gram before a lower or equal level is found. Subordinate items
may themselves be either group items or elementary items.

Subordinate levels need not be consecutive, and numbers can
be skipped to allow for later insertions.

The following example shows two levels of subordination:

01 TIME-CARD.
02 NAME.

03 LAST-NAME PICTURE X(18).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.

02 EMPLOYEE-NUM PICTURE 99999.
02 WEEKS-END-DATE.

05 MONTH PIC 99.
05 DAY-NUMBER PIC 99.
si ci YFAP PTC AA

02 HOURS-WORKED PICTURE 99V9.

In this example, all level 03 items are subordinate to the group
item NAME (02), and all level 05 items are subordinate to the
group item WEEKS-END-DATE (02). The level 02 items are,
in turn, subordinate to level 01. Therefore, level 01 is a group
item, all items in levels 03 and 05 are elementary items, level
02 items NAME and WEEKS-END-DATE are group items, and
level 02 items EMPLOYEE-NUM and HOURS-WORKED are
elementary items.

34

Structure of a COBOL Program

The level numbers assigned to various types of data-items are:

01-49 group and elementary items
66 items that are objects of the RENAMES

clause
77 items that are noncontiguous, are not

subordinates of other items, and do not
have subordinates

88 condition-names and conditions

The following rules apply to level numbers and data-items:

1. When a PROCEDURE DIVISION statement refers to a
group item, the reference applies to the area reserved
for the entire group, including all subordinate items.

2. In the FILE SECTION, consecutive 01 level numbers
subordinate to any given file represent implicit redefin
itions of the same area. In the WORKING-STORAGE
SECTION, however, each 01 level number defines its
own memory area, unless the REDEFINES clause is
used.

3. When data-items are coded, level numbers 01 and 77
are placed in Area A. The level numbers 66, 88, and
02-49, the data-names for these items, and data-names
for all subordinate items, begin in Area B.

4. All elementary items must be described with a PIC
TURE or USAGE IS INDEX clause.

See Chapter 6, "DATA DIVISION,” for descriptions of the vari
ous types of data-items.

35

Microsoft COBOL Reference Mailiial

3.3 Compiler Directing Statetnents

Two nonexecutable statements, USE and COPY, issue direct
instructions to the compiler.

The USE statement defines procedures that are to be executed
under certain file 1-0 error conditions. The USE statement is
confined to use in the DECLARATIVES Region of a PRO
CEDURE DIVISION.

The COPY statement logically imbeds the contents of a file
into a source program, and may be used anywhere in the
ENVIRONMENT, DATA, or PROCEDURE DIVISIONS.

For more information on the USE and COPY statements, see
Chapter 14, "DECLARATIVES Region and USE Statement,”
and Chapter 16, "COPY Statement,” respectively.

36

Chapter 4
IDENTIFICATION
DIVISION

4.1 IDENTIFICATION DIVISION
Header and General Format 39

4.2 AUTHOR Paragraph 41
4.3 DATE-COMPILED Paragraph 42
4.4 DATE-WRITTEN Paragraph 43
4.5 INSTALLATION Paragraph 44
4.6 PROGRAM-ID Paragraph 45
4.7 SECURITY Paragraph 46

37

IDENTIFICATION DIVISION

Every Microsoft COBOL program begins with the IDENTIFI
CATION DIVISION, which names the program and its author,
and describes other characteristics of the program.

4.1 IDENTIFICATION DIVISION
Header and General Format

Purpose

To state the program name, author, and other characteristics,
and to indicate the beginning of a program.

Format

The IDENTIFICATION DIVISION is divided into a header and
accompanying paragraphs.

The general format is:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

I SECURITY. [comment-entry] ...]

Remarks

The IDENTIFICATION DIVISION header must be the first
line of any MS-COBOL program.

Only the division header and the PROGRAM-ID paragraph are
required. The other paragraphs are included only for documen
tation.

39

Microsoft COBOL Reference Manual

A period (.) is required at the end of the division header and at
the end of each paragraph header.

Example

The following example shows a typical IDENTIFICATION
DIVISION, with the paragraphs in the order in which they are
usually entered. Comment entries may contain any character
allowable on the computer. Coding of IDENTIFICATION
DIVISION paragraphs must begin in Area A (columns 8-11).
Coding of comment entries is restricted to Area B (columns
12-72).

IDENTIFICATION DIVISION.
PROGRAM-ID. INVENTORY.
AUTHOR. M A HOWELL.
INSTALLATION. SHIPPING AND RECEIVING DIV.
DATE-WRITTEN. 1-15-83.
DATE-COMPILED. 1-20-83.
SECURITY. DEPT USE ONLY.

40

IDENTIFICATION DIVISION

The paragraphs in the IDENTIFICATION DIVISION are dis
cussed, in alphabetical order, in the remainder of this chapter.

4.2 AUTHOR Paragraph

Purpose

The AUTHOR paragraph tells who wrote the program.

Format

The general format is:

[AUTHOR. [comment-entry]...]

Remarks

This paragraph is optional, and is used for documentation only.

The name may not contain embedded periods (.).

Example

AUTHOR. M A HOWELL.

41

Microsoft COBOL Reference Manual

4.3 DATE-COMPILED Paragraph

Purpose

Tells when the program was first compiled.

Format

The general format is:

[DATE-COMPILED. [comment-entry] ...]

Remarks

This paragraph is optional. When used, the comment entry,
excluding lines with comment indicators in column 7, is re
placed by the current date and time.

Example

DATE-COMPILED. 1-20-83.

42

IDENTIFICATION DIVISION

4.4 DATE-WRITTEN Paragraph

Purpose

Tells when the program was written.

Format

The general format is:

[DATE-WRITTEN. [comment-entry] ...]

Remarks

This paragraph is optional, and is used for documentation only.

Example

DATE-WRITTEN. 1-15-80.

43

Microsoft COBOL Reference Manual

4.5 INSTALLATION Paragraph

Purpose

Tells how the program is used.

Format

The general format is:

[INSTALLATION. [comment-entry]...]

Remarks

This paragraph is optional, and is used for documentation only.

Example

INSTALLATION. SHIPPING AND RECEIVING DIV.

44

IDENTIFICATION DIVISION

4.6 PROGRAM-ID Paragraph

Purpose

Tells the name of the object program created by the compiler.

Format

The general format is:

PROGRAM-ID. program-name.

where program-name can be any alphanumeric string of char
acters, except that the first character must be a letter. Embed
ded periods (.) are not allowed. If the name contains more than
one word, the words must be separated by hyphens, rather
than by spaces. Only the first six characters of the program
name are retained by the compiler.

Remarks

This paragraph is required. It must be the first paragraph in
the IDENTIFICATION DIVISION.

Example

PROGRAM-ID. INVENTORY.

45

Microsoft COBOL Reference Manual

4.7 SECURITY Paragraph

Purpose

Tells the security level of the program.

Format

The general format is:

[SECURITY. [comment-entry]...]

Remarks

This paragraph is optional, and is used for documentation only.

Example

SECURITY. DEPT USE ONLY.

46

Chapter 5
ENVIRONMENT DIVISION

5.1 ENVIRONMENT DIVISION
Header and General Format 49

5.2 CONFIGURATION
SECTION Header 51

5.2.1 OBJECT-COMPUTER Paragraph 53
5.2.2 SOURCE-COMPUTER Paragraph 55
5.2.3 SPECIAL-NAMES Paragraph 56
5.3 INPUT-OUTPUT SECTION Header 59
5.3.1 FILE-CONTROL Paragraph 61
5.3.1.1
5.3.1.2

ACCESS MODE Clause
ASSIGN Clause 64

63

5.3.1.3
5.3.1.4

FILE STATUS Clause
LOCKING Clause 67

65

5.3.1.5
5.3.1.6

ORGANIZATION Clause
SELECT Clause 69

68

5.3.2 LO-CONTROL Paragraph 73
5.3.2.1
5.3.2.2

MULTIPLE FILE Clause
RERUN Clause 76

75

5.3.2.3 SAME AREA Clause 77

47

ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION specifies the aspects of a
Microsoft COBOL program that depend on the physical charac
teristics of the computer. This division is required in every
program and follows the IDENTIFICATION DIVISION.

5.1 ENVIRONMENT DIVISION
Header and General Format

Purpose

To specify aspects of the program that depend on the physical
characteristics of the computer.

Format

The ENVIRONMENT DIVISION always begins with a division
header. The division may contain two sections: an optional
CONFIGURATION SECTION, and an INPUT-OUTPUT SEC
TION that is required unless the program has no data files.
Each of these sections is further divided into paragraphs,
which may, in turn, be divided into clauses.

The general format is:

ENVIRONMENT DIVISION.

F CONFIGURATION SECTION.

[SOURCE-COMPUTER, source-computer-entry]

[OBJECT-COMPUTER, object-computer-entry]

[SPECIAL-NAMES, special-names-entry]]

I INPUT-OUTPUT SECTION.

I FILE-CONTROL. { file-control entry } ...]

[l-O-CONTROL. input-output-control-entry]]

49

Microsoft COBOL Reference Manual

Remarks

The remainder of this chapter presents the division and section
headers, each of the paragraphs in the ENVIRONMENT DIVI
SION, and the related clauses.

Example

The following example shows a typical ENVIRONMENT DIVI
SION, with sections and paragraphs given in their order of
appearance in the program.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-PC.
OBJECT-COMPUTER. IBM-PC.
SPECIAL-NAMES. PRINTER IS LPRINTER.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT INVENTORY-MASTER-FILE

ASSIGN TO DISK
FILE STATUS IS MASTER-STATUS.

SELECT INVENTORY-REPORT-FILE
ASSIGN TO PRINTER.

I-O-CONTROL.
SAME RECORD AREA FOR

INVENTORY-MASTER-FILE 7
INVENTORY-REPORT-FILE.

50

ENVIRONMENT DIVISION

5.2 CONFIGURATION
SECTION Header

Purpose

Indicates the beginning of the CONFIGURATION SECTION.
The type of computer being used and any special characteris
tics or names are specified in the CONFIGURATION SEC
TION.

Format

CONFIGURATION SECTION.

Remarks

The CONFIGURATION SECTION is optional.

The header must be entered as shown above, including the
period (.). The header must begin in Area A.

The CONFIGURATION SECTION may contain three para
graphs:

SOURCE-COMPUTER
OBJECT-COMPUTER
SPECIAL-NAMES

The contents of the SOURCE-COMPUTER and OBJECT
COMPUTER paragraphs are treated as comments, except for
the WITH DEBUGGING MODE clause of the SOURCE
COMPUTER paragraph. The SPECIAL-NAMES paragraph as
signs user-defined names to system names such as EJECT and
PRINTER, and changes default editing characters. If any of
these paragraphs are included in the program, the CONFIG
URATION SECTION header must be entered.

51

Microsoft COBOL Reference Manual

For more information on these paragraphs, see the individual
descriptions which follow in this chapter.

Example

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

52

ENVIRONMENT DIVISION

5.2.1 OBJECT-COMPUTER Paragraph

Purpose

Identifies the computer on which the program is to be executed
and, optionally, the collating sequence to be used with SORT
and MERGE functions on non-numeric fields.

Format

OBJECT-COMPUTER, computer-name

, MEMORY SIZE integer
(WORDS
{ CHARACTERS
I MODULES

[, PROGRAM COLLATING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT IS segment-number].

Remarks

This paragraph is primarily used for documentation. The
header must be entered exactly as shown above, including the
period (.). The period must be followed by at least one space.

The MEMORY SIZE and PROGRAM COLLATING SE
QUENCE clauses are optional. The MEMORY SIZE clause is
treated as commentary. If the PROGRAM COLLATING
SEQUENCE clause is used, the collating sequence associated
with “alphabet-name” is used to determine the truth of non
numeric comparisons that are:

1. explicitly specified in relation conditions
2. explicitly specified in condition-name conditions
3. implicitly specified by the presence of a CONTROL

clause in a report description

53

Microsoft COBOL Reference Manual

If the PROGRAM COLLATING SEQUENCE clause is not
specified, the native collating sequence is used (the native
sequence for MS-COBOL is ASCII).

If the COLLATING SEQUENCE phrase is used in either the
SORT or MERGE statement, the collating sequence specified
there will override all others during execution of these state
ments.

The SEGMENT-LIMIT clause delimits the segment numbers
that can be considered as permanent segments, and is used to
provide more memory resources for the largest overlayable seg
ment of the object program.

If the SEGMENT-LIMIT clause has been used, the segment
numbers from the newly defined limit to 49 become fixed over
layable segments and may be overlaid by an independent seg
ment at runtime.

Example

OBJECT-COMPUTER. IBM-PC,
MEMORY SIZE 65535 CHARACTERS,
PROGRAM COLLATING SEQUENCE IS ASCII.

54

ENVIRONMENT DIVISION

5.2.2 SOURCE-COMPUTER Paragraph

Purpose

Specifies the computer on which the program is to be compiled.

Format

SOURCE-COMPUTER, computer-name [WITH DEBUGGING MODE].

Remarks

Except for the WITH DEBUGGING MODE clause, the contents
of this paragraph are used for documentation only.

If the WITH DEBUGGING MODE clause is included, source
program lines with "D" in column 7 (indicating a debug state
ment) are compiled. If the WITH DEBUGGING MODE clause
is not included, these lines are ignored. See Section 7.4,
"Dynamic Debugging Statements,” for more information on de
bug statements.

Example

SOURCE-COMPUTER. IBM-PC
WITH DEBUGGING MODE.

55

Microsoft COBOL Reference Manual

5.2.3 SPECIAL-NAMES Paragraph

Purpose

Assigns user-defined names to standard implementor names,
such as PRINTER. This paragraph can also be used to change
editing characters.

Format

r SPECIAL-NAMES.

[, EJECT IS mnemonic-name]

[, PRINTER IS mnemonic-name]

, alphabet-name IS STANDARD-1
NATIVE
implementor-name

< literal-1
THROUGH
THRU

ALSO literal-3
literal-2
[. ALSO literal-4] ...

literal-5
(THROUGH \
I THRU J
ALSO literal-7

literal-6
[, ALSO literal-8] ...

[, CURRENCY SIGN IS literal]

I , DECIMAL-POINT IS COMMA 1

[, SWITCH-n IS comment-id

| ON STATUS IS condition-name-1

| OFF STATUS IS condition-name-1
[, OFF STATUS IS condition-name-2]

[, ON STATUS IS condition-name-2]

Remarks

The SPECIAL-NAMES paragraph is optional, as is each indivi
dual clause within it.

The clauses in this paragraph are discussed on the following
pages.

56

ENVIRONMENT DIVISION

ALPHABET-NAME

The “alphabet-name” clause specifies the language conventions
that are used. In MS-COBOL, the default is ASCII IS
NATIVE. In MS-COBOL, STANDARD-1 and NATIVE are
equivalent.

Implementor-name refers to a name specified by the manufac
turer of the computer.

By using the explicit form of the “alphabet-name IS” clause, a
unique alphabet can be constructed that can be used to specify
a different collating sequence for SORT and MERGE state
ments, or a different collating sequence for the entire program,
when used in the PROGRAM COLLATING SEQUENCE
clause.

For example:

OTHER-ALPHA IS "A" THRU "Z"7 "0" THRU "9".

defines an alphabet named OTHER-ALPHA, consisting of only
letters and digits, where the letters precede the digits in the
collating sequence. In the standard set, digits precede letters,
and other characters are also included.

The ASCII character set is given in Appendix D.

CONSOLE

The CONSOLE IS clause allows a user-defined name to be
used in the DISPLAY or ACCEPT statement with the UPON
phrase.

CURRENCY SIGN

In MS-COBOL, the default currency sign is the dollar sign ($).
The user may change this sign by specifying a single-char
acter, non-numeric literal in the CURRENCY SIGN clause.
The designated character may not be a quotation mark, a
digit (0-9), or any of the characters defined for PICTURE
representations.

57

Microsoft COBOL Reference Manual

DECIMAL-POINT

The DECIMAL-POINT IS COMMA clause may be included to
specify European notation. In European notation, the decimal
point and comma are interchanged, so that the representation
for pi, for example, is 3,14159.

EJECT

The EJECT IS clause allows a user-defined name to be used
in the WRITE statement for Sequential files and causes page
ejection.

PRINTER

The PRINTER IS clause allows a user-defined name to be used
in the DISPLAY statement with the UPON phrase.

SWITCH-n

The SWITCH-n clause allows switches to be set at runtime.
The maximum number of switches that can be set is 8. The
user is prompted at runtime to enter the switch settings; the
condition-name may then be used in a condition statement in
the PROCEDURE DIVISION. The default setting is OFF.

Example

SPECIAL NAMES.
PRINTER IS LPRINTER
ASCII IS NATIVE
CURRENCY SIGN IS "L"
DECIMAL-POINT IS COMMA
EJECT IS NEWPAGE
SWITCH-2 IS TEST2
ON IS 0N2
OFF IS 0FF2.

58

ENVIRONMENT DIVISION

5.3 INPUT-OUTPUT SECTION Header

Purpose

Indicates the beginning of the INPUT-OUTPUT SECTION.

Format

This section header must be the first entry in the INPUT
OUTPUT SECTION, and must be entered exactly as shown
below, including the period (.). The header must start in
Area A.

[INPUT-OUTPUT SECTION

FILE CONTROL, (file-control-entry)...

[l-O-CONTROL. input-output-control-entry]]

Remarks

The INPUT-OUTPUT SECTION is required unless the pro
gram has no data files. The section begins with the section
header and contains two paragraphs, the FILE-CONTROL
paragraph and the I-O-CONTROL paragraph. These two para
graphs define the file assignment parameters, including buffer
ing. For more information on these paragraphs, see the
individual listings in this chapter.

59

Microsoft COBOL Reference Manual

Example

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

I-O-CONTROL.

60

ENVIRONMENT DIVISION

5.3.1 FILE-CONTROL Paragraph

Purpose

Names the files that are to be processed and associates them
with specific input or output devices.

Format

The FILE-CONTROL paragraph of the ENVIRONMENT DIVI
SION describes each file whose records are subsequently
described in the FILE SECTION of the DATA DIVISION.

The general format for a FILE-CONTROL paragraph with
SEQUENTIAL or LINE SEQUENTIAL file organization is:

FILE-CONTROL.

SELECT [OPTIONAL] file-name

ASSIGN TO
(DISK
\ PRINTER

: I LOCKING IS 1 EXCLUSIVE

; RESERVE integer
AREA "1
AREASJ

[J ORGANIZATION IS [LINE] SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; File STATUS IS data-name-1].

The following format applies to sort files:

FILE-CONTROL.

SELECT file-name

ASSIGN TO DISK

[SORT STATUS IS data-name-1].

61

Microsoft COBOL Reference Manual

Two other formats are available for INDEXED and RELATIVE
file organizations. See Chapters 11 and 12 for these formats.

Remarks

For the two formats given here, the SELECT and ASSIGN
clauses are required; all other clauses are optional.

Example

FILE-CONTROL.
SELECT INVENTORY-RECORDS

ASSIGN TO DISK.
SELECT INVENTORY-REPORT

ASSIGN TO PRINTER.

62

ENVIRONMENT DIVISION

5.3.1.1 ACCESS MODE Clause

Purpose

Specifies the method of access to records.

Format

The three formats of the ACCESS MODE clause are dependent
on file organization. The formats that follow apply to Sequen
tial, Indexed, and Relative files, respectively.

[; ACCESS MODE IS SEQUENTIAL I

SEQUENTIAL
RANDOM
DYNAMIC

: ACCESS MODE IS

— ' SEQUENTIAL [, RELATIVE KEY IS data-name-1] '
: ACCESS MODE IS

1 RANDOM \
_ \ DYNAMIC J , RELATIVE KEY IS data-name-1 _

Remarks

Depending on the structure of the data file, the access mode
can be defined as SEQUENTIAL (the default), RANDOM, or
DYNAMIC (alternately SEQUENTIAL or RANDOM).

If the ACCESS MODE clause is not specified, ACCESS MODE
IS SEQUENTIAL is implied.

The access mode must be specified or implied before any
input-output instructions are executed.

If you have specified SEQUENTIAL or LINE SEQUENTIAL in
the ORGANIZATION clause, the access mode must be
SEQUENTIAL. If you have specified INDEXED or RELA
TIVE organization, the access mode may be RANDOM,
SEQUENTIAL, or DYNAMIC.

The ACCESS MODE clause is optional. If used, this clause
must begin in Area B, and is generally indented from the
SELECT clause for readability.

63

Microsoft COBOL Reference Manual

5.3.1.2 ASSIGN Clause

Purpose

Specifies that a file is to be used with a particular input or out
put device.

Format

The ASSIGN clause always appears as part of the SELECT
clause. It may be entered on the same line as the SELECT
clause, but is generally entered on the following line and in
dented for readability.

The general format for SEQUENTIAL or LINE SEQUENTIAL
file organization is:

(DISK (
ASSIGN TO 1 PRINTER/

The period (.) appears at the end of the sentence that comprises
the entire SELECT clause. This means that if the ASSIGN
clause is followed by optional clauses, the period will appear at
the end of the entire sequence, rather than after ASSIGN.

The general format for Relative and Indexed files and sort
files is:

ASSIGN TO DISK

64

ENVIRONMENT DIVISION

5.3.1.3 FILE STATUS Clause

Purpose

Specifies the data-item that will receive file status codes from
file 1-0 operations.

Format

[; FILE STATUS IS data-name-1].

Remarks

In the FILE STATUS clause, data-name refers to a two-
character, alphanumeric item in the WORKING-STORAGE or
LINKAGE SECTIONS of the DATA DIVISION. File status in
formation will be placed in this item after an 1-0 statement.
The left-hand character of data-name assumes the following
values:

0 for successful completion
1 for end-of-file condition
2 for INVALID KEY (only for

Indexed and Relative files)
3 for a nonrecoverable (1-0) error
9 for special cases

The right-hand character of data-name is set to zero if no
further status information exists for the previous 1-0 operation.

The following combinations of values are possible:

Left Right Meaning
Character Character

0
1
3
3

0
0
0
4

OK
EOF
Permanent error
Disk space full

65

Microsoft COBOL Reference Manual

For values of status-right when status-left has a value of 2 or
9, see Chapters 10, 11, and 12, “Sequential Files,” “Indexed
Files,” and “Relative Files,” respectively.

In an OPEN INPUT or OPEN I-O statement, a file status of
”30” means “File Not Found.”

66

ENVIRONMENT DIVISION

5.3.1.4 LOCKING Clause

The LOCKING clause specifies the file locking mode (EX
CLUSIVE, AUTOMATIC, or MANUAL) that a process will ex
ercise at runtime. See Chapter 17, “File and Record LOCK
ING,” for details about the LOCKING clause.

67

Microsoft COBOL Reference Manual

5.3.1.5 ORGANIZATION Clause

Purpose

Specifies whether the structure of a file is SEQUENTIAL,
LINE SEQUENTIAL, INDEXED, or RELATIVE.

Format
[; ORGANIZATION IS [UNE] SEQUENTIAL]

[I ORGANIZATION IS INDEXED]

[; ORGANIZATION IS RELATIVE]

Remarks

With SEQUENTIAL organization, a two-byte count of the
record length is followed by the actual record, for as many
records as exist in the file.

With LINE SEQUENTIAL organization, each record is fol
lowed by delimiters, usually a linefeed or a carriage return/line
feed pair, for as many records as exist in the file. See the
Microsoft COBOL Compiler User’s Guide for the delimiters
used in your implementation.

Both forms assume the records in the file are variable-length.
For information about INDEXED and RELATIVE file struc
tures, see the introductory material in Chapters 11 and 12.

No COMP-O, COMP-3, or COMP-4 information should be writ
ten into a Line Sequential file because these data-items may
contain the same binary codes used for the record delimiters.
This duplication would cause problems when the file was sub
sequently read.

68

ENVIRONMENT DIVISION

5.3.1.6 SELECT Clause

Purpose

Identifies the files that will be used in file 1-0 operations.

Format

Four general formats are available for the FILE-CONTROL
entry. The formats used with files that have SEQUENTIAL or
LINE SEQUENTIAL organization and for sort files are given
here. See Chapters 11 and 12 for the general formats for
INDEXED and RELATIVE file organization.

The format that applies for Sequential and Line Sequential
files is:

SELECT [OPTIONAL] file-name

ASSIGN TO
DISK \
PRINTER/

; f LOCKING IS 1 EXCLUSIVE

J RESERVE integer
AREA 1~|
AREASJJ

l ; ORGANIZATION IS [LINE] SEQUENTIAL]

[J ACCESS MODE IS SEQUENTIAL]

l; FILE STATUS IS data-name-1].

The general format for sort files is:

SELECT file-name

ASSIGN TO DISK

[SORT STATUS IS data-name-1].

69

Microsoft COBOL Reference Manual

The SELECT clause must begin in Area B. After the SELECT
clause is entered, the other clauses may be entered in any or
der. The preceding format shows them in the usual
arrangement.

Four of the clauses: ASSIGN, FILE STATUS, OPTIONAL, and
ORGANIZATION are described below.

Most of the optional clauses in MS-COBOL default to
SEQUENTIAL organization. The ORGANIZATION and
ACCESS MODE clauses, if not specified, default to ORGANI
ZATION IS SEQUENTIAL and ACCESS MODE IS SEQUEN
TIAL, respectively. For Line Sequential files, ORGANIZATON
IS LINE SEQUENTIAL must be specified, and ACCESS
MODE IS SEQUENTIAL is optional.

Remarks

The following discussion applies to Sequential and Line
Sequential files. For discussion of the use of the SELECT
clause for Indexed or Relative files, see Chapters 11 and 12,
respectively.

For details about the optional file locking syntax for the
SELECT clause which supports processing in a multi-tasking
environment, see Chapter 17, "File and Record LOCKING.”

ASSIGN Clause

The ASSIGN clause is required. It specifies the type of device
that is going to receive the file. The possibilities are DISK or
PRINTER. This clause may appear on the same line with the
SELECT clause, but is generally indented on a separate line
for readability.

The form of the LABEL RECORD(S) clause and the use of the
VALUE OF FILE-ID clause in the File Description entry of the
DATA DIVISION will depend on the destination of your data
file (DISK or PRINTER).

70

ENVIRONMENT DIVISION

For details about the LABEL RECORD(S) and VALUE OF
FILE-ID clauses, see Sections 6.5.17 and 6.5.33, respectively.

FILE STATUS Clause

The FILE STATUS clause is an option of the SELECT clause
in the FILE-CONTROL paragraph. FILE STATUS specifies a
data-name that refers to a two-character, alphanumeric item in
the WORKING-STORAGE or LINKAGE SECTIONS of the
DATA DIVISION. File status information will be placed in
this item after an 1-0 statement.

OPTIONAL Phrase

The OPTIONAL phrase may only be specified for input files.
The OPTIONAL phrase must be specified if input files are
being selected that are not necessarily present each time the
object program is executed.

If the file specified with the OPTIONAL phrase is not present
at runtime, it may be OPENed for INPUT and CLOSEd, but
the first READ of the file causes the AT END condition to
occur, and the execution of the READ statement is unsuccess
ful. The AT END phrase, if present in the READ statement,
will be executed, and the file-status item, if declared, will be
given the value "10", indicating end-of-file.

ORGANIZATION Clause

In the context of Sequential file processing, the ORGANIZA
TION clause may specify SEQUENTIAL. In the context of
Line Sequential file processing, ORGANIZATION IS LINE
SEQUENTIAL must be specified. Both forms assume the
records in the file are variable-length.

No COMP-O, COMP-3, or COMP-4 information should be writ
ten into a Line Sequential file because these data-items may
contain the same binary codes used for carriage return and line
feed. This duplication would cause problems when the file was
subsequently read.

71

Microsoft COBOL Reference Manual

RESERVE Clause

The RESERVE clause is not functional in MS-COBOL, but is
scanned for correct syntax. One physical block buffer is always
allocated to the logical record area assigned to the RESERVE
clause. This allows logical records to span physical block boun
daries. For files assigned to PRINTER, the logical record area
is used as the physical buffer as well.

Disk filenames that correspond to the source program
filenames provided by the SELECT clause are provided by the
user in respective File Description entries using the VALUE
OF FILE-ID clause in the DATA DIVISION.

Example

SELECT INVENTORY-MASTER-FILE
ASSIGN TO DISK
ORGANIZATION IS LINE SEQUENTIAL
FILE STATUS IS MASTER-STATUS.

72

ENVIRONMENT DIVISION

5.3.2 LO-CONTROL Paragraph

Purpose

Specifies the points at which the RERUN operation is to be es
tablished, the files that will be sharing the same physical
buffer space, and the location of files on a multiple file reel.

Format

r I-O-CONTROL.

[END OF] I REELI \
I UNIT J J OF file-name-2

{ integer-1 RECORDS /
integer-2 CLOCK-UNITS

> condition-name

ON | file-name-1
I implementor-name

EVERY;RERUN

[; SAME [RECORD] AREA FOR file-name-3 { , file-name-4 } ...] ...

[; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3]

l , file-name-6 [POSITION integer-4]]...]....]

Remarks

The I-O-CONTROL paragraph is optional.

In general, the RERUN clause specifies when and where the
rerun information is recorded, the SAME AREA clause speci
fies that two or more files are to use the same memory area for
processing so that memory space can be conserved, and the
MULTIPLE FILE clause specifies that more than one file
shares the same reel of tape.

The I-O-CONTROL paragraph header must be entered exactly
as shown, including the period (.). The header must begin in
Area A. The clauses usually begin in Area B for readability.

Further details about the MULTIPLE FILE, RERUN, and
SAME AREA clauses are given in Sections 5.3.2.1, 5.3.2.2, and
5.3.2.3, respectively.

73

Microsoft COBOL Reference Manual

Note
While the Microsoft COBOL Compiler recognizes and
checks the full language tape-handling and RERUN syn
tax, it does not support tape-handling or RERUN com
mands during program execution.

Example

I -O-CONTROL.
SAME RECORD AREA FOR

INVENTORY-MASTER-FILE ?
INVENTORY-REPORT-FILE.

74

ENVIRONMENT DIVISION

5.3.2.1 MULTIPLE FILE Clause

Purpose

Identifies files and file positions on a single reel of tape that is
being shared by more than one file.

Format

[; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3]

[, file-name-6 [POSITION integer-4]]...]....

Remarks

If all the files have been listed in consecutive order, the POSI
TION option is not required.

Note
While the Microsoft COBOL Compiler recognizes and
checks the full language tape-handling syntax, it does not
support tape-handling commands during program execu
tion.

75

Microsoft COBOL Reference Manual

5.3.2.L RERUN Clause

Purpose

Specifies when and where the rerun information is recorded,
and, if necessary, the destination of the updated file.

Format

; RERUN [ON i file-name-1 H EVERY
L 1 implementor-name IJ

([END OF] (REEL))
< I UNIT / } OF file-name-2
I integer-1 RECORDS)

inteaer-2 CLOCK-UNITS
condition-name

Remarks

The RERUN clause may take several forms depending on the
context under which the RERUN points are to be established.

Note
While the Microsoft COBOL Compiler recognizes and
checks the full language RERUN syntax, it does not sup
port RERUN commands during program execution.

76

ENVIRONMENT DIVISION

5.3.2.Z SAME AREA Clause

Purpose

Specifies that two or more files are to use the same memory
area during processing. This clause is generally used to save
memory space.

Format

- RECORD
SAME SORT

AREA FOR file-name-3 | , file-name-4 ...

SORT-MERGE

Remarks

This clause is optional. The files named in a SAME AREA
clause need not have the same organization or access, but no
file-name may appear in more than one SAME AREA clause,
and the files cannot be opened concurrently.

If the RECORD option is used, however, all the files may be
opened at the same time, provided that none of the files named
by the SAME RECORD AREA clause has also been named in a
SAME AREA clause.

More than one SAME AREA clause may be included in an
I-O-CONTROL paragraph.

Example

I-O-CONTROL.
SAME RECORD AREA FOR

INVENTORY-MASTER-FILE,
INVENTORY-REPORT-FILE.

77

r

4-

